1
|
Hoang J, Stoebel DM. The transcriptional response to low temperature is weakly conserved across the Enterobacteriaceae. mSystems 2024; 9:e0078524. [PMID: 39589147 DOI: 10.1128/msystems.00785-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
Bacteria respond to changes in their external environment, such as temperature, by changing the transcription of their genes. We know little about how these regulatory patterns evolve. We used RNA-seq to study the transcriptional response to a shift from 37°C to 15°C in wild-type Escherichia coli, Salmonella enterica, Citrobacter rodentium, Enterobacter cloacae, Klebsiella pneumoniae, and Serratia marcescens, as well as ∆rpoS strains of E. coli and S. enterica. We found that these species change the transcription of between 626 and 1057 genes in response to the temperature shift, but there were only 16 differentially expressed genes in common among the six species. Species-specific transcriptional patterns of shared genes were a prominent cause of this lack of conservation. Gene ontology enrichment of regulated genes suggested many species-specific phenotypic responses to temperature changes, but enriched terms associated with iron metabolism, central metabolism, and biofilm formation were implicated in at least half of the species. The alternative sigma factor RpoS regulated about 200 genes between 37°C and 15°C in both E. coli and S. enterica, with only 83 genes in common between the two species. Overall, there was limited conservation of the response to low temperature generally, or the RpoS-regulated part of the response specifically. This study suggests that species-specific patterns of transcription of shared genes, rather than horizontal acquisition of unique genes, are the major reason for the lack of conservation of the transcriptomic response to low temperature. IMPORTANCE We studied how different species of bacteria from the same Family (Enterobacteriaceae) change the expression of their genes in response to a decrease in temperature. Using de novo-generated parallel RNA-seq data sets, we found that the six species in this study change the level of expression of many of their genes in response to a shift from human body temperature (37°C) to a temperature that might be found out of doors (15°C). Surprisingly, there were very few genes that change expression in all six species. This was due in part to differences in gene content, and in part due to shared genes with distinct expression profiles between the species. This study is important to the field because it illustrates that closely related species can share many genes but not use those genes in the same way in response to the same environmental change.
Collapse
Affiliation(s)
- Johnson Hoang
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Daniel M Stoebel
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| |
Collapse
|
2
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
3
|
Boyd JM, Ryan Kaler K, Esquilín-Lebrón K, Pall A, Campbell CJ, Foley ME, Rios-Delgado G, Mustor EM, Stephens TG, Bovermann H, Greco TM, Cristea IM, Carabetta VJ, Beavers WN, Bhattacharya D, Skaar EP, Shaw LN, Stemmler TL. Fpa (YlaN) is an iron(II) binding protein that functions to relieve Fur-mediated repression of gene expression in Staphylococcus aureus. mBio 2024; 15:e0231024. [PMID: 39440976 PMCID: PMC11559061 DOI: 10.1128/mbio.02310-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Iron (Fe) is a trace nutrient required by nearly all organisms. As a result of the demand for Fe and the toxicity of non-chelated cytosolic ionic Fe, regulatory systems have evolved to tightly balance Fe acquisition and usage while limiting overload. In most bacteria, including the mammalian pathogen Staphylococcus aureus, the ferric uptake regulator (Fur) is the primary transcriptional regulator controlling the transcription of genes that code for Fe uptake and utilization proteins. Fpa (formerly YlaN) was demonstrated to be essential in Bacillus subtilis unless excess Fe is added to the growth medium, suggesting a role in Fe homeostasis. Here, we demonstrate that Fpa is essential in S. aureus upon Fe deprivation. Null fur alleles bypassed the essentiality of Fpa. The absence of Fpa abolished the derepression of Fur-regulated genes during Fe limitation. Bioinformatic analyses suggest that fpa was recruited to Gram-positive bacteria and, once acquired, was maintained in the genome as it co-evolved with Fur. Consistent with a role for Fpa in alleviating Fur-dependent repression, Fpa and Fur interacted in vivo, and Fpa decreased the DNA-binding ability of Fur in vitro. Fpa bound Fe(II) in vitro using oxygen or nitrogen ligands with an association constant that is consistent with a physiological role in Fe homeostasis. These findings have led to a model wherein Fpa is an Fe(II) binding protein that influences Fur-dependent regulation through direct interaction.IMPORTANCEIron (Fe) is an essential nutrient for nearly all organisms. If Fe homeostasis is not maintained, Fe may accumulate in the cytosol, which can be toxic. Questions remain about how cells efficiently balance Fe uptake and usage to prevent overload. Iron uptake and proper metalation of proteins are essential processes in the mammalian bacterial pathogen Staphylococcus aureus. Understanding the gene products involved in the genetic regulation of Fe uptake and usage and the physiological adaptations that S. aureus uses to survive in Fe-depleted conditions provides insight into pathogenesis. Herein, we demonstrate that the DNA-binding activity of the ferric uptake regulator transcriptional repressor is alleviated under Fe limitation, but uniquely, in S. aureus, alleviation requires the presence of Fpa.
