1
|
Characterization of permissive and non-permissive peptide insertion sites in chloramphenicol acetyltransferase. Microb Pathog 2020; 149:104395. [DOI: 10.1016/j.micpath.2020.104395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/02/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
|
2
|
Atanaskovic I, Kleanthous C. Tools and Approaches for Dissecting Protein Bacteriocin Import in Gram-Negative Bacteria. Front Microbiol 2019; 10:646. [PMID: 31001227 PMCID: PMC6455109 DOI: 10.3389/fmicb.2019.00646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Bacteriocins of Gram-negative bacteria are typically multi-domain proteins that target and kill bacteria of the same or closely related species. There is increasing interest in protein bacteriocin import; from a fundamental perspective to understand how folded proteins are imported into bacteria and from an applications perspective as species-specific antibiotics to combat multidrug resistant bacteria. In order to translocate across the cell envelope and cause cell death, protein bacteriocins hijack nutrient uptake pathways. Their import is energized by parasitizing intermembrane protein complexes coupled to the proton motive force, which delivers a toxic domain into the cell. A plethora of genetic, structural, biochemical, and biophysical methods have been applied to find cell envelope components involved in bacteriocin import since their discovery almost a century ago. Here, we review the various approaches that now exist for investigating how protein bacteriocins translocate into Gram-negative bacteria and highlight areas of research that will need methodological innovations to fully understand this process. We also highlight recent studies demonstrating how bacteriocins can be used to probe organization and architecture of the Gram-negative cell envelope itself.
Collapse
Affiliation(s)
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Kim YC, Tarr AW, Penfold CN. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1717-31. [PMID: 24746518 DOI: 10.1016/j.bbamcr.2014.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/03/2023]
Abstract
Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein-protein interactions (PPI), protein-lipid interactions and the role of order-disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Young Chan Kim
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Alexander W Tarr
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Christopher N Penfold
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
4
|
Vankemmelbeke M, Housden NG, James R, Kleanthous C, Penfold CN. Immunity protein release from a cell-bound nuclease colicin complex requires global conformational rearrangement. Microbiologyopen 2013; 2:853-61. [PMID: 24039240 PMCID: PMC3831645 DOI: 10.1002/mbo3.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/12/2013] [Accepted: 07/21/2013] [Indexed: 11/24/2022] Open
Abstract
Nuclease colicins bind their target receptor BtuB in the outer membrane of sensitive Escherichia coli cells in the form of a high-affinity complex with their cognate immunity proteins. The release of the immunity protein from the colicin complex is a prerequisite for cell entry of the colicin and occurs via a process that is still relatively poorly understood. We have previously shown that an energy input in the form of the cytoplasmic membrane proton motive force is required to promote immunity protein (Im9) release from the colicin E9/Im9 complex and colicin cell entry. We report here that engineering rigidity in the structured part of the colicin translocation domain via the introduction of disulfide bonds prevents immunity protein release from the colicin complex. Reduction of the disulfide bond by the addition of DTT leads to immunity protein release and resumption of activity. Similarly, the introduction of a disulfide bond in the DNase domain previously shown to abolish channel formation in planar bilayers also prevented immunity protein release. Importantly, all disulfide bonds, in the translocation as well as the DNase domain, also abolished the biological activity of the Im9-free colicin E9, the reduction of which led to a resumption of activity. Our results show, for the first time, that conformational flexibility in the structured translocation and DNase domains of a nuclease colicin is essential for immunity protein release, providing further evidence for the hypothesis that global structural rearrangement of the colicin molecule is required for disassembly of this high-affinity toxin-immunity protein complex prior to outer membrane translocation.
