1
|
Yi L, Yang W, Sun L, Li J, Li X, Wang Y. Identification of a novel protective antigen, 3-oxoacyl-[acyl-carrier-protein] synthase II of Streptococcus equi ssp. zooepidemicus which confers protective effects. Comp Immunol Microbiol Infect Dis 2020; 71:101493. [PMID: 32447155 DOI: 10.1016/j.cimid.2020.101493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022]
Abstract
Streptococcus equi ssp. zooepidemicus (SEZ) is an important swine pathogen and responsible for a wide variety of infections in many animal species. FabF was a novel protein identified in the previous study. However, its protective efficacy remained to be evaluated. In this study, recombinant fabF of SEZ was expressed and showed a strong immunoreactivity with mini-pig convalescent sera. Study in mice revealed that the recombinant protein induced a marked antibody response and protected 80% of mice against SEZ infection. The hyperimmune sera against fabF could efficiently kill the bacteria in the phagocytosis test. In addition, it was also found that anti- fabF antibodies can significantly inhibit the formation of SEZ biofilm. These study suggest that fabF may represent immunogens of interest for vaccine development against SEZ infection.
Collapse
Affiliation(s)
- Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Weiping Yang
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Liyun Sun
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jinpeng Li
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiaokang Li
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yang Wang
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
2
|
Identification of Haemophilus parasuis genes uniquely expressed during infection using in vivo-induced antigen technology. Vet Microbiol 2020; 243:108650. [PMID: 32273024 DOI: 10.1016/j.vetmic.2020.108650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 01/12/2023]
Abstract
Haemophilus parasuis is the etiological agent of Glässer's disease which is characterized by fibrinous polyserositis, arthritis and meningitis. The pathogenesis of this bacterium remains largely unknown. Genes expressed in vivo may play an important role in the pathogenicity of H. parasuis. The development of in vivo-induced antigen technology (IVIAT) has provided a valuable tool for the identification of in vivo-induced genes during bacterial infection. In this study, IVIAT was applied to identify in vivo-induced antigens of H. parasuis. Pooled swine H. parasuis-positive sera, adsorbed against in vitro-grown cultures of H. parasuis SH0165 and Escherichia coli BL21 (DE3), were used to screen the inducible expression library of genomic proteins from whole genome sequenced H. parsuis SH0165. Finally, 24 unique genes expressed in vivo were successfully identified after secondary and tertiary screening with IVIAT. These genes were implicated in cell surface proteins, metabolism, stress response, regulation, transportation and other processes. Quantitative real-time PCR showed that the mRNA levels of 24 genes were all upregulated in vivo relative to in vitro, with 13 genes were detected significantly upregulated in H. parasuis infected pigs. Several potential virulence-associated genes were found to be uniquely expressed in vivo, including espP, lnt, hutZ, mreC, vtaA, pilB, tex, sunT and aidA. The results indicated that the proteins identified using IVIAT may play important roles in the pathogenesis of H. parasuis infection in vivo.
Collapse
|
3
|
Galactose-1-phosphate uridyltransferase (GalT), an in vivo-induced antigen of Actinobacillus pleuropneumoniae serovar 5b strain L20, provided immunoprotection against serovar 1 strain MS71. PLoS One 2018; 13:e0198207. [PMID: 29856812 PMCID: PMC5983418 DOI: 10.1371/journal.pone.0198207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/15/2018] [Indexed: 11/19/2022] Open
Abstract
GALT is an important antigen of Actinobacillus pleuropneumoniae (APP), which was shown to provide partial protection against APP infection in a previous study in our lab. The main purpose of the present study is to investigate GALT induced cross-protection between different APP serotypes and elucidate key mechanisms of the immune response to GALT antigenic stimulation. Bioinformatic analysis demonstrated that galT is a highly conserved gene in APP, widely distributed across multiple pathogenic strains. Homologies between any two strains ranges from 78.9% to 100% regarding the galT locus. Indirect enzyme-linked immunosorbent assay (ELISA) confirmed that GALT specific antibodies could not be induced by inactivated APP L20 or MS71 whole cell bacterin preparations. A recombinant fusion GALT protein derived from APP L20, however has proven to be an effective cross-protective antigen against APP sevorar 1 MS71 (50%, 4/8) and APP sevorar 5b L20 (75%, 6/8). Histopathological examinations have confirmed that recombinant GALT vaccinated animals showed less severe pathological signs in lung tissues than negative controls after APP challenge. Immunohistochemical (IHC) analysis indicated that the infiltration of neutrophils in the negative group is significantly increased compared with that in the normal control (P<0.001) and that in surviving animals is decreased compared to the negative group. Anti-GALT antibodies were shown to mediate phagocytosis of neutrophils. After interaction with anti-GALT antibodies, survival rate of APP challenged vaccinated animals was significantly reduced (P<0.001). This study demonstrated that GALT is an effective cross-protective antigen, which could be used as a potential vaccine candidate against multiple APP serotypes.
