1
|
Antunes B, Zanchi C, Johnston PR, Maron B, Witzany C, Regoes RR, Hayouka Z, Rolff J. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is severely constrained by random peptide mixtures. PLoS Biol 2024; 22:e3002692. [PMID: 38954678 PMCID: PMC11218975 DOI: 10.1371/journal.pbio.3002692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
The prevalence of antibiotic-resistant pathogens has become a major threat to public health, requiring swift initiatives for discovering new strategies to control bacterial infections. Hence, antibiotic stewardship and rapid diagnostics, but also the development, and prudent use, of novel effective antimicrobial agents are paramount. Ideally, these agents should be less likely to select for resistance in pathogens than currently available conventional antimicrobials. The usage of antimicrobial peptides (AMPs), key components of the innate immune response, and combination therapies, have been proposed as strategies to diminish the emergence of resistance. Herein, we investigated whether newly developed random antimicrobial peptide mixtures (RPMs) can significantly reduce the risk of resistance evolution in vitro to that of single sequence AMPs, using the ESKAPE pathogen Pseudomonas aeruginosa (P. aeruginosa) as a model gram-negative bacterium. Infections of this pathogen are difficult to treat due the inherent resistance to many drug classes, enhanced by the capacity to form biofilms. P. aeruginosa was experimentally evolved in the presence of AMPs or RPMs, subsequentially assessing the extent of resistance evolution and cross-resistance/collateral sensitivity between treatments. Furthermore, the fitness costs of resistance on bacterial growth were studied and whole-genome sequencing used to investigate which mutations could be candidates for causing resistant phenotypes. Lastly, changes in the pharmacodynamics of the evolved bacterial strains were examined. Our findings suggest that using RPMs bears a much lower risk of resistance evolution compared to AMPs and mostly prevents cross-resistance development to other treatments, while maintaining (or even improving) drug sensitivity. This strengthens the case for using random cocktails of AMPs in favour of single AMPs, against which resistance evolved in vitro, providing an alternative to classic antibiotics worth pursuing.
Collapse
Affiliation(s)
- Bernardo Antunes
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Caroline Zanchi
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
| | - Paul R. Johnston
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany
- University of St. Andrews, School of Medicine, North Haugh, St Andrews, Fife, United Kingdom
| | - Bar Maron
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jens Rolff
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany
| |
Collapse
|
2
|
da Cruz Nizer WS, Adams ME, Allison KN, Montgomery MC, Mosher H, Cassol E, Overhage J. Oxidative stress responses in biofilms. Biofilm 2024; 7:100203. [PMID: 38827632 PMCID: PMC11139773 DOI: 10.1016/j.bioflm.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
Oxidizing agents are low-molecular-weight molecules that oxidize other substances by accepting electrons from them. They include reactive oxygen species (ROS), such as superoxide anions (O2-), hydrogen peroxide (H2O2), and hydroxyl radicals (HO-), and reactive chlorine species (RCS) including sodium hypochlorite (NaOCl) and its active ingredient hypochlorous acid (HOCl), and chloramines. Bacteria encounter oxidizing agents in many different environments and from diverse sources. Among them, they can be produced endogenously by aerobic respiration or exogenously by the use of disinfectants and cleaning agents, as well as by the mammalian immune system. Furthermore, human activities like industrial effluent pollution, agricultural runoff, and environmental activities like volcanic eruptions and photosynthesis are also sources of oxidants. Despite their antimicrobial effects, bacteria have developed many mechanisms to resist the damage caused by these toxic molecules. Previous research has demonstrated that growing as a biofilm particularly enhances bacterial survival against oxidizing agents. This review aims to summarize the current knowledge on the resistance mechanisms employed by bacterial biofilms against ROS and RCS, focussing on the most important mechanisms, including the formation of biofilms in response to oxidative stressors, the biofilm matrix as a protective barrier, the importance of detoxifying enzymes, and increased protection within multi-species biofilm communities. Understanding the complexity of bacterial responses against oxidative stress will provide valuable insights for potential therapeutic interventions and biofilm control strategies in diverse bacterial species.
