1
|
Bilotti K, Potapov V, Pryor JM, Duckworth AT, Keck J, Lohman GJS. OUP accepted manuscript. Nucleic Acids Res 2022; 50:4647-4658. [PMID: 35438779 PMCID: PMC9071435 DOI: 10.1093/nar/gkac241] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/07/2022] [Accepted: 03/31/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Vladimir Potapov
- Research Department, New England Biolabs, Ipswich, MA 01938, USA
| | - John M Pryor
- Research Department, New England Biolabs, Ipswich, MA 01938, USA
| | - Alexander T Duckworth
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Gregory J S Lohman
- To whom correspondence should be addressed. Tel: +1 978 998 7916; Fax: +1 978 921 1350;
| |
Collapse
|
2
|
Unciuleac MC, Goldgur Y, Shuman S. Caveat mutator: alanine substitutions for conserved amino acids in RNA ligase elicit unexpected rearrangements of the active site for lysine adenylylation. Nucleic Acids Res 2020; 48:5603-5615. [PMID: 32315072 PMCID: PMC7261155 DOI: 10.1093/nar/gkaa238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022] Open
Abstract
Naegleria gruberi RNA ligase (NgrRnl) exemplifies the Rnl5 family of adenosine triphosphate (ATP)-dependent polynucleotide ligases that seal 3′-OH RNA strands in the context of 3′-OH/5′-PO4 nicked duplexes. Like all classic ligases, NgrRnl forms a covalent lysyl–AMP intermediate. A two-metal mechanism of lysine adenylylation was established via a crystal structure of the NgrRnl•ATP•(Mn2+)2 Michaelis complex. Here we conducted an alanine scan of active site constituents that engage the ATP phosphates and the metal cofactors. We then determined crystal structures of ligase-defective NgrRnl-Ala mutants in complexes with ATP/Mn2+. The unexpected findings were that mutations K170A, E227A, K326A and R149A (none of which impacted overall enzyme structure) triggered adverse secondary changes in the active site entailing dislocations of the ATP phosphates, altered contacts to ATP, and variations in the numbers and positions of the metal ions that perverted the active sites into off-pathway states incompatible with lysine adenylylation. Each alanine mutation elicited a distinctive off-pathway distortion of the ligase active site. Our results illuminate a surprising plasticity of the ligase active site in its interactions with ATP and metals. More broadly, they underscore a valuable caveat when interpreting mutational data in the course of enzyme structure-function studies.
Collapse
Affiliation(s)
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
3
|
Kiggins C, Skinner A, Resendiz MJE. 7,8-Dihydro-8-oxoguanosine Lesions Inhibit the Theophylline Aptamer or Change Its Selectivity. Chembiochem 2020; 21:1347-1355. [PMID: 31845489 PMCID: PMC7297664 DOI: 10.1002/cbic.201900684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Indexed: 12/15/2022]
Abstract
Aptamers are attractive constructs due to their high affinity/selectivity towards a target. Here 7,8-dihydro-8-oxoguanosine (8-oxoG) has been used, due in part to its unique H-bonding capabilities (Watson-Crick or Hoogsteen), to expand the "RNA alphabet". Its impact on the theophylline RNA aptamer was explored by modifying its binding pocket at positions G11, G25, or G26. Structural probing, with RNases A and T1 , showed that modification at G11 leads to a drastic structural change, whereas the G25-/G26-modified analogues exhibited cleavage patterns similar to that of the canonical construct. The recognition properties towards three xanthine derivatives were then explored through thermophoresis. Modifying the aptamer at position G11 led to binding inhibition. Modification at G25, however, changed the selectivity towards theobromine (Kd ≈160 μm), with a poor affinity for theophylline (Kd >1.5 mm) being observed. Overall, 8-oxoG can have an impact on the structures of aptamers in a position-dependent manner, leading to altered target selectivity.