Collapse
|
4
|
Zhang F, Cao S, Zhu Z, Yang Y, Wen X, Chang YF, Huang X, Wu R, Wen Y, Yan Q, Huang Y, Ma X, Zhao Q. Immunoprotective Efficacy of Six In vivo-Induced Antigens against Actinobacillus pleuropneumoniae as Potential Vaccine Candidates in Murine Model. Front Microbiol 2016; 7:1623. [PMID: 27818646 PMCID: PMC5073529 DOI: 10.3389/fmicb.2016.01623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/29/2016] [Indexed: 11/21/2022] Open
Abstract
Six in vivo-induced (IVI) antigens—RnhB, GalU, GalT, Apl_1061, Apl_1166, and HflX were selected for a vaccine trial in a mouse model. The results showed that the IgG levels in each immune group was significantly higher than that of the negative control (P < 0.001). Except rRnhB group, proliferation of splenocytes was observed in all immunized groups and a relatively higher proliferation activity was observed in rGalU and rGalT groups (P < 0.05). In the rGalT vaccinated group, the proportion of CD4+ T cells in spleen was significant higher than that of negative control (P < 0.05). Moreover, proportions of CD4+ T cells in other vaccinated groups were all up-regulated to varying degrees. Up-regulation of both Th1 (IFN-γ, IL-2) and Th2 (IL-4) cytokines were detected. A survival rate of 87.5, 62.5, and 62.5% were obtained among rGalT, rAPL_1166, and rHflX group, respectively while the remaining three groups was only 25%. Histopathological analyses of lungs indicated that surviving animals from the vaccinated groups showed relatively normal pulmonary structure alveoli. These findings confirm that IVI antigens used as vaccine candidates provide partial protection against Actinobacillus pleuropneumoniae infection in a mouse model, which could be used as potential vaccine candidates in piglets.
Collapse
Affiliation(s)
- Fei Zhang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of AgricultureChengdu, China
| | - Zhuang Zhu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Yusheng Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca NY, USA
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of AgricultureChengdu, China
| | - Yong Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Xiaoping Ma
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| |
Collapse
|
5
|
Lee SW, Shet UK, Park SW, Lim HP, Yun KD, Kang SS, Kim SE. Identification of Enterococcus faecalis antigens specifically expressed in vivo. Restor Dent Endod 2015; 40:306-11. [PMID: 26587417 PMCID: PMC4650527 DOI: 10.5395/rde.2015.40.4.306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/10/2015] [Indexed: 01/05/2023] Open
Abstract
Objectives Molecular mechanism of the pathogenicity of Enterococcus faecalis (E. faecalis), a suspected endodontic pathogen, has not yet been adequately elucidated due to limited information on its virulence factors. Here we report the identification of in vivo expressed antigens of E. faecalis by using a novel immunoscreening technique called change-mediated antigen technology (CMAT) and an experimental animal model of endodontic infection. Materials and Methods Among 4,500 E. coli recombinant clones screened, 19 positive clones reacted reproducibly with hyperimmune sera obtained from rabbits immunized with E. faecalis cells isolated from an experimental endodontic infection. DNA sequences from 16 of these in vivo-induced (IVI) genes were determined. Results Identified protein antigens of E. faecalis included enzymes involved in housekeeping functions, copper resistance protein, putative outer membrane proteins, and proteins of unknown function. Conclusions In vivo expressed antigens of E. faecalis could be identified by using a novel immune-screening technique CMAT and an experimental animal model of endodontic infection. Detailed analysis of these IVI genes will lead to a better understanding of the molecular mechanisms involved in the endodontic infection of E. faecalis.
Collapse
Affiliation(s)
- Seok-Woo Lee
- Department of Dental Education, Dental Science Research Institute and BK21 Project, School of Dentistry, Gwangju, Korea. ; Department of Periodontology, Dental Science Research Institute and BK21 Project, School of Dentistry, Gwangju, Korea
| | - Uttom K Shet
- Department of Maxillofacial Surgery, Dental Science Research Institute and BK21 Project, School of Dentistry, Gwangju, Korea
| | - Sang-Won Park
- Department of Prosthodontics, Dental Science Research Institute and BK21 Project, School of Dentistry, Gwangju, Korea
| | - Hyun-Pil Lim
- Department of Prosthodontics, Dental Science Research Institute and BK21 Project, School of Dentistry, Gwangju, Korea
| | - Kwi-Dug Yun
- Department of Prosthodontics, Dental Science Research Institute and BK21 Project, School of Dentistry, Gwangju, Korea
| | - Seong Soo Kang
- Department of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Se Eun Kim
- Department of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| |
Collapse
|
6
|
Identification of in vivo-induced bacterial protein antigens during calf infection with Chlamydia psittaci. Int J Med Microbiol 2015; 305:310-21. [DOI: 10.1016/j.ijmm.2014.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/19/2014] [Accepted: 12/20/2014] [Indexed: 01/21/2023] Open
|
7
|
Geng S, Liu Z, Lin Z, Barrow P, Pan Z, Li Q, Jiao X. Identification of in vivo-induced genes during infection of chickens with Salmonella enterica serovar Enteritidis. Res Vet Sci 2015; 100:1-7. [PMID: 25843894 DOI: 10.1016/j.rvsc.2015.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 02/28/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
Abstract
Chickens are an important source of food worldwide and are often infected with food-poisoning serovars of Salmonella enterica, frequently Salmonella Enteritidis (SE), without exhibiting clinical signs of disease. Ivi (in vivo induced) genes identified using in vivo-induced antigen technology (IVIAT) are expressed only during bacterial infection and have the potential value of identifying epidemic strains and antigens which can form the basis for sub-unit vaccine development. We applied IVIAT to SE strain 50041 and identified 42 ivi genes. Eight representative ivi genes were further confirmed by qRT-PCR as being expressed only in vivo within 48 h of infection compared with that of in vitro-cultured. Although our results indicated that the identified ivi genes are expressed only in vivo, further research is needed to elucidate the exact roles of these genes during infection and pathogenesis.