Collapse
Affiliation(s)
| | - Madison Elisabeth Adams
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Kira Noelle Allison
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | | | - Hailey Mosher
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| |
Collapse
|
3
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
4
|
Hassan AA, dos Santos SC, Cooper VS, Sá-Correia I. Comparative Evolutionary Patterns of Burkholderia cenocepacia and B. multivorans During Chronic Co-infection of a Cystic Fibrosis Patient Lung. Front Microbiol 2020; 11:574626. [PMID: 33101250 PMCID: PMC7545829 DOI: 10.3389/fmicb.2020.574626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
During chronic respiratory infections of cystic fibrosis (CF) patients, bacteria adaptively evolve in response to the nutritional and immune environment as well as influence other infecting microbes. The present study was designed to gain insights into the genetic mechanisms underlying adaptation and diversification by the two most prevalent pathogenic species of the Burkholderia cepacia complex (Bcc), B. cenocepacia and B. multivorans. Herein, we study the evolution of both of these species during coinfection of a CF patient for 4.4 years using genome sequences of 9 B. multivorans and 11 B. cenocepacia. This co-infection spanned at least 3 years following initial infection by B. multivorans and ultimately ended in the patient's death by cepacia syndrome. Both species acquired several mutations with accumulation rates of 2.08 (B. cenocepacia) and 2.27 (B. multivorans) SNPs/year. Many of the mutated genes are associated with oxidative stress response, transition metal metabolism, defense mechanisms against antibiotics, and other metabolic alterations consistent with the idea that positive selection might be driven by the action of the host immune system, antibiotic therapy and low oxygen and iron concentrations. Two orthologous genes shared by B. cenocepacia and B. multivorans were found to be under strong selection and accumulated mutations associated with lineage diversification. One gene encodes a nucleotide sugar dehydratase involved in lipopolysaccharide O-antigen (OAg) biosynthesis (wbiI). The other gene encodes a putative two-component regulatory sensor kinase protein required to sense and adapt to oxidative- and heavy metal- inducing stresses. This study contributes to understanding of shared and species-specific evolutionary patterns of B. cenocepacia and B. multivorans evolving in the same CF lung environment.
Collapse
Affiliation(s)
- A. Amir Hassan
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra C. dos Santos
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Apoorva S, Behera P, Sajjanar B, Mahawar M. Identification of oxidant susceptible proteins in Salmonella Typhimurium. Mol Biol Rep 2020; 47:2231-2242. [PMID: 32076998 DOI: 10.1007/s11033-020-05328-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 11/26/2022]
Abstract
The human gut pathogen, Salmonella Typhimurium (S. Typhimurium) not only survives but also replicates inside the phagocytic cells. Bacterial proteins are the primary targets of phagocyte generated oxidants. Because of the different amino acid composition, some proteins are more prone to oxidation than others. Many oxidant induced modifications to amino acids have been described. Introduction of carbonyl group is one of such modifications, which takes place quite early following exposure of proteins to oxidants and is quite stable. Therefore, carbonyl groups can be exploited to identify oxidant susceptible proteins. Hypochlorous acid (HOCl) is one of the most potent oxidants produced by phagocytes. Incubation of S. Typhimurium with 3 mM HOCl resulted in more than 150 folds loss of bacterial viability. Proteins extracted from HOCl exposed S. Typhimurium cells showed about 60 folds (p < 0.001) more carbonyl levels as compared to unexposed cells. Similarly, 2, 4-Dinitrophenylhydrazine (2, 4-DNPH) derivatized proteins of HOCl treated S. Typhimurium cultures reacted strongly with anti-DNP antibodies as compared to buffer treated counterpart. Next, we have derivatized carbonyl groups on the proteins with biotin hydrazide. The derivatized proteins were then isolated by avidin affinity chromatography. Mass spectrometry based analysis revealed the presence of 204 proteins.