Collapse
Affiliation(s)
- Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Kylie Ryan Kaler
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Karla Esquilín-Lebrón
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Ashley Pall
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
| | - Courtney J. Campbell
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
| | - Mary E. Foley
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Gustavo Rios-Delgado
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Emilee M. Mustor
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Hannah Bovermann
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Todd M. Greco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - William N. Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lindsey N. Shaw
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Timothy L. Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
4
|
Kang SM, Kang HS, Chung WH, Kang KT, Kim DH. Structural Perspectives on Metal Dependent Roles of Ferric Uptake Regulator (Fur). Biomolecules 2024; 14:981. [PMID: 39199369 PMCID: PMC11353095 DOI: 10.3390/biom14080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Iron is crucial for the metabolism and growth of most prokaryotic cells. The ferric uptake regulator (Fur) protein plays a central role in regulating iron homeostasis and metabolic processes in bacteria. It ensures the proper utilization of iron and the maintenance of cellular functions in response to environmental cues. Fur proteins are composed of an N-terminal DNA-binding domain (DBD) and a C-terminal dimerization domain (DD), typically existing as dimers in solution. Fur proteins have conserved metal-binding sites named S1, S2, and S3. Among them, site S2 serves as a regulatory site, and metal binding at S2 results in conformational changes. Additionally, as a transcriptional regulator, Fur specifically binds to a consensus DNA sequence called the Fur box. To elucidate the structural and functional properties of Fur proteins, various structures of metal- or DNA-bound Fur proteins or apo-Fur proteins have been determined. In this review, we focus on the structural properties of Fur proteins according to their ligand-bound state and the drug development strategies targeting Fur proteins. This information provides valuable insights for drug discovery.
Collapse
Affiliation(s)
- Sung-Min Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea; (S.-M.K.); (W.-H.C.); (K.-T.K.)
| | - Hoon-Seok Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Woo-Hyun Chung
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea; (S.-M.K.); (W.-H.C.); (K.-T.K.)
| | - Kyu-Tae Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea; (S.-M.K.); (W.-H.C.); (K.-T.K.)
| | - Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| |
Collapse
|
5
|
Reitz ZL. Predicting metallophore structure and function through genome mining. Methods Enzymol 2024; 702:371-401. [PMID: 39155119 DOI: 10.1016/bs.mie.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Metallophores are small molecule chelators that many microbes use to obtain trace metals from their environment. Through genome mining, where genomes are scanned for metallophore biosynthesis genes, one can not only identify which organisms are likely to produce a metallophore, but also predict the metallophore structure, thus preventing undesired reisolation of known compounds and accelerating characterization. Furthermore, the presence of accessory genes for the transport, utilization, and regulation can suggest the biological function and fate of a metallophore. Modern, user-friendly tools have made powerful genomic analyses accessible to scientists with no bioinformatics experience, but these tools are often not utilized to their full potential. This chapter provides an introduction to metallophore genomics and demonstrates how to use the free, publicly available antiSMASH platform to infer metallophore function and structure.