Collapse
Affiliation(s)
- Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhicheng Liu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhijie Lin
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
8
|
Tao Q, Xiao J, Wang Y, Fang K, Li N, Hu M, Zhou Y, Zhao J. Identification of genes expressed during Toxoplasma gondii infection by in vivo-induced antigen technology (IVIAT) with positive porcine sera. J Parasitol 2014; 100:470-9. [PMID: 24646180 DOI: 10.1645/13-240.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Infection of pigs with Toxoplasma gondii is a common source of human toxoplasmosis and causes serious economic losses. In vivo-induced antigen technology (IVIAT) is an effective immunological technique to identify the antigens that a pathogen specifically expressed during infection. To discover the genes that are important in T. gondii infection of pigs, we employed IVIAT using sera from infected pigs. Fourteen antigens were identified including microneme protein 11 (MIC11), dense granule protein 5 (GRA5), 18 kDa cyclophilin (C-18), serine proteinase inhibitor (PI), calmodulin (CaM), leucine-rich repeat protein ( LRRP), D-3-phosphoglycerate dehydrogenase (D3PD), elongation factor 1-gamma (EF1), and 6 hypothetical proteins. The increased transcription levels of 5 (MIC11, GRA5, C-18, PI, and CaM) of the 14 molecules identified by IVIAT were confirmed by real-time PCR. The full length or partial proteins encoded by these 5 genes were expressed in Escherichia coli , and their immunogenicity was confirmed by Western blot analysis with positive porcine sera. Further functional studies were conducted with CaM. Suppression of CaM expression by RNA interference decreased T. gondii tachyzoites cell attachment, invasion, and egress but did not influence their replication. The proteins identified in this study are predicted to be involved in cell invasion, ion-protein binding, protein folding, biosynthesis, and metabolism. The results of the functional analysis support the hypothesis that CaM contributes to parasite pathogenesis during infection. These results may have significant implications for the discovery of candidate molecules for the development of potential therapies and preventive measures against toxoplasmosis in pigs.
Collapse
Affiliation(s)
- Qing Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Amerizadeh A, Khoo BY, Teh AY, Golkar M, Abdul Karim IZ, Osman S, Yunus MH, Noordin R. Identification and real-time expression analysis of selected Toxoplasma gondii in-vivo induced antigens recognized by IgG and IgM in sera of acute toxoplasmosis patients. BMC Infect Dis 2013; 13:287. [PMID: 23800344 PMCID: PMC3695809 DOI: 10.1186/1471-2334-13-287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular zoonotic parasite of the phylum Apicomplexa which infects a wide range of warm-blooded animals, including humans. In this study in-vivo induced antigens of this parasite was investigated using in-vivo induced antigen technology (IVIAT) and pooled sera from patients with serological evidence of acute infection. METHODS The pooled sera was first pre-absorbed against three different preparations of antigens from in-vitro-grown cells of each T. gondii and E. coli XL1-Blue MRF', subsequently it was used to screen T. gondii cDNA phage expression library. Positive clones from each group were subjected to quantitative real-time PCR expression analysis on mRNA of in-vivo and in-vitro grown parasites. RESULTS A total of 29 reactive clones from each IgM and IgG immunoscreenings were found to have high homology to T. gondii genes. Quantitative real-time PCR expression analysis showed that 20 IgM-detected genes and 11 IgG-detected genes were up-regulated in-vivo relative to their expression levels in-vitro. These included genes encoding micronemes, sterol-regulatory element binding protein site, SRS34A, MIC2-associated protein M2AP, nucleoredoxin, protein phosphatase 2C and several hypothetical proteins. A hypothetical protein (GenBank accession no. 7899266) detected by IgG had the highest in-vivo over in-vitro fold change of 499.86; while another up-regulated hypothetical protein (GenBank accession no. 7898829) recognized by IgM showed high sensitivity (90%) and moderate specificity (70%) in detecting T. gondii antibodies when tested with 20 individual serum samples. CONCLUSION The highly up-regulated genes and the corresponding proteins, in particular the hypothetical proteins, may be useful in further studies on understanding the disease pathogenesis and as potential vaccine candidates.
Collapse
Affiliation(s)
- Atefeh Amerizadeh
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Identification of Salmonella enterica serovar Pullorum antigenic determinants expressed in vivo. Infect Immun 2013; 81:3119-27. [PMID: 23774596 DOI: 10.1128/iai.00145-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica serovar Pullorum affecting poultry causes pullorum disease and results in severe economic loss in the poultry industry. Currently, it remains a major threat in countries with poor poultry surveillance and no efficient control measures. As S. Pullorum could induce strong humoral immune responses, we applied an immunoscreening technique, the in vivo-induced antigen technology (IVIAT), to identify immunogenic bacterial proteins expressed or upregulated during S. Pullorum infection. Convalescent-phase sera from chickens infected with S. Pullorum were pooled, adsorbed against antigens expressed in vitro, and used to screen an S. Pullorum genomic expression library. Forty-five proteins were screened out, and their functions were implicated in molecular biosynthesis and degradation, transport, metabolism, regulation, cell wall synthesis and antibiotic resistance, environmental adaptation, or putative functions. In addition, 11 of these 45 genes were assessed for their differential expression by quantitative real-time reverse transcription-PCR (RT-PCR), revealing that 9 of 11 genes were upregulated to different degrees under in vivo conditions, especially the regulator of virulence determinants, phoQ. Then, four in vivo-induced proteins (ShdA, PhoQ, Cse3, and PbpC) were tested for their immunoreactivity in 28 clinical serum samples from chickens infected with S. Pullorum. The rate of detection of antibodies against ShdA reached 82% and was the highest among these proteins. ShdA is a host colonization factor known to be upregulated in vivo and related to the persistence of S. Typhimurium in the intestine. Furthermore, these antigens identified by IVIAT warrant further evaluation for their contributions to pathogenesis, and more potential roles, such as diagnostic, therapeutic, and preventive uses, need to be developed in future studies.