Collapse
Affiliation(s)
- Courtney Kiggins
- Present address: Department of ChemistryU.S. Air Force Academy2355 Fairchild DriveUSAF AcademyColorado SpringsCO80840USA
| | - Austin Skinner
- Department of ChemistryUniversity of Colorado Denver1151 Arapahoe Street, Science Building Room 4145DenverCO80204USA
| | - Marino J. E. Resendiz
- Department of ChemistryUniversity of Colorado Denver1151 Arapahoe Street, Science Building Room 4145DenverCO80204USA
| |
Collapse
|
4
|
Potapov V, Ong JL, Langhorst BW, Bilotti K, Cahoon D, Canton B, Knight TF, Evans TC, Lohman GJS. A single-molecule sequencing assay for the comprehensive profiling of T4 DNA ligase fidelity and bias during DNA end-joining. Nucleic Acids Res 2019; 46:e79. [PMID: 29741723 PMCID: PMC6061786 DOI: 10.1093/nar/gky303] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/14/2022] Open
Abstract
DNA ligases are key enzymes in molecular and synthetic biology that catalyze the joining of breaks in duplex DNA and the end-joining of DNA fragments. Ligation fidelity (discrimination against the ligation of substrates containing mismatched base pairs) and bias (preferential ligation of particular sequences over others) have been well-studied in the context of nick ligation. However, almost no data exist for fidelity and bias in end-joining ligation contexts. In this study, we applied Pacific Biosciences Single-Molecule Real-Time sequencing technology to directly sequence the products of a highly multiplexed ligation reaction. This method has been used to profile the ligation of all three-base 5′-overhangs by T4 DNA ligase under typical ligation conditions in a single experiment. We report the relative frequency of all ligation products with or without mismatches, the position-dependent frequency of each mismatch, and the surprising observation that 5′-TNA overhangs ligate extremely inefficiently compared to all other Watson–Crick pairings. The method can easily be extended to profile other ligases, end-types (e.g. blunt ends and overhangs of different lengths), and the effect of adjacent sequence on the ligation results. Further, the method has the potential to provide new insights into the thermodynamics of annealing and the kinetics of end-joining reactions.
Collapse
Affiliation(s)
- Vladimir Potapov
- Research Department, New England Biolabs, Ipswich, MA 01938, USA
| | - Jennifer L Ong
- Research Department, New England Biolabs, Ipswich, MA 01938, USA
| | - Bradley W Langhorst
- Applications and Product Development, New England Biolabs, Ipswich, MA 01938, USA
| | | | | | | | | | - Thomas C Evans
- Research Department, New England Biolabs, Ipswich, MA 01938, USA
| | | |
Collapse
|
5
|
Deinococcus radiodurans HD-Pnk, a Nucleic Acid End-Healing Enzyme, Abets Resistance to Killing by Ionizing Radiation and Mitomycin C. J Bacteriol 2018; 200:JB.00151-18. [PMID: 29891641 DOI: 10.1128/jb.00151-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
5'- and 3'-end healing are key steps in nucleic acid break repair in which 5'-OH and 3'-PO4 or 2',3'-cyclic-PO4 ends are converted to 5'-PO4 and 3'-OH termini suitable for sealing by polynucleotide ligases. Here, we characterize Deinococcus radiodurans HD-Pnk as a bifunctional end-healing enzyme composed of N-terminal HD (histidine-aspartate) phosphoesterase and C-terminal P-loop polynucleotide kinase (Pnk) domains. HD-Pnk phosphorylates 5'-OH DNA in the presence of ATP and magnesium. HD-Pnk has 3'-phosphatase and 2',3'-cyclic-phosphodiesterase activity in the presence of transition metals, optimally cobalt or copper, and catalyzes copper-dependent hydrolysis of p-nitrophenylphosphate. HD-Pnk is encoded by the LIG-PARG-HD-Pnk three-gene operon, which includes polynucleotide ligase and poly(ADP-ribose) glycohydrolase genes. We show that whereas HD-Pnk is inessential for Deinococcus growth, its absence sensitizes by 80-fold bacteria to killing by 9 kGy of ionizing radiation (IR). HD-Pnk protein is depleted during early stages of post-IR recovery and then replenished at 15 h, after reassembly of the genome from shattered fragments. ΔHD-Pnk mutant cells are competent for genome reassembly, as gauged by pulsed-field gel electrophoresis. Our findings suggest a role for HD-Pnk in repairing residual single-strand gaps or nicks in the reassembled genome. HD-Pnk-Ala mutations that ablate kinase or phosphoesterase activity sensitize Deinococcus to killing by mitomycin C.IMPORTANCE End healing is a process whereby nucleic acid breaks with "dirty" 3'-PO4 or 2',3'-cyclic-PO4 and 5'-OH ends are converted to 3'-OH and 5'-PO4 termini that are amenable to downstream repair reactions. Deinococcus radiodurans is resistant to massive doses of ionizing radiation (IR) that generate hundreds of dirty DNA double-strand breaks and thousands of single-strand breaks. This study highlights Deinococcus HD-Pnk as a bifunctional 3'- and 5'-end-healing enzyme that helps protect against killing by IR. HD-Pnk appears to act late in the process of post-IR recovery, subsequent to genome reassembly from shattered fragments. HD-Pnk also contributes to resistance to killing by mitomycin C. These findings are significant in that they establish a role for end-healing enzymes in bacterial DNA damage repair.