Collapse
Affiliation(s)
- Shekhar Apoorva
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India
| | - Pranatee Behera
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India
| | - Basavaraj Sajjanar
- Division of Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India
| | - Manish Mahawar
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India.
| |
Collapse
|
6
|
Merakou C, Schaefers MM, Priebe GP. Progress Toward the Elusive Pseudomonas aeruginosa Vaccine. Surg Infect (Larchmt) 2018; 19:757-768. [PMID: 30388058 DOI: 10.1089/sur.2018.233] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: The gram-negative bacterial pathogen Pseudomonas aeruginosa causes a wide range of infections, mostly in hospitalized and immunocompromised patients, those with burns, surgical wounds, or combat-related wounds, and in people with cystic fibrosis. The increasing antibiotic resistance of P. aeruginosa confers a pressing need for vaccines, yet there are no P. aeruginosa vaccines approved for human use, and recent promising candidates have failed in large clinical trials. Discussion: In this review, we summarize recent clinical trials and pre-clinical studies of P. aeruginosa vaccines and provide a suggested framework for the makeup of a future successful vaccine. Murine models of infection suggest that antibodies, specifically opsonophagocytic killing antibodies (OPK), antitoxin antibodies, and anti-attachment antibodies, combined with T cell immunity, specifically TH17 responses, are needed for broad and potent protection against P. aeruginosa infection. A better understanding of the human immune response to P. aeruginosa infections, and to vaccine candidates, will eventually pave the way to a successful vaccine for this wily pathogen.
Collapse
Affiliation(s)
- Christina Merakou
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts
| | - Matthew M Schaefers
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts
| | - Gregory P Priebe
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts.,3 Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital , Boston, Massachusetts
| |
Collapse
|
7
|
OxyR of Haemophilus parasuis is a global transcriptional regulator important in oxidative stress resistance and growth. Gene 2018; 643:107-116. [DOI: 10.1016/j.gene.2017.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022]
|
8
|
Chung IY, Kim BO, Jang HJ, Cho YH. Dual promoters of the major catalase (KatA) govern distinct survival strategies of Pseudomonas aeruginosa. Sci Rep 2016; 6:31185. [PMID: 27491679 PMCID: PMC4974557 DOI: 10.1038/srep31185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/13/2016] [Indexed: 11/15/2022] Open
Abstract
KatA is the major catalase required for hydrogen peroxide (H2O2) resistance and acute virulence in Pseudomonas aeruginosa PA14, whose transcription is driven from the promoter (katAp1) located at 155 nucleotide (nt) upstream of the start codon. Here, we identified another promoter (katAp2), the +1 of which was mapped at the 51 nt upstream of the start codon, which was responsible for the basal transcription during the planktonic culture and down-regulated upon H2O2 treatment under the control by the master regulator of anaerobiosis, Anr. To dissect the roles of the dual promoters in conditions involving KatA, we created the promoter mutants for each -10 box (p1m, p2m, and p1p2m) and found that katAp1 is required for the function of KatA in the logarithmic growth phase during the planktonic culture as well as in acute virulence, whereas katAp2 is required for the function of KatA in the stationary phase as well as in the prolonged biofilm culture. This dismantling of the dual promoters of katA sheds light on the roles of KatA in stress resistance in both proliferative and growth-restrictive conditions and thus provides an insight into the regulatory impacts of the major catalase on the survival strategies of P. aeruginosa.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, 13488, Korea
| | - Bi-O Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, 13488, Korea
| | - Hye-Jeong Jang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, 13488, Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, 13488, Korea
| |
Collapse
|
9
|
Su S, Panmanee W, Wilson JJ, Mahtani HK, Li Q, VanderWielen BD, Makris TM, Rogers M, McDaniel C, Lipscomb JD, Irvin RT, Schurr MJ, Lancaster JR, Kovall RA, Hassett DJ. Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa. PLoS One 2014; 9:e91813. [PMID: 24663218 PMCID: PMC3963858 DOI: 10.1371/journal.pone.0091813] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/14/2014] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2), a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator) in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC), indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (Kd ∼6 μM). Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic concentrations of NO are approached.