Collapse
|
11
|
Development of a single-step subtraction method for eukaryotic 18S and 28S ribonucleic acids. J Biomed Biotechnol 2011; 2011:910369. [PMID: 21765639 PMCID: PMC3134377 DOI: 10.1155/2011/910369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/29/2011] [Indexed: 11/18/2022] Open
Abstract
The abundance of mammalian 18S and 28S ribosomal RNA can decrease the detection sensitivity of bacterial or viral targets in complex host-pathogen mixtures. A method to capture human RNA in a single step was developed and characterized to address this issue. For this purpose, capture probes were covalently attached to magnetic microbeads using a dendrimer linker and the solid phase was tested using rat thymus RNA (mammalian components) with Escherichia coli RNA (bacterial target) as a model system. Our results indicated that random capture probes demonstrated better performance than specific ones presumably by increasing the number of possible binding sites, and the use of a tetrame-thylammonium-chloride (TMA-Cl-) based buffer for the hybridization showed a beneficial effect in the selectivity. The subtraction efficiency determined through real-time RT-PCR revealed capture-efficiencies comparable with commercially available enrichment kits. The performance of the solid phase can be further fine tuned by modifying the annealing time and temperature.
Collapse
|
12
|
Identification of in vivo-induced antigens including an RTX family exoprotein required for uropathogenic Escherichia coli virulence. Infect Immun 2011; 79:2335-44. [PMID: 21422188 DOI: 10.1128/iai.00110-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uncomplicated urinary tract infections (UTI) are caused most commonly by uropathogenic Escherichia coli (UPEC). Whole-genome screening approaches, including transcriptomic, proteomic, and signature-tagged mutagenesis, have shown that UPEC highly expresses or requires genes for translational machinery, capsule, lipopolysaccharide, type 1 fimbriae, and iron acquisition systems during UTI. To identify additional genes expressed by UPEC during UTI, an immunoscreening approach termed in vivo-induced antigen technology (IVIAT) was employed to identify antigens produced during experimental infection that are not produced during in vitro culture. An inducible protein expression library, constructed from genomic DNA isolated from UPEC strain CFT073, was screened using exhaustively adsorbed pooled sera from 20 chronically infected female CBA/J mice. Using this approach, we identified 93 antigens induced by UPEC in vivo. A representative subset of these genes was tested by quantitative PCR for expression by CFT073 in vivo and during growth in human urine or LB medium in vitro; proWX, narJI, lolA, lolD, tosA (upxA), c2432, katG, ydhX, kpsS, and yddQ were poorly expressed in vitro but highly expressed in vivo. Of these, tosA, a gene encoding a predicted repeat-in-toxin family member, was expressed exclusively during UTI. Deletion of tosA in UPEC strain CFT073 resulted in significant attenuation in bladder and kidney infections during ascending UTI. By screening for in vivo-induced antigens, we identified a novel UPEC virulence factor and additional proteins that could be useful as potential vaccine targets.
Collapse
|
13
|
Lee HR, Rhyu IC, Kim HD, Jun HK, Min BM, Lee SH, Choi BK. In-vivo-induced antigenic determinants of Fusobacterium nucleatum subsp. nucleatum. Mol Oral Microbiol 2011; 26:164-72. [DOI: 10.1111/j.2041-1014.2010.00594.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Immunoproteomic analysis of human serological antibody responses to vaccination with whole-cell pertussis vaccine (WCV). PLoS One 2010; 5:e13915. [PMID: 21170113 PMCID: PMC2976700 DOI: 10.1371/journal.pone.0013915] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 10/18/2010] [Indexed: 11/29/2022] Open
Abstract
Background Pertussis (whooping cough) caused by Bordetella pertussis
(B.p), continues to be a serious public health threat.
Vaccination is the most economical and effective strategy for preventing and
controlling pertussis. However, few systematic investigations of actual
human immune responses to pertussis vaccines have been performed. Therefore,
we utilized a combination of two-dimensional electrophoresis (2-DE),
immunoblotting, and mass spectrometry to reveal the entire antigenic
proteome of whole-cell pertussis vaccine (WCV) targeted by the human immune
system as a first step toward evaluating the repertoire of human humoral
immune responses against WCV. Methodology/Principal Findings Immunoproteomic profiling of total membrane enriched proteins and
extracellular proteins of Chinese WCV strain 58003 identified a total of 30
immunoreactive proteins. Seven are known pertussis antigens including
Pertactin, Serum resistance protein, chaperonin GroEL and two OMP porins.
Sixteen have been documented to be immunogenic in other pathogens but not in
B.p, and the immunogenicity of the last seven proteins
was found for the first time. Furthermore, by comparison of the human and
murine immunoproteomes of B.p, with the exception of four
human immunoreactive proteins that were also reactive with mouse immune
sera, a unique group of antigens including more than 20 novel immunoreactive
proteins that uniquely reacted with human immune serum was confirmed. Conclusions/Significance This study is the first time that the repertoire of human serum antibody
responses against WCV was comprehensively investigated, and a small number
of previously unidentified antigens of WCV were also found by means of the
classic immunoproteomic strategy. Further research on these newly identified
predominant antigens of B.p exclusively against humans will
not only remarkably accelerate the development of diagnostic biomarkers and
subunit vaccines but also provide detailed insight into human immunity
mechanisms against WCV. In particular, this work highlights the
heterogeneity of the B.p immunoreactivity patterns of the
mouse model and the human host.