Collapse
|
6
|
Herbert C, Dzowo YK, Urban A, Kiggins CN, Resendiz MJE. Reactivity and Specificity of RNase T 1, RNase A, and RNase H toward Oligonucleotides of RNA Containing 8-Oxo-7,8-dihydroguanosine. Biochemistry 2018; 57:2971-2983. [PMID: 29683663 DOI: 10.1021/acs.biochem.8b00277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding how oxidatively damaged RNA interacts with ribonucleases is important because of its proposed role in the development and progression of disease. Thus, understanding structural aspects of RNA containing lesions generated under oxidative stress, as well as its interactions with other biopolymers, is fundamental. We explored the reactivity of RNase A, RNase T1, and RNase H toward oligonucleotides of RNA containing 8-oxo-7,8-dihydroguanosine (8oxoG). This is the first example that addresses this relationship and will be useful for understanding (1) how these RNases can be used to characterize the structural impact that this lesion has on RNA and (2) how oxidatively modified RNA may be handled intracellularly. 8-OxoG was incorporated into 10-16-mers of RNA, and its reactivity with each ribonuclease was assessed via electrophoretic analyses, circular dichroism, and the use of other C8-purine-modified analogues (8-bromoguanosine, 8-methoxyguanosine, and 8-oxoadenosine). RNase T1 does not recognize sites containing 8-oxoG, while RNase A recognizes and cleaves RNA at positions containing this lesion while differentiating if it is involved in H-bonding. The selectivity of RNase A followed the order C > 8-oxoG ≈ U. In addition, isothermal titration calorimetry showed that an 8-oxoG-C3'-methylphosphate derivative can inhibit RNase A activity. Cleavage patterns obtained from RNase H displayed changes in reactivity in a sequence- and concentration-dependent manner and displayed recognition at sites containing the modification in some cases. These data will aid in understanding how this modification affects reactivity with ribonucleases and will enable the characterization of global and local structural changes in oxidatively damaged RNA.
Collapse
Affiliation(s)
- Cassandra Herbert
- Department of Chemistry , University of Colorado Denver , Science Building, 1151 Arapahoe Street , Denver , Colorado 80204 , United States
| | - Yannick Kokouvi Dzowo
- Department of Chemistry , University of Colorado Denver , Science Building, 1151 Arapahoe Street , Denver , Colorado 80204 , United States
| | - Anthony Urban
- Department of Chemistry , University of Colorado Denver , Science Building, 1151 Arapahoe Street , Denver , Colorado 80204 , United States
| | - Courtney N Kiggins
- Department of Chemistry , University of Colorado Denver , Science Building, 1151 Arapahoe Street , Denver , Colorado 80204 , United States
| | - Marino J E Resendiz
- Department of Chemistry , University of Colorado Denver , Science Building, 1151 Arapahoe Street , Denver , Colorado 80204 , United States
| |
Collapse
|
7
|
Schmier BJ, Chen X, Wolin S, Shuman S. Deletion of the rnl gene encoding a nick-sealing RNA ligase sensitizes Deinococcus radiodurans to ionizing radiation. Nucleic Acids Res 2017; 45:3812-3821. [PMID: 28126918 PMCID: PMC5397189 DOI: 10.1093/nar/gkx038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/23/2017] [Indexed: 11/14/2022] Open
Abstract
Deinococcus radiodurans RNA ligase (DraRnl) seals 3΄-OH/5΄-PO4 nicks in duplex nucleic acids in which the 3΄-OH nick terminus consists of two or more ribonucleotides. DraRnl exemplifies a widely distributed Rnl5 family of nick-sealing RNA ligases, the physiological functions of which are uncharted. Here we show via gene knockout that whereas DraRnl is inessential for growth of D. radiodurans, its absence sensitizes the bacterium to killing by ionizing radiation (IR). DraRnl protein is present in exponentially growing and stationary phase cells, but is depleted during the early stages of recovery from 10 kGy of IR and subsequently replenished during the late phase of post-IR genome reassembly. Absence of DraRnl elicts a delay in reconstitution of the 10 kGy IR-shattered D. radiodurans replicons that correlates with the timing of DraRnl replenishment in wild-type cells. Complementation with a catalytically dead mutant highlights that nick sealing activity is important for the radioprotective function of DraRnl. Our findings suggest a scenario in which DraRnl acts at genomic nicks resulting from gap-filling by a ribonucleotide-incorporating repair polymerase.