Collapse
Affiliation(s)
- Shengchang Su
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jeffrey J. Wilson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Harry K. Mahtani
- Departments of Anesthesiology, Cell, Developmental and Integrative Biology, and Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Qian Li
- Departments of Anesthesiology, Cell, Developmental and Integrative Biology, and Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bradley D. VanderWielen
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Thomas M. Makris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Melanie Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cameron McDaniel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Randall T. Irvin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael J. Schurr
- Department of Microbiology, University of Colorado, Aurora, Colorado, United States of America
| | - Jack R. Lancaster
- Departments of Anesthesiology, Cell, Developmental and Integrative Biology, and Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Daniel J. Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
As an opportunistic Gram-negative pathogen, Pseudomonas aeruginosa must be able to adapt and survive changes and stressors in its environment during the course of infection. To aid survival in the hostile host environment, P. aeruginosa has evolved defense mechanisms, including the production of an exopolysaccharide capsule and the secretion of a myriad of degradative proteases and lipases. The production of outer membrane-derived vesicles (OMVs) serves as a secretion mechanism for virulence factors as well as a general bacterial response to envelope-acting stressors. This study investigated the effect of sublethal physiological stressors on OMV production by P. aeruginosa and whether the Pseudomonas quinolone signal (PQS) and the MucD periplasmic protease are critical mechanistic factors in this response. Exposure to some environmental stressors was determined to increase the level of OMV production as well as the activity of AlgU, the sigma factor that controls MucD expression. Overexpression of AlgU was shown to be sufficient to induce OMV production; however, stress-induced OMV production was not dependent on activation of AlgU, since stress caused increased vesiculation in strains lacking algU. We further determined that MucD levels were not an indicator of OMV production under acute stress, and PQS was not required for OMV production under stress or unstressed conditions. Finally, an investigation of the response of P. aeruginosa to oxidative stress revealed that peroxide-induced OMV production requires the presence of B-band but not A-band lipopolysaccharide. Together, these results demonstrate that distinct mechanisms exist for stress-induced OMV production in P. aeruginosa.
Collapse
|
11
|
Matthijs S, Coorevits A, Gebrekidan TT, Tricot C, Wauven CV, Pirnay JP, De Vos P, Cornelis P. Evaluation of oprI and oprL genes as molecular markers for the genus Pseudomonas and their use in studying the biodiversity of a small Belgian River. Res Microbiol 2013; 164:254-61. [DOI: 10.1016/j.resmic.2012.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|
12
|
Poirier I, Hammann P, Kuhn L, Bertrand M. Strategies developed by the marine bacterium Pseudomonas fluorescens BA3SM1 to resist metals: A proteome analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:215-32. [PMID: 23314334 DOI: 10.1016/j.aquatox.2012.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/05/2012] [Accepted: 12/09/2012] [Indexed: 05/17/2023]
Abstract
A global proteomic evaluation of the response of the marine bacterium Pseudomonas fluorescens BA3SM1 to Cd, Zn and Cu was performed by two dimensional gel electrophoresis followed by mass spectrometry. When stressed with Cd, the most toxic metal for P. fluorescens BA3SM1, cell growth is rapidly affected and the number of proteins up-regulated (sixteen for 0.4 mM Cd) remains low in comparison with results obtained for Zn and Cu (twenty eight for 1.5mM Zn and forty four for 1.5 mM Cu). The changes in protein expression indicate that the cell adapts to metals by inducing essentially seven defense mechanisms: cell aggregation/biofilm formation (Zn=Cu>Cd); modification of envelope properties to increase the extracellular metal biosorption and/or control the uptake of metal (Cu>Zn); metal export (Cd=Zn and probably Cu); responses to oxidative stress (Cu>Zn>Cd); intracellular metal sequestration (Zn=Cu and probably Cd); hydrolysis of abnormally folded proteins (Cd=Cu), and the over-synthesis of proteins inhibited by metal (Cd>Cu>Zn). To the best of our knowledge, this is the first report showing that a marine P. fluorescens is able to acquire a metal-resistant phenotype, making the strain BA3SM1 a promising agent for bioremediation processes.