Collapse
Affiliation(s)
- Mireille Vankemmelbeke
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | | | | | | | | |
Collapse
|
5
|
Farrance OE, Hann E, Kaminska R, Housden NG, Derrington SR, Kleanthous C, Radford SE, Brockwell DJ. A force-activated trip switch triggers rapid dissociation of a colicin from its immunity protein. PLoS Biol 2013; 11:e1001489. [PMID: 23431269 PMCID: PMC3576412 DOI: 10.1371/journal.pbio.1001489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/09/2013] [Indexed: 01/24/2023] Open
Abstract
A single-molecule force study shows that rapid dissociation of a high-affinity protein interaction can be triggered by site-specific remodelling of one protein partner, and that prevention of remodelling maintains avidity. Colicins are protein antibiotics synthesised by Escherichia coli strains to target and kill related bacteria. To prevent host suicide, colicins are inactivated by binding to immunity proteins. Despite their high avidity (Kd≈fM, lifetime ≈4 days), immunity protein release is a pre-requisite of colicin intoxication, which occurs on a timescale of minutes. Here, by measuring the dynamic force spectrum of the dissociation of the DNase domain of colicin E9 (E9) and immunity protein 9 (Im9) complex using an atomic force microscope we show that application of low forces (<20 pN) increases the rate of complex dissociation 106-fold, to a timescale (lifetime ≈10 ms) compatible with intoxication. We term this catastrophic force-triggered increase in off-rate a trip bond. Using mutational analysis, we elucidate the mechanism of this switch in affinity. We show that the N-terminal region of E9, which has sparse contacts with the hydrophobic core, is linked to an allosteric activator region in E9 (residues 21–30) whose remodelling triggers immunity protein release. Diversion of the force transduction pathway by the introduction of appropriately positioned disulfide bridges yields a force resistant complex with a lifetime identical to that measured by ensemble techniques. A trip switch within E9 is ideal for its function as it allows bipartite complex affinity, whereby the stable colicin:immunity protein complex required for host protection can be readily converted to a kinetically unstable complex whose dissociation is necessary for cellular invasion and competitor death. More generally, the observation of two force phenotypes for the E9:Im9 complex demonstrates that force can re-sculpt the underlying energy landscape, providing new opportunities to modulate biological reactions in vivo; this rationalises the commonly observed discrepancy between off-rates measured by dynamic force spectroscopy and ensemble methods. Many proteins interact with other proteins as part of their function. One method of modulating the activity of protein complexes is to break them apart. Some complexes, however, are extremely kinetically stable and it is unclear how these can dissociate on a biologically relevant timescale. In this study we address this question using protein complexes between colicin E9 (a bacterial toxin) and its immunity protein Im9. These highly avid complexes (with a lifetime of days) must be broken apart for colicin to be activated. By using single-molecule force methods we show that pulling on one end of colicin E9 drastically destabilises the complex so that it dissociates a million-fold faster than its intrinsic rate. We then show that preventing this destabilisation (by the insertion of cross-links that pin the N-terminus of E9 in place) yields a kinetically stable complex. It has previously been postulated that force can destabilise a protein complex by partially unfolding one or more binding partners. Our work provides new experimental evidence that shows this is the case and provides a mechanism for this phenomenon, which we term a trip bond. For the E9:Im9 complex, trip bond behaviour allows a stable complex to be rapidly dissociated by application of a surprisingly small force.
Collapse
Affiliation(s)
- Oliver E. Farrance
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - Eleanore Hann
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Sasha R. Derrington
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sheena E. Radford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - David J. Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Affiliation(s)
- Karen S. Jakes
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - William A. Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907;
| |
Collapse
|
7
|
Yan X, Gurtler JB, Fratamico PM, Hu J, Juneja VK. Phylogenetic identification of bacterial MazF toxin protein motifs among probiotic strains and foodborne pathogens and potential implications of engineered probiotic intervention in food. Cell Biosci 2012. [PMID: 23186337 PMCID: PMC3519753 DOI: 10.1186/2045-3701-2-39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED BACKGROUND Toxin-antitoxin (TA) systems are commonly found in bacteria and Archaea, and it is the most common mechanism involved in bacterial programmed cell death or apoptosis. Recently, MazF, the toxin component of the toxin-antitoxin module, has been categorized as an endoribonuclease, or it may have a function similar to that of a RNA interference enzyme. RESULTS In this paper, with comparative data and phylogenetic analyses, we are able to identify several potential MazF-conserved motifs in limited subsets of foodborne pathogens and probiotic strains and further provide a molecular basis for the development of engineered/synthetic probiotic strains for the mitigation of foodborne illnesses. Our findings also show that some probiotic strains, as fit as many bacterial foodborne pathogens, can be genetically categorized into three major groups based on phylogenetic analysis of MazF. In each group, potential functional motifs are conserved in phylogenetically distant species, including foodborne pathogens and probiotic strains. CONCLUSION These data provide important knowledge for the identification and computational prediction of functional motifs related to programmed cell death. Potential implications of these findings include the use of engineered probiotic interventions in food or use of a natural probiotic cocktail with specificity for controlling targeted foodborne pathogens.
Collapse
Affiliation(s)
- Xianghe Yan
- Eastern Regional Research Center, Agricultural Research Service, U,S, Department of Agriculture, 600 E, Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | | | | | | | | |
Collapse
|
8
|
Patzer SI, Albrecht R, Braun V, Zeth K. Structural and mechanistic studies of pesticin, a bacterial homolog of phage lysozymes. J Biol Chem 2012; 287:23381-96. [PMID: 22593569 PMCID: PMC3390615 DOI: 10.1074/jbc.m112.362913] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yersinia pestis produces and secretes a toxin named pesticin that kills related bacteria of the same niche. Uptake of the bacteriocin is required for activity in the periplasm leading to hydrolysis of peptidoglycan. To understand the uptake mechanism and to investigate the function of pesticin, we combined crystal structures of the wild type enzyme, active site mutants, and a chimera protein with in vivo and in vitro activity assays. Wild type pesticin comprises an elongated N-terminal translocation domain, the intermediate receptor binding domain, and a C-terminal activity domain with structural analogy to lysozyme homologs. The full-length protein is toxic to bacteria when taken up to the target site via the outer or the inner membrane. Uptake studies of deletion mutants in the translocation domain demonstrate their critical size for import. To further test the plasticity of pesticin during uptake into bacterial cells, the activity domain was replaced by T4 lysozyme. Surprisingly, this replacement resulted in an active chimera protein that is not inhibited by the immunity protein Pim. Activity of pesticin and the chimera protein was blocked through introduction of disulfide bonds, which suggests unfolding as the prerequisite to gain access to the periplasm. Pesticin, a muramidase, was characterized by active site mutations demonstrating a similar but not identical residue pattern in comparison with T4 lysozyme.