Collapse
Affiliation(s)
- Zachary L Reitz
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
6
|
Sikora F, Budja LVP, Milojevic O, Ziemniewicz A, Dudys P, Görke B. Multiple regulatory inputs including cell envelope stress orchestrate expression of the Escherichia coli rpoN operon. Mol Microbiol 2024; 122:11-28. [PMID: 38770591 DOI: 10.1111/mmi.15280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ54, hpf involved in ribosome hibernation, rapZ regulating glucosamine-6-phosphate levels, and two genes encoding proteins of the nitrogen-related phosphotransferase system. Little is known about regulatory mechanisms controlling the abundance of these proteins. This study employs transposon mutagenesis and chemical screens to dissect the complex expression of the rpoN operon. We find that envelope stress conditions trigger read-through transcription into the rpoN operon from a promoter located upstream of the preceding lptA-lptB locus. This promoter is controlled by the envelope stress sigma factor E and response regulator PhoP is required for its full response to a subset of stress signals. σE also stimulates ptsN-rapZ-npr expression using an element downstream of rpoN, presumably by interfering with mRNA processing by RNase E. Additionally, we identify a novel promoter in the 3' end of rpoN that directs transcription of the distal genes in response to ethanol. Finally, we show that translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq, perhaps involving small RNAs. Collectively, our work demonstrates that the rpoN operon is subject to complex regulation, integrating signals related to envelope stress and carbon source quality.
Collapse
Affiliation(s)
- Florian Sikora
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Lara Veronika Perko Budja
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Olja Milojevic
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Amelia Ziemniewicz
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Przemyslaw Dudys
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Boris Görke
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Rohaun SK, Sethu R, Imlay JA. Microbes vary strategically in their metalation of mononuclear enzymes. Proc Natl Acad Sci U S A 2024; 121:e2401738121. [PMID: 38743623 PMCID: PMC11127058 DOI: 10.1073/pnas.2401738121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Studies have determined that nonredox enzymes that are cofactored with Fe(II) are the most oxidant-sensitive targets inside Escherichia coli. These enzymes use Fe(II) cofactors to bind and activate substrates. Because of their solvent exposure, the metal can be accessed and oxidized by reactive oxygen species, thereby inactivating the enzyme. Because these enzymes participate in key physiological processes, the consequences of stress can be severe. Accordingly, when E. coli senses elevated levels of H2O2, it induces both a miniferritin and a manganese importer, enabling the replacement of the iron atom in these enzymes with manganese. Manganese does not react with H2O2 and thereby preserves enzyme activity. In this study, we examined several diverse microbes to identify the metal that they customarily integrate into ribulose-5-phosphate 3-epimerase, a representative of this enzyme family. The anaerobe Bacteroides thetaiotaomicron, like E. coli, uses iron. In contrast, Bacillus subtilis and Lactococcus lactis use manganese, and Saccharomyces cerevisiae uses zinc. The latter organisms are therefore well suited to the oxidizing environments in which they dwell. Similar results were obtained with peptide deformylase, another essential enzyme of the mononuclear class. Strikingly, heterologous expression experiments show that it is the metal pool within the organism, rather than features of the protein itself, that determine which metal is incorporated. Further, regardless of the source organism, each enzyme exhibits highest turnover with iron and lowest turnover with zinc. We infer that the intrinsic catalytic properties of the metal cannot easily be retuned by evolution of the polypeptide.