Collapse
Affiliation(s)
- Isabelle Poirier
- Microorganismes Métaux et Toxicité, Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, Cherbourg-Octeville, France.
| | | | | | | |
Collapse
|
13
|
Tribelli PM, Nikel PI, Oppezzo OJ, López NI. Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in Pseudomonas extremaustralis. MICROBIOLOGY-SGM 2012; 159:259-268. [PMID: 23223440 DOI: 10.1099/mic.0.061085-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of Anr in oxidative stress resistance was investigated in Pseudomonas extremaustralis, a polyhydroxybutyrate-producing Antarctic bacterium. The absence of Anr caused increased sensitivity to hydrogen peroxide under low oxygen tension. This phenomenon was associated with a decrease in the redox ratio, higher oxygen consumption and higher reactive oxygen species production. Physiological responses of the mutant to the oxidized state included an increase in NADP(H) content, catalase activity and exopolysaccharide production. The wild-type strain showed a sharp decrease in the reduced thiol pool when exposed to hydrogen peroxide, not observed in the mutant strain. In silico analysis of the genome sequence of P. extremaustralis revealed putative Anr binding sites upstream from genes related to oxidative stress. Genes encoding several chaperones and cold shock proteins, a glutathione synthase, a sulfate transporter and a thiol peroxidase were identified as potential targets for Anr regulation. Our results suggest a novel role for Anr in oxidative stress resistance and in redox balance maintenance under conditions of restricted oxygen supply.
Collapse
Affiliation(s)
- Paula M Tribelli
- Dpto de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo I Nikel
- Instituto de Investigaciones Biotecnológicas 'Dr. Rodolfo A. Ugalde', IQUIBICEN-CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina.,Dpto de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Oscar J Oppezzo
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Nancy I López
- Dpto de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Rhamnolipid production: effect of oxidative stress on virulence factors and proteome of Pseudomonas aeruginosa PA1. Appl Microbiol Biotechnol 2012; 95:1519-29. [DOI: 10.1007/s00253-012-4258-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
|
15
|
Vinckx T, Wei Q, Matthijs S, Noben JP, Daniels R, Cornelis P. A proteome analysis of the response of a Pseudomonas aeruginosa oxyR mutant to iron limitation. Biometals 2011; 24:523-32. [PMID: 21207115 DOI: 10.1007/s10534-010-9403-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/22/2010] [Indexed: 11/30/2022]
Abstract
In Pseudomonas aeruginosa the response to oxidative stress is orchestrated by the LysR regulator OxyR by activation of the transcription of two catalase genes (katA and katB), of the alkyl-hydroxyperoxidases ahpCF and ahpB. Next to the expected high sensitivity to oxidative stress generated by reactive oxygen species (ROS: H(2)O(2), O(2)(-)), the oxyR mutant shows a defective growth under conditions of iron limitation (Vinckx et al. 2008). Although production and uptake of the siderophore pyoverdine is not affected by the absence of oxyR, the mutant is unable to satisfy its need for iron when grown under iron limiting conditions. In order to get a better insight into the effects caused by iron limitation on the physiological response of the oxyR mutant we decided to compare the proteomes of the wild type and the mutant grown in the iron-poor casamino acids medium (CAA), in CAA plus H(2)O(2), and in CAA plus the strong iron chelator ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (EDDHA). Especially in the presence of hydrogen peroxide the oxyR cells increase the production of stress proteins (Dps and IbpA). The superoxide dismutase SodM is produced in higher amounts in the oxyR mutant grown in CAA plus H(2)O(2). The PchB protein, a isochorismate-pyruvate lyase involved in the siderophore pyochelin biosynthesis is not detectable in the extracts from the oxyR mutant grown in the presence of hydrogen peroxide. When cells were grown in the presence of EDDHA, we observed a reduction of the ferric uptake regulator (Fur), and an increase in the two subunits of the succinyl-CoA synthetase and the fumarase FumC1.