Collapse
|
15
|
Kima PE, Bonilla JA, Cho E, Ndjamen B, Canton J, Leal N, Handfield M. Identification of Leishmania proteins preferentially released in infected cells using change mediated antigen technology (CMAT). PLoS Negl Trop Dis 2010; 4. [PMID: 20957202 PMCID: PMC2950143 DOI: 10.1371/journal.pntd.0000842] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 09/08/2010] [Indexed: 01/01/2023] Open
Abstract
Although Leishmania parasites have been shown to modulate their host cell's responses to multiple stimuli, there is limited evidence that parasite molecules are released into infected cells. In this study, we present an implementation of the change mediated antigen technology (CMAT) to identify parasite molecules that are preferentially expressed in infected cells. Sera from mice immunized with cell lysates prepared from L. donovani or L. pifanoi-infected macrophages were adsorbed with lysates of axenically grown amastigotes of L. donovani or L. pifanoi, respectively, as well as uninfected macrophages. The sera were then used to screen inducible parasite expression libraries constructed with genomic DNA. Eleven clones from the L. pifanoi and the L. donovani screen were selected to evaluate the characteristics of the molecules identified by this approach. The CMAT screen identified genes whose homologs encode molecules with unknown function as well as genes that had previously been shown to be preferentially expressed in the amastigote form of the parasite. In addition a variant of Tryparedoxin peroxidase that is preferentially expressed within infected cells was identified. Antisera that were then raised to recombinant products of the clones were used to validate that the endogenous molecules are preferentially expressed in infected cells. Evaluation of the distribution of the endogenous molecules in infected cells showed that some of these molecules are secreted into parasitophorous vacuoles (PVs) and that they then traffic out of PVs in vesicles with distinct morphologies. This study is a proof of concept study that the CMAT approach can be applied to identify putative Leishmania parasite effectors molecules that are preferentially expressed in infected cells. In addition we provide evidence that Leishmania molecules traffic out of the PV into the host cell cytosol and nucleus. Leishmania are intracellular parasites that reside within parasitophorous vacuoles (PV) in phagocytes. From within these compartments parasites control the host cell's responses to multiple stimuli. There is limited knowledge of the molecules that Leishmania parasites elaborate in the host cell to target processes therein. Furthermore, the mechanism by which such molecules would access their targets beyond the PV is not known. In the study presented here, we implemented the change mediated antigen technology (CMAT) to identify parasite molecules that are preferentially expressed inside infected cells. The approach was based on the reasoning that parasites express ‘new’ or antigenically modified molecules in the intracellular environment; therefore antiserum that is reactive to infected cells would contain immunoglobulins that are specific to these ‘new’ molecules. After adsorption of the antiserum with axenically cultured parasites, the antiserum was used to screen a parasite genomic expression library to identify genes encoding the molecules that are preferentially expressed in infected cells. We present for the first time evidence that some of these CMAT molecules accumulate in the PV and then traffic into the host cell in vesicles of distinct morphologies. Furthermore, several of these parasite molecules become localized in discrete compartments within the host cell.
Collapse
Affiliation(s)
- Peter E Kima
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America.
| | | | | | | | | | | | | |
Collapse
|
16
|
Andrews GP, Vernati G, Ulrich R, Rocke TE, Edwards WH, Adamovicz JJ. Identification of in vivo-induced conserved sequences from Yersinia pestis during experimental plague infection in the rabbit. Vector Borne Zoonotic Dis 2010; 10:749-56. [PMID: 20055582 DOI: 10.1089/vbz.2009.0179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In an effort to identify the novel virulence determinants of Yersinia pestis, we applied the gene "discovery" methodology, in vivo-induced (IVI) antigen technology, to detect genes upregulated during infection in a laboratory rabbit model for bubonic plague. After screening over 70,000 Escherichia coli clones of Y. pestis DNA expression libraries, products from 25 loci were identified as being seroreactive to reductively adsorbed, pooled immune serum. Upon sequence analysis of the predicted IVI gene products, more frequently encountered conserved protein functional categories have emerged, to include type-V autotransporters and components of more complex secretion systems including types III and VI. The recombinant products from eight selected clones were subsequently immunoblotted against pooled immune serum from two naturally infected host species: the prairie dog, and a species refractory to lethal disease, the coyote. Immune prairie dog serum recognized 2-3 of the rabbit-reactive antigens, suggesting at least some overlap in the pathogen's in vivo survival mechanisms between these two hosts. Although the coyote serum failed to recognize most of the IVI antigens, LepA was universally reactive with all three host sera. Collectively, the profiles/patterns of IVI conserved sequences (IVICS) may represent immune "signatures" among different host species, possessing the potential for use as a diagnostic tool for plague. Further, the antigenic nature of IVICS makes them ideal for further evaluation as novel subunit vaccine candidates. The gathering of additional data and analysis of the intact IVI genes and the expressed IVICS products should provide insight into the unique biologic processes of Y. pestis during infection and reveal the genetic patterns of the pathogen's survival strategy in different hosts.
Collapse
Affiliation(s)
- Gerard P Andrews
- Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming 82070, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Wallet SM, Chung J, Handfield M. Use of in vivo-induced antigen technology (IVIAT) to identify virulence factors of Porphyromonas gingivalis. Methods Mol Biol 2010; 666:181-195. [PMID: 20717786 DOI: 10.1007/978-1-60761-820-1_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with the initiation and progression of adult periodontal disease. The pathogenicity of P. gingivalis is multifaceted and the infection process is influenced by both microbial and host factors. It is generally accepted that genes of a pathogen that are specifically expressed during infection are likely to be important for pathogenicity. Numerous technologies have been developed to identify these genes. A novel strategy known as in vivo-induced antigen technology (IVIAT) avoids the use of animal models and utilizes serum from patients who have experienced disease caused by the pathogen of interest. While a number of putative virulence factors have been described for P. gingivalis, the identity, relevance, and mechanisms of action of virulence factors that actually provide a selective advantage to the organism in the oral cavity of diseased patients is still unclear. Here we describe the IVIAT protocol for identification of in vivo-induced genes of P. gingivalis, which can be adapted with few modifications to any microbial pathogen.