Collapse
Affiliation(s)
| | | | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL61801
| |
Collapse
|
8
|
Vannini A, Pinatel E, Costantini PE, Pelliciari S, Roncarati D, Puccio S, De Bellis G, Scarlato V, Peano C, Danielli A. (Re)-definition of the holo- and apo-Fur direct regulons of Helicobacter pylori. J Mol Biol 2024; 436:168573. [PMID: 38626867 DOI: 10.1016/j.jmb.2024.168573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Iron homeostasis is a critical process for living organisms because this metal is an essential co-factor for fundamental biochemical activities, like energy production and detoxification, albeit its excess quickly leads to cell intoxication. The protein Fur (ferric uptake regulator) controls iron homeostasis in bacteria by switching from its apo- to holo-form as a function of the cytoplasmic level of ferrous ions, thereby modulating gene expression. The Helicobacter pylori HpFur protein has the rare ability to operate as a transcriptional commutator; apo- and holo-HpFur function as two different repressors with distinct DNA binding recognition properties for specific sets of target genes. Although the regulation of apo- and holo-HpFur in this bacterium has been extensively investigated, we propose a genome-wide redefinition of holo-HpFur direct regulon in H. pylori by integration of RNA-seq and ChIP-seq data, and a large extension of the apo-HpFur direct regulon. We show that in response to iron availability, new coding sequences, non-coding RNAs, toxin-antitoxin systems, and transcripts within open reading frames are directly regulated by apo- or holo-HpFur. These new targets and the more thorough validation and deeper characterization of those already known provide a complete and updated picture of the direct regulons of this two-faced transcriptional regulator.
Collapse
Affiliation(s)
- Andrea Vannini
- University of Bologna Department of Pharmacy and Biotechnology, Via Selmi 3, 40126 Bologna, Italy.
| | - Eva Pinatel
- Institute of Biomedical Technologies - National Research Council, Via Fratelli Cervi 93, 20054 Segrate (MI), Italy.
| | - Paolo Emidio Costantini
- University of Bologna Department of Pharmacy and Biotechnology, Via Selmi 3, 40126 Bologna, Italy.
| | - Simone Pelliciari
- Human Genetic Unit, Institute of Genetic and Cancer - University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Davide Roncarati
- University of Bologna Department of Pharmacy and Biotechnology, Via Selmi 3, 40126 Bologna, Italy.
| | - Simone Puccio
- Institute of Genetics and Biomedical Research, UoS Milan - National Research Council, Via Manzoni 113, 20089 Rozzano (MI), Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano (MI), Italy.
| | - Gianluca De Bellis
- Institute of Biomedical Technologies - National Research Council, Via Fratelli Cervi 93, 20054 Segrate (MI), Italy.
| | - Vincenzo Scarlato
- University of Bologna Department of Pharmacy and Biotechnology, Via Selmi 3, 40126 Bologna, Italy.
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, UoS Milan - National Research Council, Via Manzoni 113, 20089 Rozzano (MI), Italy; Human Technopole, Via Rita Levi Montalcini 1, 20157 Milan, Italy.
| | - Alberto Danielli
- University of Bologna Department of Pharmacy and Biotechnology, Via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
9
|
Kim M, Le MT, Fan L, Campbell C, Sen S, Capdevila DA, Stemmler TL, Giedroc DP. Characterization of the Zinc Uptake Repressor (Zur) from Acinetobacter baumannii. Biochemistry 2024; 63:660-670. [PMID: 38385972 PMCID: PMC11019503 DOI: 10.1021/acs.biochem.3c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial cells tightly regulate the intracellular concentrations of essential transition metal ions by deploying a panel of metal-regulated transcriptional repressors and activators that bind to operator-promoter regions upstream of regulated genes. Like other zinc uptake regulator (Zur) proteins, Acinetobacter baumannii Zur represses transcription of its regulon when ZnII is replete and binds more weakly to DNA when ZnII is limiting. Previous studies established that Zur proteins are homodimeric and harbor at least two metal sites per protomer or four per dimer. CdII X-ray absorption spectroscopy (XAS) of the Cd2Zn2 AbZur metalloderivative with CdII bound to the allosteric sites reveals a S(N/O)3 first coordination shell. Site-directed mutagenesis suggests that H89 and C100 from the N-terminal DNA binding domain and H107 and E122 from the C-terminal dimerization domain comprise the regulatory metal site. KZn for this allosteric site is 6.0 (±2.2) × 1012 M-1 with a functional "division of labor" among the four metal ligands. N-terminal domain ligands H89 and C100 contribute far more to KZn than H107 and E122, while C100S AbZur uniquely fails to bind to DNA tightly as measured by an in vitro transcription assay. The heterotropic allosteric coupling free energy, ΔGc, is negative, consistent with a higher KZn for the AbZur-DNA complex and defining a bioavailable ZnII set-point of ≈6 × 10-14 M. Small-angle X-ray scattering (SAXS) experiments reveal that only the wild-type Zn homodimer undergoes allosteric switching, while the C100S AbZur fails to switch. These data collectively suggest that switching to a high affinity DNA-binding conformation involves a rotation/translation of one protomer relative to the other in a way that is dependent on the integrity of C100. We place these findings in the context of other Zur proteins and Fur family repressors more broadly.