Collapse
Affiliation(s)
- Tiffany Vinckx
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Remans K, Vercammen K, Bodilis J, Cornelis P. Genome-wide analysis and literature-based survey of lipoproteins in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2010; 156:2597-2607. [PMID: 20616104 DOI: 10.1099/mic.0.040659-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen able to cause acute or chronic infections. Like all other Pseudomonas species, P. aeruginosa has a large genome, >6 Mb, encoding more than 5000 proteins. Many proteins are localized in membranes, among them lipoproteins, which can be found tethered to the inner or the outer membrane. Lipoproteins are translocated from the cytoplasm and their N-terminal signal peptide is cleaved by the signal peptidase II, which recognizes a specific sequence called the lipobox just before the first cysteine of the mature lipoprotein. A majority of lipoproteins are transported to the outer membrane via the LolCDEAB system, while those having an avoidance signal remain in the inner membrane. In Escherichia coli, the presence of an aspartate residue after the cysteine is sufficient to cause the lipoprotein to remain in the inner membrane, while in P. aeruginosa the situation is more complex and involves amino acids at position +3 and +4 after the cysteine. Previous studies indicated that there are 185 lipoproteins in P. aeruginosa, with a minority in the inner membrane. A reanalysis led to a reduction of this number to 175, while new retention signals could be predicted, increasing the percentage of inner-membrane lipoproteins to 20 %. About one-third (62 out of 175) of the lipoprotein genes are present in the 17 Pseudomonas genomes sequenced, meaning that these genes are part of the core genome of the genus. Lipoproteins can be classified into families, including those outer-membrane proteins having a structural role or involved in efflux of antibiotics. Comparison of various microarray data indicates that exposure to epithelial cells or some antibiotics, or conversion to mucoidy, has a major influence on the expression of lipoprotein genes in P. aeruginosa.
Collapse
Affiliation(s)
- Kim Remans
- Department of Molecular and Cellular Interactions, Structural Biology Brussels, VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ken Vercammen
- Department of Molecular and Cellular Interactions, Microbial Interactions, VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Josselin Bodilis
- Groupe Microbiologie, Laboratoire M2C, UMR CNRS 6143, UFR des Sciences - Université de Rouen, 76821 Mont Saint Aignan, France
| | - Pierre Cornelis
- Department of Molecular and Cellular Interactions, Microbial Interactions, VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
17
|
Vinckx T, Wei Q, Matthijs S, Cornelis P. The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin. MICROBIOLOGY-SGM 2009; 156:678-686. [PMID: 19926657 DOI: 10.1099/mic.0.031971-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The LysR-type transcriptional regulator (LTTR) OxyR orchestrates the defence of the opportunistic pathogen Pseudomonas aeruginosa against reactive oxygen species. In previous work we also demonstrated that OxyR is needed for the utilization of the ferrisiderophore pyoverdine, stressing the importance of this regulator. Here, we show that an oxyR mutant is unable to swarm on agar plates, probably as a consequence of absence of production of rhamnolipid surfactant molecules. Another obvious phenotypic change was the increased production of the phenazine redox-active molecule pyocyanin in the oxyR mutant. As already described, the oxyR mutant could not grow in LB medium, unless high numbers of cells (>10( 8) ml(-1)) were inoculated. However, its growth in Pseudomonas P agar (King's A), a medium inducing pyocyanin production, was like that of the wild-type, suggesting a protective action of this redox-active phenazine compound. This was confirmed by the restoration of the capacity to grow in LB medium upon addition of pure pyocyanin. Although both rhamnolipid and pyocyanin production are controlled by quorum sensing, no obvious changes were observed in the production of N-acylhomoserine lactones or the Pseudomonas quinolone signal (PQS). Complementation of rhamnolipid production and motility, and restoration of normal pyocyanin levels, was only possible when the oxyR gene was in single copy, while pyocyanin levels were increased when oxyR was present in a multicopy vector. Conversely, plating efficiency was increased only when the oxyR gene was present in multicopy, but not when in single copy in the chromosome, due to lower expression of oxyR compared with the wild-type, suggesting that some phenotypes are differently affected in function to the levels of OxyR molecules in the cell. Analysis of transcripts of oxidative stress-response enzymes showed a strong decrease of katB, ahpC and ahpB expression in the oxyR mutant grown in LB, but this was not the case when the mutant was grown on P agar, suggesting that the OxyR dependency for the transcription of these genes is not total.