Collapse
Affiliation(s)
- Shannon M Wallet
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | | | | |
Collapse
|
18
|
Gu H, Zhu H, Lu C. Use of in vivo-induced antigen technology (IVIAT) for the identification of Streptococcus suis serotype 2 in vivo-induced bacterial protein antigens. BMC Microbiol 2009; 9:201. [PMID: 19765272 PMCID: PMC2758882 DOI: 10.1186/1471-2180-9-201] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 09/18/2009] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus suis serotype 2 (SS2) is a zoonotic agent that causes death and disease in both humans and swine. A better understanding of SS2-host molecular interactions is crucial for understanding SS2 pathogenesis and immunology. Conventional genetic and biochemical approaches used to study SS2 virulence factors are unable to take into account the complex and dynamic environmental stimuli associated with the infection process. In this study, in vivo-induced antigen technology (IVIAT), an immunoscreening technique, was used to identify the immunogenic bacterial proteins that are induced or upregulated in vivo during SS2 infection. Results Convalescent-phase sera from pigs infected with SS2 were pooled, adsorbed against in vitro antigens, and used to screen SS2 genomic expression libraries. Upon analysis of the identified proteins, we were able to assign a putative function to 40 of the 48 proteins. These included proteins implicated in cell envelope structure, regulation, molecule synthesis, substance and energy metabolism, transport, translation, and those with unknown functions. The in vivo-induced changes in the expression of 10 of these 40 genes were measured using real-time reverse transcription (RT)-PCR, revealing that the expression of 6 of the 10 genes was upregulated in the in vivo condition. The strain distribution of these 10 genes was analyzed by PCR, and they were found in the most virulent SS2 strains. In addition, protein sequence alignments of the newly identified proteins demonstrate that three are putative virulence-associated proteins. Conclusion Collectively, our results suggest that these in vivo-induced or upregulated genes may contribute to SS2 disease development. We hypothesize that the identification of factors specifically induced or upregulated during SS2 infection will aid in our understanding of SS2 pathogenesis and may contribute to the control SS2 outbreaks. In addition, the proteins identified using IVIAT may be useful potential vaccine candidates or virulence markers.
Collapse
Affiliation(s)
- Hongwei Gu
- Key Lab Animal Disease Diagnostic & Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, PR China.
| | | | | |
Collapse
|
19
|
Identification and characterization of antigenic proteins potentially expressed during the infectious process of Paracoccidioides brasiliensis. Microbes Infect 2009; 11:895-903. [PMID: 19500685 DOI: 10.1016/j.micinf.2009.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/05/2009] [Accepted: 05/24/2009] [Indexed: 11/23/2022]
Abstract
Paracoccidioides brasiliensis causes paracoccidioidomycosis (PCM), a systemic mycosis presenting clinical manifestations ranging from mild to severe forms. A P. brasiliensis cDNA expression library was produced and screened with pooled sera from PCM patients adsorbed against antigens derived from in vitro-grown P. brasiliensis yeast cells. Sequencing DNA inserts from clones reactive with PCM patients sera indicated 35 open reading frames presenting homology to genes involved in metabolic pathways, transport, among other predicted functions. The complete cDNAs encoding aromatic-l-amino-acid decarboxylase (Pbddc), lumazine synthase (Pbls) and a homologue of the high affinity copper transporter (Pbctr3) were obtained. Recombinant proteins PbDDC and PbLS were obtained; a peptide was synthesized for PbCTR3. The proteins and the synthetic peptide were recognized by sera of patients with confirmed PCM and not by sera of healthy patients. Using the in vivo-induced antigen technology (IVIAT), we identified immunogenic proteins expressed at high levels during infection. Quantitative real time RT-PCR demonstrated high transcript levels of Pbddc, Pbls and Pbctr3 in yeast cells infecting macrophages. Transcripts in yeast cells derived from spleen and liver of infected mice were also measured by qRT-PCR. Our results suggest a putative role for the immunogenic proteins in the infectious process of P. brasiliensis.
Collapse
|
20
|
Desa MNM, Navaratnam P, Vadivelu J, Sekaran SD. Expression analysis of adherence-associated genes in pneumococcal clinical isolates during adherence to human respiratory epithelial cells (in vitro) by real-time PCR. FEMS Microbiol Lett 2009; 288:125-30. [PMID: 18795954 DOI: 10.1111/j.1574-6968.2008.01345.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pneumococcal virulence determinants have been extensively studied but molecular evidence on virulence gene expression pattern is still lacking. We undertook this study to analyze the regulation pattern of adherence-associated genes; psaA, pspC, cbpG, including ply of serotypes 1, 7F, 19F and 23F clinical isolates during the bacterial adherence to human lung epithelial cells (in vitro), by real-time PCR. We were able to harvest the bacterial RNA (0.5-1 microg microL(-1)) from the infected host cell and analysis showed a consistent upregulation of psaA. Differential expressions were observed for pspC, cbpG and ply genes but the former was mostly upregulated whereas the later two frequently showed either no significant change or a downregulation. Partial nucleotide sequences of psaA, cbpG and ply were highly homologous among the isolates as well as against GenBank sequences (99%) whereas those for pspC were similar (98%) to allelic variants pspC-3 and pspC-5.