Collapse
Affiliation(s)
- Minyong Kim
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - My Tra Le
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Courtney Campbell
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201-2417, United States
| | - Sambuddha Sen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201-2417, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
10
|
Rosa-Núñez E, Echavarri-Erasun C, Armas AM, Escudero V, Poza-Carrión C, Rubio LM, González-Guerrero M. Iron Homeostasis in Azotobacter vinelandii. BIOLOGY 2023; 12:1423. [PMID: 37998022 PMCID: PMC10669500 DOI: 10.3390/biology12111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Iron is an essential nutrient for all life forms. Specialized mechanisms exist in bacteria to ensure iron uptake and its delivery to key enzymes within the cell, while preventing toxicity. Iron uptake and exchange networks must adapt to the different environmental conditions, particularly those that require the biosynthesis of multiple iron proteins, such as nitrogen fixation. In this review, we outline the mechanisms that the model diazotrophic bacterium Azotobacter vinelandii uses to ensure iron nutrition and how it adapts Fe metabolism to diazotrophic growth.
Collapse
Affiliation(s)
- Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
- Escuela Técnica de Ingeniería Agraria, Alimentaria, y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2, 28040 Madrid, Spain
| | - Carlos Echavarri-Erasun
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
- Escuela Técnica de Ingeniería Agraria, Alimentaria, y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2, 28040 Madrid, Spain
| | - Alejandro M. Armas
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - César Poza-Carrión
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - Luis M. Rubio
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
- Escuela Técnica de Ingeniería Agraria, Alimentaria, y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2, 28040 Madrid, Spain
| |
Collapse
|
11
|
Marcos-Torres FJ, Juniar L, Griese JJ. The molecular mechanisms of the bacterial iron sensor IdeR. Biochem Soc Trans 2023:233013. [PMID: 37140254 DOI: 10.1042/bst20221539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Life came to depend on iron as a cofactor for many essential enzymatic reactions. However, once the atmosphere was oxygenated, iron became both scarce and toxic. Therefore, complex mechanisms have evolved to scavenge iron from an environment in which it is poorly bioavailable, and to tightly regulate intracellular iron contents. In bacteria, this is typically accomplished with the help of one key regulator, an iron-sensing transcription factor. While Gram-negative bacteria and Gram-positive species with low guanine-cytosine (GC) content generally use Fur (ferric uptake regulator) proteins to regulate iron homeostasis, Gram-positive species with high GC content use the functional homolog IdeR (iron-dependent regulator). IdeR controls the expression of iron acquisition and storage genes, repressing the former, and activating the latter in an iron-dependent manner. In bacterial pathogens such as Corynebacterium diphtheriae and Mycobacterium tuberculosis, IdeR is also involved in virulence, whereas in non-pathogenic species such as Streptomyces, it regulates secondary metabolism as well. Although in recent years the focus of research on IdeR has shifted towards drug development, there is much left to learn about the molecular mechanisms of IdeR. Here, we summarize our current understanding of how this important bacterial transcriptional regulator represses and activates transcription, how it is allosterically activated by iron binding, and how it recognizes its DNA target sites, highlighting the open questions that remain to be addressed.
Collapse
Affiliation(s)
- Francisco Javier Marcos-Torres
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-CSIC, 18011 Granada, Spain
| | - Linda Juniar
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| | - Julia J Griese
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|