1
|
Harshaw NS, Meyer MD, Stella NA, Lehner KM, Kowalski RP, Shanks RMQ. The Short-chain Fatty Acid Propionic Acid Activates the Rcs Stress Response System Partially through Inhibition of d-Alanine Racemase. mSphere 2023; 8:e0043922. [PMID: 36645277 PMCID: PMC9942566 DOI: 10.1128/msphere.00439-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
The Enterobacterial Rcs stress response system reacts to envelope stresses through a complex two-component phosphorelay system to regulate a variety of environmental response genes, such as capsular polysaccharide and flagella biosynthesis genes. However, beyond Escherichia coli, the stresses that activate Rcs are not well-understood. In this study, we used a Rcs system-dependent luminescent transcriptional reporter to screen a library of over 240 antimicrobial compounds for those that activated the Rcs system in Serratia marcescens, a Yersiniaceae family bacterium. Using an isogenic rcsB mutant to establish specificity, both new and expected activators were identified, including the short-chain fatty acid propionic acid, which is found at millimolar levels in the human gut. Propionic acid did not reduce the bacterial intracellular pH, as was hypothesized for its antibacterial mechanism. Instead, data suggest that the Rcs-activation by propionic acid is due, in part, to an inactivation of alanine racemase. This enzyme is responsible for the biosynthesis of d-alanine, which is an amino-acid that is required for the generation of bacterial cell walls. Consistent with what was observed in S. marcescens, in E. coli, alanine racemase mutants demonstrated elevated expression of the Rcs-reporter in a d-alanine-dependent and RcsB-dependent manner. These results suggest that host gut short-chain fatty acids can influence bacterial behavior via the activation of the Rcs stress response system. IMPORTANCE The Rcs bacterial stress response system responds to envelope stresses by globally altering gene expression to profoundly impact host-pathogen interactions, virulence, and antibiotic tolerance. In this study, a luminescent Rcs-reporter plasmid was used to screen a library of compounds for activators of Rcs. Among the strongest inducers was the short-chain fatty acid propionic acid, which is found at high concentrations in the human gut. This study suggests that gut short-chain fatty acids can affect both bacterial virulence and antibiotic tolerance via the induction of the Rcs system.
Collapse
Affiliation(s)
- Nathaniel S. Harshaw
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mitchell D. Meyer
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nicholas A. Stella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kara M. Lehner
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Regis P. Kowalski
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert M. Q. Shanks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Niemiec MJ, Kapitan M, Himmel M, Döll K, Krüger T, Köllner TG, Auge I, Kage F, Alteri CJ, Mobley HL, Monsen T, Linde S, Nietzsche S, Kniemeyer O, Brakhage AA, Jacobsen ID. Augmented Enterocyte Damage During Candida albicans and Proteus mirabilis Coinfection. Front Cell Infect Microbiol 2022; 12:866416. [PMID: 35651758 PMCID: PMC9149288 DOI: 10.3389/fcimb.2022.866416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
The human gut acts as the main reservoir of microbes and a relevant source of life-threatening infections, especially in immunocompromised patients. There, the opportunistic fungal pathogen Candida albicans adapts to the host environment and additionally interacts with residing bacteria. We investigated fungal-bacterial interactions by coinfecting enterocytes with the yeast Candida albicans and the Gram-negative bacterium Proteus mirabilis resulting in enhanced host cell damage. This synergistic effect was conserved across different P. mirabilis isolates and occurred also with non-albicans Candida species and C. albicans mutants defective in filamentation or candidalysin production. Using bacterial deletion mutants, we identified the P. mirabilis hemolysin HpmA to be the key effector for host cell destruction. Spatially separated coinfections demonstrated that synergism between Candida and Proteus is induced by contact, but also by soluble factors. Specifically, we identified Candida-mediated glucose consumption and farnesol production as potential triggers for Proteus virulence. In summary, our study demonstrates that coinfection of enterocytes with C. albicans and P. mirabilis can result in increased host cell damage which is mediated by bacterial virulence factors as a result of fungal niche modification via nutrient consumption and production of soluble factors. This supports the notion that certain fungal-bacterial combinations have the potential to result in enhanced virulence in niches such as the gut and might therefore promote translocation and dissemination.
Collapse
Affiliation(s)
- Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
| | - Maximilian Himmel
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Kristina Döll
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Tobias G. Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Isabel Auge
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Franziska Kage
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Christopher J. Alteri
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Harry L.T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Tor Monsen
- Department Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Susanne Linde
- Center for Electron Microscopy, University Hospital, Jena, Germany
| | - Sandor Nietzsche
- Center for Electron Microscopy, University Hospital, Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- *Correspondence: Ilse D. Jacobsen,
| |
Collapse
|
3
|
Gongerowska-Jac M, Szafran MJ, Jakimowicz D. Combining transposon mutagenesis and reporter genes to identify novel regulators of the topA promoter in Streptomyces. Microb Cell Fact 2021; 20:99. [PMID: 33985526 PMCID: PMC8120823 DOI: 10.1186/s12934-021-01590-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying the regulatory factors that control transcriptional activity is a major challenge of gene expression studies. Here, we describe the application of a novel approach for in vivo identification of regulatory proteins that may directly or indirectly control the transcription of a promoter of interest in Streptomyces. RESULTS A method based on the combination of Tn5 minitransposon-driven random mutagenesis and lux reporter genes was applied for the first time for the Streptomyces genus. As a proof of concept, we studied the topA supercoiling-sensitive promoter, whose activity is dependent on unknown regulatory factors. We found that the sco4804 gene product positively influences topA transcription in S. coelicolor, demonstrating SCO4804 as a novel player in the control of chromosome topology in these bacteria. CONCLUSIONS Our approach allows the identification of novel Streptomyces regulators that may be critical for the regulation of gene expression in these antibiotic-producing bacteria.
Collapse
|
4
|
Abstract
Proteus mirabilis is a Gram-negative bacterium and is well known for its ability to robustly swarm across surfaces in a striking bulls'-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition, which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis.
Collapse
|