Collapse
|
21
|
Salim KY, de Azavedo JC, Bast DJ, Cvitkovitch DG. Regulation of sagA, siaA and scpC by SilCR, a putative signaling peptide of Streptococcus pyogenes. FEMS Microbiol Lett 2008; 289:119-25. [PMID: 19016875 DOI: 10.1111/j.1574-6968.2008.01375.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SilCR, a 17 amino acid putative signaling peptide, was proposed to modulate gene expression in Streptococcus pyogenes. We showed that SilCR added exogenously to an M1 serotype strain lacking the sil locus upregulates the in vitro expression of sagA, siaA, and scpC, genes associated with S. pyogenes pathogenesis. Interestingly, only sagA and siaA were upregulated by SilCR in vivo, whereas the expression of scpC remained unaltered. A previous report indicated that exogenously added SilCR protects mice to some degree from developing necrotic lesions caused by an invasive strain of S. pyogenes. In contrast to this report, we found that SilCR did not reduce lesion formation in a subcutaneous murine model of S. pyogenes infection but rather appeared to delay wound healing.
Collapse
Affiliation(s)
- Kowthar Y Salim
- Department of Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
22
|
Rollins SM, Peppercorn A, Young JS, Drysdale M, Baresch A, Bikowski MV, Ashford DA, Quinn CP, Handfield M, Hillman JD, Lyons CR, Koehler TM, Calderwood SB, Ryan ET. Application of in vivo induced antigen technology (IVIAT) to Bacillus anthracis. PLoS One 2008; 3:e1824. [PMID: 18350160 PMCID: PMC2265799 DOI: 10.1371/journal.pone.0001824] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/05/2008] [Indexed: 01/23/2023] Open
Abstract
In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42); the bacteriophage holin gene BA4074; and pagA (pXO1-110). The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.
Collapse
Affiliation(s)
- Sean M Rollins
- Massachusetts General Hospital, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jones AL, Mertz RH, Carl DJ, Rubens CE. A streptococcal penicillin-binding protein is critical for resisting innate airway defenses in the neonatal lung. THE JOURNAL OF IMMUNOLOGY 2007; 179:3196-202. [PMID: 17709535 DOI: 10.4049/jimmunol.179.5.3196] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Group B streptococcus (GBS) is a major cause of neonatal pneumonia. The early interactions between innate airway defenses and this pathogen are likely to be a critical factor in determining the outcome for the host. The surface-localized penicillin-binding protein (PBP)1a, encoded by ponA, is known to be an important virulence trait in a sepsis model of GBS infection that promotes resistance to neutrophil killing and more specifically to neutrophil antimicrobial peptides (AMPs). In this study, we used an aerosolization model to explore the role of PBP1a in evasion of innate immune defenses in the neonatal lung. The ponA mutant strain was cleared more rapidly from the lungs of neonatal rat pups compared with the wild-type strain, which could be linked to a survival defect in the presence of alveolar macrophages (AM). Rat AM were found to secrete beta-defensin and cathelicidin AMP homologues, and the GBS ponA mutant was more susceptible than the wild-type strain to killing by these peptides in vitro. Collectively, our observations suggest that PBP1a-mediated resistance to AM AMPs promotes the survival of GBS in the neonatal lung. Additionally, AM are traditionally thought to clear bacteria through phagocytic uptake; our data indicate that secretion of AMPs may also participate in limiting bacterial replication in the airway.
Collapse
Affiliation(s)
- Amanda L Jones
- Division of Infectious Disease, Children's Hospital and Regional Medical Center, and Department of Pediatrics, University of Washington, 307 Westlake Avenue N., Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
24
|
Yoo JY, Kim HC, Zhu W, Kim SM, Sabet M, Handfield M, Hillman J, Progulske-Fox A, Lee SW. Identification of Tannerella forsythia antigens specifically expressed in patients with periodontal disease. FEMS Microbiol Lett 2007; 275:344-52. [PMID: 17868359 DOI: 10.1111/j.1574-6968.2007.00906.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Molecular pathogenesis of Tannerella forsythia, a putative periodontal pathogen, has not yet been adequately elucidated due to limited information on its virulence factors. Here, identification of in vivo expressed antigens of T. forsythia is reported using in vivo-induced antigen technology (IVIAT). Among 13 000 recombinant clones screened, 16 positive clones were identified that reacted reproducibly with sera obtained from patients with periodontal disease. DNA sequences from 12 of these in vivo-induced genes were determined. IVIAT-identified protein antigens of T. forsythia include: BspA, a well-defined virulence factor of T. forsythia; enzymes involved in housekeeping functions (tRNA synthetases, glycine hydroxymethyltransferase, and glucoside glucohydrolase); enzymes implicated in tissue destruction (dipeptidyl peptidase IV); a DNA mismatch repair protein; and putative outer membrane proteins of unknown function. The in vivo gene expression of these IVIAT-identified antigens was confirmed by a quantitative real-time PCR analysis. This is, to the best of the authors' knowledge, the first report using IVIAT in T. forsythia. It is anticipated that detailed analysis of the in vivo-induced genes identified by IVIAT in this study will lead to a better understanding of the molecular mechanisms mediating periodontal infection by T. forsythia.
Collapse
Affiliation(s)
- Ji Yeon Yoo
- Division of Periodontics, College of Dental Medicine, Columbia University, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Salim KY, de Azavedo JC, Bast DJ, Cvitkovitch DG. Role for sagA and siaA in quorum sensing and iron regulation in Streptococcus pyogenes. Infect Immun 2007; 75:5011-7. [PMID: 17635862 PMCID: PMC2044554 DOI: 10.1128/iai.01824-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes is a ubiquitous and versatile pathogen that causes a variety of infections with a wide range of severity. The versatility of this organism is due in part to its capacity to regulate virulence gene expression in response to the many environments that it encounters during an infection. We analyzed the expression of two potential virulence factors, sagA and siaA (also referred to as pel and htsA, respectively), in response to conditions of varying cell densities and iron concentrations. The sagA gene was up-regulated in conditioned medium from a wild-type strain but not from sagA-deficient mutants, and the gene was also up-regulated in the presence of streptolysin S (SLS), the gene product of sagA, thus indicating that this gene or its product is involved in density-dependent regulation of S. pyogenes. By comparison, siaA responded in a manner consistent with a role in iron acquisition since it was up-regulated under iron-restricted conditions. Although siaA expression was also up-regulated in the presence of SLS and in conditioned media from both wild-type and sagA-deficient mutants, this up-regulation was not growth phase dependent. We conclude that sagA encodes a quorum-sensing signaling molecule, likely SLS, and further support the notion that siaA is likely involved in iron acquisition.