Collapse
Affiliation(s)
- Tiffany Vinckx
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions (VIB), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Qing Wei
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions (VIB), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Sandra Matthijs
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions (VIB), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Pierre Cornelis
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions (VIB), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
18
|
oxyR, a LysR-type regulator involved in Klebsiella pneumoniae mucosal and abiotic colonization. Infect Immun 2009; 77:5449-57. [PMID: 19786563 DOI: 10.1128/iai.00837-09] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonization of the gastrointestinal tract is the first event in Klebsiella pneumoniae nosocomial infections, followed by colonization of the bladder or respiratory tract or entry into the bloodstream. To survive in the host, bacteria must harbor specific traits and overcome multiple stresses. OxyR is a conserved bacterial transcription factor with a key role both in the upregulation of defense mechanisms against oxidative stress and in pathogenesis by enhancing biofilm formation, fimbrial expression, and mucosal colonization. A homolog of oxyR was detected in silico in the K. pneumoniae sequenced genome and amplified from the LM21 wild-type strain. To determine the role of oxyR in K. pneumoniae host-interaction processes, an oxyR isogenic mutant was constructed, and its behavior was assessed. At concentrations lower than 10(7) ml(-1), oxyR-deficient organisms were easily killed by micromolar concentrations of H(2)O(2) and exhibited typical aerobic phenotypes. The oxyR mutant was impaired in biofilm formation and types 1 and 3 fimbrial gene expression. In addition, the oxyR mutant was unable to colonize the murine gastrointestinal tract, and in vitro assays showed that it was defective in adhesion to Int-407 and HT-29 intestinal epithelial cells. The behavior of the oxyR mutant was also determined under hostile conditions, reproducing stresses encountered in the gastrointestinal environment: deletion of oxyR resulted in higher sensitivity to bile and acid stresses but not to osmotic stress. These results show the pleiotropic role of oxyR in K. pneumoniae gastrointestinal colonization.
Collapse
|
19
|
Panmanee W, Hassett DJ. Differential roles of OxyR-controlled antioxidant enzymes alkyl hydroperoxide reductase (AhpCF) and catalase (KatB) in the protection of Pseudomonas aeruginosa against hydrogen peroxide in biofilm vs. planktonic culture. FEMS Microbiol Lett 2009; 295:238-44. [PMID: 19456869 DOI: 10.1111/j.1574-6968.2009.01605.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The role of the Pseudomonas aeruginosa OxyR-controlled antioxidants alkyl hydroperoxide reductase CF (AhpCF) and catalase B (KatB) was evaluated in biofilm vs. planktonic culture upon exposure to hydrogen peroxide. AhpCF was found to be critical for survival of biofilm bacteria while KatB was more important for survival of planktonic free-swimming organisms.