Collapse
Affiliation(s)
- Brad J Schmier
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Xinguo Chen
- Cell Biology Department, Yale School of Medicine, New Haven, CT 06536, USA
| | - Sandra Wolin
- Cell Biology Department, Yale School of Medicine, New Haven, CT 06536, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
8
|
Choi YJ, Gibala KS, Ayele T, Deventer KV, Resendiz MJE. Biophysical properties, thermal stability and functional impact of 8-oxo-7,8-dihydroguanine on oligonucleotides of RNA-a study of duplex, hairpins and the aptamer for preQ1 as models. Nucleic Acids Res 2017; 45:2099-2111. [PMID: 28426093 PMCID: PMC5389535 DOI: 10.1093/nar/gkw885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/22/2016] [Indexed: 01/12/2023] Open
Abstract
A better understanding of the effects that oxidative lesions have on RNA is of importance to understand their role in the development/progression of disease. 8-oxo-7,8-dihydroguanine was incorporated into RNA to understand its structural and functional impact on RNA:RNA and RNA:DNA duplexes, hairpins and pseudoknots. One to three modifications were incorporated into dodecamers of RNA [AAGAGGGAUGAC] resulting in thermal destabilization (ΔTm – 10°C per lesion). Hairpins with tetraloops c-UUCG*-g* (8-10), a-ACCG-g* (11-12), c-UUG*G*-g* (13-16) and c-ACG*G*-g* (17-20) were modified and used to determine thermal stabilities, concluding that: (i) modifying the stem leads to destabilization unless adenosine is the opposing basepair of 8-oxoGua; (ii) modification at the loop is position- and sequence-dependent and varies from slight stabilization to large destabilization, in some cases leading to formation of other secondary structures (hairpin→duplex). Functional effects were established using the aptamer for preQ1 as model. Modification at G5 disrupted the stem P1 and inhibited recognition of the target molecule 7-methylamino-7-deazaguanine (preQ1). Modifying G11 results in increased thermal stability, albeit with a Kd 4-fold larger than its canonical analog. These studies show the capability of 8-oxoG to affect structure and function of RNA, resulting in distinct outcomes as a function of number and position of the lesion.
Collapse
Affiliation(s)
- Yu J Choi
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Krzysztof S Gibala
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Tewoderos Ayele
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Katherine V Deventer
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Marino J E Resendiz
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| |
Collapse
|
9
|
Choi YJ, Chang SJ, Gibala KS, Resendiz MJE. 8-Oxo-7,8-dihydroadenine and 8-Oxo-7,8-dihydroadenosine-Chemistry, Structure, and Function in RNA and Their Presence in Natural Products and Potential Drug Derivatives. Chemistry 2017; 23:6706-6716. [PMID: 27960050 DOI: 10.1002/chem.201605163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Indexed: 01/02/2023]
Abstract
A description and history of the role that 8-oxo-7,8-dihydroadenine (8-oxoAde) and 8-oxo-7,8-dihydroadenosine (8-oxoA) have in various fields has been compiled. This Review focusses on 1) the formation of this oxidatively generated modification in RNA, its interactions with other biopolymers, and its potential role in the development/progression of disease; 2) the independent synthesis and incorporation of this modified nucleoside into oligonucleotides of RNA to display the progress that has been made in establishing its behavior in biologically relevant systems; 3) reported synthetic routes, which date back to 1890, along with the progress that has been made in the total synthesis of the nucleobase, nucleoside, and their corresponding derivatives; and 4) the isolation, total synthesis, and biological activity of natural products containing these moieties as the backbone. The current state of research regarding this oxidatively generated lesion as well as its importance in the context of RNA, natural products, and potential as drug derivatives is illustrated using all available examples reported to date.
Collapse
Affiliation(s)
- Yu Jung Choi
- Department of Chemistry, University of Colorado Denver, Science Building, 1151 Arapahoe St., Denver, CO, 80204, USA
| | - Stephanie J Chang
- Department of Chemistry, University of Colorado Denver, Science Building, 1151 Arapahoe St., Denver, CO, 80204, USA
| | - Krzysztof S Gibala
- Department of Chemistry, University of Colorado Denver, Science Building, 1151 Arapahoe St., Denver, CO, 80204, USA
| | - Marino J E Resendiz
- Department of Chemistry, University of Colorado Denver, Science Building, 1151 Arapahoe St., Denver, CO, 80204, USA
| |
Collapse
|
10
|
Agapov AA, Kulbachinskiy AV. Mechanisms of Stress Resistance and Gene Regulation in the Radioresistant Bacterium Deinococcus radiodurans. BIOCHEMISTRY (MOSCOW) 2016; 80:1201-16. [PMID: 26567564 DOI: 10.1134/s0006297915100016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bacterium Deinococcus radiodurans reveals extraordinary resistance to ionizing radiation, oxidative stress, desiccation, and other damaging conditions. In this review, we consider the main molecular mechanisms underlying such resistance, including the action of specific DNA repair and antioxidation systems, and transcription regulation during the anti-stress response.