Collapse
Affiliation(s)
- Kowthar Y Salim
- University of Toronto, Dental Research Institute, Department of Microbiology, Toronto, Ontario, Canada M5G 1G6
| | | | | | | |
Collapse
|
26
|
Hamilton A, Popham DL, Carl DJ, Lauth X, Nizet V, Jones AL. Penicillin-binding protein 1a promotes resistance of group B streptococcus to antimicrobial peptides. Infect Immun 2006; 74:6179-87. [PMID: 17057092 PMCID: PMC1695509 DOI: 10.1128/iai.00895-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Evasion of host immune defenses is critical for the progression of invasive infections caused by the leading neonatal pathogen, group B streptococcus (GBS). Upon characterizing the factors required for virulence in a neonatal rat sepsis model, we found that a surface-associated penicillin-binding protein (PBP1a), encoded by ponA, played an essential role in resistance of GBS to phagocytic clearance. In order to elucidate how PBP1a promotes resistance to innate immunity, we compared the susceptibility of wild-type GBS and an isogenic ponA mutant to the bactericidal components of human neutrophils. The isogenic strains were found to be equally capable of blocking complement activation on the bacterial surface and equally associated with phagocytes and susceptible to oxidative killing. In contrast, the ponA mutant was significantly more susceptible to killing by cationic antimicrobial peptides (AMPs) of the cathelicidin and defensin families, which are now recognized as integral components of innate host defense against invasive bacterial infection. These observations may help explain the sensitivity to phagocytic killing and attenuated virulence of the ponA mutant. This novel function for PBP1a in promoting resistance of GBS to AMP did not involve an alteration in bacterial surface charge or peptidoglycan cross-linking. While the peptidoglycan polymerization and cross-linking activity of PBPs are essential for bacterial survival, our study is the first to identify a role for a PBP in resistance to host AMPs.
Collapse
Affiliation(s)
- Andrea Hamilton
- Department of Pediatrics, University of Washington, and Children's Hospital and Regional Medical Center, 307 Westlake Ave. N, Suite 300, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
27
|
Graham MR, Virtaneva K, Porcella SF, Gardner DJ, Long RD, Welty DM, Barry WT, Johnson CA, Parkins LD, Wright FA, Musser JM. Analysis of the transcriptome of group A Streptococcus in mouse soft tissue infection. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:927-42. [PMID: 16936267 PMCID: PMC1698835 DOI: 10.2353/ajpath.2006.060112] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Molecular mechanisms mediating group A Streptococcus (GAS)-host interactions remain poorly understood but are crucial for diagnostic, therapeutic, and vaccine development. An optimized high-density microarray was used to analyze the transcriptome of GAS during experimental mouse soft tissue infection. The transcriptome of a wild-type serotype M1 GAS strain and an isogenic transcriptional regulator knockout mutant (covR) also were compared. Array datasets were verified by quantitative real-time reverse transcriptase-polymerase chain reaction and in situ immunohistochemistry. The results unambiguously demonstrate that coordinated expression of proven and putative GAS virulence factors is directed toward overwhelming innate host defenses leading to severe cellular damage. We also identified adaptive metabolic responses triggered by nutrient signals and hypoxic/acidic conditions in the host, likely facilitating pathogen persistence and proliferation in soft tissues. Key discoveries included that oxidative stress genes, virulence genes, genes related to amino acid and maltodextrin utilization, and several two-component transcriptional regulators were highly expressed in vivo. This study is the first global analysis of the GAS transcriptome during invasive infection. Coupled with parallel analysis of the covR mutant strain, novel insights have been made into the regulation of GAS virulence in vivo, resulting in new avenues for targeted therapeutic and vaccine research.
Collapse
Affiliation(s)
- Morag R Graham
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Marra A. Targeting virulence for antibacterial chemotherapy: identifying and characterising virulence factors for lead discovery. Drugs R D 2006; 7:1-16. [PMID: 16620133 DOI: 10.2165/00126839-200607010-00001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The antibacterial drug discovery industry is fast losing participants; at the same time it is facing the challenge of developing new antibiotics that are effective against frequently occurring and multiply resistant organisms. One intriguing approach is to target bacterial virulence, and the last decade or so has seen a focus on bacterial pathogenesis along with the development of reagents and strategies that could make this possible. Several processes utilised by a range of bacteria to cause infection may be conserved enough to make attractive targets; indeed it is known that mammalian cells can affect bacterial gene expression and vice versa. Interesting targets involving virulence include type III secretion systems, two-component signal transduction systems, quorum sensing, and biofilm formation. In order to better understand these systems and strategies, investigators have developed novel strategies of their own, involving negative selections, surrogate models of infection, and screens for gene induction and antigenicity. Inhibitors of such targets would be unlikely to adversely affect patients, be cross-resistant to existing therapies, or cause resistance themselves. It might be the case that virulence target-based therapies would not be powerful enough to clear an existing infection alone, but if they are instead considered as adjunct therapy to existing antibiotics, or potentiators of the host immune response, they may show efficacy in a non-traditional way.
Collapse
|