Collapse
Affiliation(s)
- Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | |
Collapse
|
20
|
Vinckx T, Matthijs S, Cornelis P. Loss of the oxidative stress regulator OxyR in Pseudomonas aeruginosa PAO1 impairs growth under iron-limited conditions. FEMS Microbiol Lett 2009; 288:258-65. [PMID: 19054085 DOI: 10.1111/j.1574-6968.2008.01360.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pyoverdine is the main siderophore secreted by fluorescent pseudomonads to scavenge iron in the extracellular environment. Iron uptake, however, needs to be tightly regulated, because free iron stimulates the formation of highly toxic oxygen derivatives. In the opportunistic pathogen Pseudomonas aeruginosa, the transcriptional regulator OxyR plays a key role in the upregulation of defense mechanisms against oxidative stress as it stimulates the expression of the antioxidant genes katB, ahpB and ahpCF after contact with oxidative stress-generating agents. Inactivation of the oxyR gene in Pseudomonas fluorescens ATCC 17400 and in P. aeruginosa PAO1 impairs pyoverdine-mediated iron uptake. The pyoverdine utilization defect can be restored by complementation with the oxyR gene of P. aeruginosa, as well as by adding catalase. Growth of the oxyR mutant in low- or high-iron media is also impaired at a low, but not at a high inoculum density. Uptake of radioactive (59)Fe pyoverdine is, however, not affected by the oxyR mutation, nor is the transcription of the fpvA gene encoding the ferripyoverdine receptor, suggesting that the defect lies in the inability to remove iron from the ferrisiderophore.
Collapse
Affiliation(s)
- Tiffany Vinckx
- VIB, Department of Molecular and Cellular Interactions, Laboratory of Microbial Interactions, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | |
Collapse
|
21
|
Nde CW, Jang HJ, Toghrol F, Bentley WE. Toxicogenomic response of Pseudomonas aeruginosa to ortho-phenylphenol. BMC Genomics 2008; 9:473. [PMID: 18847467 PMCID: PMC2577666 DOI: 10.1186/1471-2164-9-473] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 10/10/2008] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P. aeruginosa) is the most common opportunistic pathogen implicated in nosocomial infections and in chronic lung infections in cystic fibrosis patients. Ortho-phenylphenol (OPP) is an antimicrobial agent used as an active ingredient in several EPA registered disinfectants. Despite its widespread use, there is a paucity of information on its target molecular pathways and the cellular responses that it elucidates in bacteria in general and in P. aeruginosa in particular. An understanding of the OPP-driven gene regulation and cellular response it elicits will facilitate more effective utilization of this antimicrobial and possibly lead to the development of more effective disinfectant treatments. RESULTS Herein, we performed a genome-wide transcriptome analysis of the cellular responses of P. aeruginosa exposed to 0.82 mM OPP for 20 and 60 minutes. Our data indicated that OPP upregulated the transcription of genes encoding ribosomal, virulence and membrane transport proteins after both treatment times. After 20 minutes of exposure to 0.82 mM OPP, genes involved in the exhibition of swarming motility and anaerobic respiration were upregulated. After 60 minutes of OPP treatment, the transcription of genes involved in amino acid and lipopolysaccharide biosynthesis were upregulated. Further, the transcription of the ribosome modulation factor (rmf) and an alternative sigma factor (rpoS) of RNA polymerase were downregulated after both treatment times. CONCLUSION Results from this study indicate that after 20 minutes of exposure to OPP, genes that have been linked to the exhibition of anaerobic respiration and swarming motility were upregulated. This study also suggests that the downregulation of the rmf and rpoS genes may be indicative of the mechanism by which OPP causes decreases in cell viability in P. aeruginosa. Consequently, a protective response involving the upregulation of translation leading to the increased synthesis of membrane related proteins and virulence proteins is possibly induced after both treatment times. In addition, cell wall modification may occur due to the increased synthesis of lipopolysaccharide after 60 minutes exposure to OPP. This gene expression profile can now be utilized for a better understanding of the target cellular pathways of OPP in P. aeruginosa and how this organism develops resistance to OPP.
Collapse
Affiliation(s)
- Chantal W Nde
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA
| | - Hyeung-Jin Jang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA
| | - Freshteh Toghrol
- Microarray Research Laboratory, Biological and Economic Analysis Division, Office of Pesticide Programs, U. S. Environmental Protection Agency, Fort Meade, Maryland 20755, USA
| | - William E Bentley
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA
| |
Collapse
|