Collapse
Affiliation(s)
- A A Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | | |
Collapse
|
11
|
Burroughs AM, Aravind L. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res 2016; 44:8525-8555. [PMID: 27536007 PMCID: PMC5062991 DOI: 10.1093/nar/gkw722] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 12/16/2022] Open
Abstract
RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
12
|
Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase. Proc Natl Acad Sci U S A 2015; 112:13868-73. [PMID: 26512110 DOI: 10.1073/pnas.1516536112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ATP-dependent RNA ligases are agents of RNA repair that join 3'-OH and 5'-PO4 RNA ends. Naegleria gruberi RNA ligase (NgrRnl) exemplifies a family of RNA nick-sealing enzymes found in bacteria, viruses, and eukarya. Crystal structures of NgrRnl at three discrete steps along the reaction pathway-covalent ligase-(lysyl-Nζ)-AMP•Mn(2+) intermediate; ligase•ATP•(Mn(2+))2 Michaelis complex; and ligase•Mn(2+) complex-highlight a two-metal mechanism of nucleotidyl transfer, whereby (i) an enzyme-bound "catalytic" metal coordination complex lowers the pKa of the lysine nucleophile and stabilizes the transition state of the ATP α phosphate; and (ii) a second metal coordination complex bridges the β- and γ-phosphates. The NgrRnl N domain is a distinctively embellished oligonucleotide-binding (OB) fold that engages the γ-phosphate and associated metal complex and orients the pyrophosphate leaving group for in-line catalysis with stereochemical inversion at the AMP phosphate. The unique domain architecture of NgrRnl fortifies the theme that RNA ligases have evolved many times, and independently, by fusions of a shared nucleotidyltransferase domain to structurally diverse flanking modules. The mechanistic insights to lysine adenylylation gained from the NgrRnl structures are likely to apply broadly to the covalent nucleotidyltransferase superfamily of RNA ligases, DNA ligases, and RNA capping enzymes.
Collapse
|
13
|
Lohman GJS, Bauer RJ, Nichols NM, Mazzola L, Bybee J, Rivizzigno D, Cantin E, Evans TC. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity. Nucleic Acids Res 2015; 44:e14. [PMID: 26365241 PMCID: PMC4737175 DOI: 10.1093/nar/gkv898] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/28/2015] [Indexed: 11/24/2022] Open
Abstract
DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Bybee
- New England BioLabs, Inc., Ipswich, MA 01938-2723, USA
| | | | | | | |
Collapse
|
14
|
Unciuleac MC, Shuman S. Characterization of a novel eukaryal nick-sealing RNA ligase from Naegleria gruberi. RNA (NEW YORK, N.Y.) 2015; 21:824-832. [PMID: 25740837 PMCID: PMC4408790 DOI: 10.1261/rna.049197.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
The proteome of the amoebo-flagellate protozoan Naegleria gruberi is rich in candidate RNA repair enzymes, including 15 putative RNA ligases, one of which, NgrRnl, is a eukaryal homolog of Deinococcus radiodurans RNA ligase, DraRnl. Here we report that purified recombinant NgrRnl seals nicked 3'-OH/5'-PO4 duplexes in which the 3'-OH strand is RNA. It does so via the "classic" ligase pathway, entailing reaction with ATP to form a covalent NgrRnl-AMP intermediate, transfer of AMP to the nick 5'-PO4, and attack of the RNA 3'-OH on the adenylylated nick to form a 3'-5' phosphodiester. Unlike members of the four known families of ATP-dependent RNA ligases, NgrRnl lacks a carboxy-terminal appendage to its nucleotidyltransferase domain. Instead, it contains a defining amino-terminal domain that we show is important for 3'-OH/5'-PO4 nick-sealing and ligase adenylylation, but dispensable for phosphodiester synthesis at a preadenylylated nick. We propose that NgrRnl, DraRnl, and their homologs from diverse bacteria, viruses, and unicellular eukarya comprise a new "Rnl5 family" of nick-sealing ligases with a signature domain organization.
Collapse
Affiliation(s)
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|