Collapse
Affiliation(s)
- Silke I Patzer
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
9
|
Abstract
It is more than 80 years since Gratia first described 'a remarkable antagonism between two strains of Escherichia coli'. Shown subsequently to be due to the action of proteins (or peptides) produced by one bacterium to kill closely related species with which it might be cohabiting, such bacteriocins have since been shown to be commonplace in the internecine warfare between bacteria. Bacteriocins have been studied primarily from the twin perspectives of how they shape microbial communities and how they penetrate bacteria to kill them. Here, we review the modes of action of a family of bacteriocins that cleave nucleic acid substrates in E. coli, known collectively as nuclease colicins, and the specific immunity (inhibitor) proteins that colicin-producing organisms make in order to avoid committing suicide. In a process akin to targeting in mitochondria, nuclease colicins engage in a variety of cellular associations in order to translocate their cytotoxic domains through the cell envelope to the cytoplasm. As well as informing on the process itself, the study of nuclease colicin import has also illuminated functional aspects of the host proteins they parasitize. We also review recent studies where nuclease colicins and their immunity proteins have been used as model systems for addressing fundamental problems in protein folding and protein-protein interactions, areas of biophysics that are intimately linked to the role of colicins in bacterial competition and to the import process itself.
Collapse
|
10
|
Chauleau M, Mora L, Serba J, de Zamaroczy M. FtsH-dependent processing of RNase colicins D and E3 means that only the cytotoxic domains are imported into the cytoplasm. J Biol Chem 2011; 286:29397-29407. [PMID: 21700705 DOI: 10.1074/jbc.m111.242354] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has long been suggested that the import of nuclease colicins requires protein processing; however it had never been formally demonstrated. Here we show that two RNase colicins, E3 and D, which appropriate two different translocation machineries to cross the outer membrane (BtuB/Tol and FepA/TonB, respectively), undergo a processing step inside the cell that is essential to their killing action. We have detected the presence of the C-terminal catalytic domains of these colicins in the cytoplasm of target bacteria. The same processed forms were identified in both colicin-sensitive cells and in cells immune to colicin because of the expression of the cognate immunity protein. We demonstrate that the inner membrane protease FtsH is necessary for the processing of colicins D and E3 during their import. We also show that the signal peptidase LepB interacts directly with the central domain of colicin D in vitro and that it is a specific but not a catalytic requirement for in vivo processing of colicin D. The interaction of colicin D with LepB may ensure a stable association with the inner membrane that in turn allows the colicin recognition by FtsH. We have also shown that the outer membrane protease OmpT is responsible for alternative and distinct endoproteolytic cleavages of colicins D and E3 in vitro, presumably reflecting its known role in the bacterial defense against antimicrobial peptides. Even though the OmpT-catalyzed in vitro cleavage also liberates the catalytic domain from colicins D and E3, it is not involved in the processing of nuclease colicins during their import into the cytoplasm.
Collapse
Affiliation(s)
- Mathieu Chauleau
- CNRS, UPR 9073, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Liliana Mora
- CNRS, UPR 9073, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Justyna Serba
- CNRS, UPR 9073, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | |
Collapse
|
11
|
Bonsor DA, Hecht O, Vankemmelbeke M, Sharma A, Krachler AM, Housden NG, Lilly KJ, James R, Moore GR, Kleanthous C. Allosteric beta-propeller signalling in TolB and its manipulation by translocating colicins. EMBO J 2009; 28:2846-57. [PMID: 19696740 PMCID: PMC2750012 DOI: 10.1038/emboj.2009.224] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 07/13/2009] [Indexed: 01/09/2023] Open
Abstract
The Tol system is a five-protein assembly parasitized by colicins and bacteriophages that helps stabilize the Gram-negative outer membrane (OM). We show that allosteric signalling through the six-bladed beta-propeller protein TolB is central to Tol function in Escherichia coli and that this is subverted by colicins such as ColE9 to initiate their OM translocation. Protein-protein interactions with the TolB beta-propeller govern two conformational states that are adopted by the distal N-terminal 12 residues of TolB that bind TolA in the inner membrane. ColE9 promotes disorder of this 'TolA box' and recruitment of TolA. In contrast to ColE9, binding of the OM lipoprotein Pal to the same site induces conformational changes that sequester the TolA box to the TolB surface in which it exhibits little or no TolA binding. Our data suggest that Pal is an OFF switch for the Tol assembly, whereas colicins promote an ON state even though mimicking Pal. Comparison of the TolB mechanism to that of vertebrate guanine nucleotide exchange factor RCC1 suggests that allosteric signalling may be more prevalent in beta-propeller proteins than currently realized.
Collapse
Affiliation(s)
| | - Oliver Hecht
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, UK
| | - Mireille Vankemmelbeke
- School of Molecular Medical Sciences, Institute of Infection, Inflammation and Immunity, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Amit Sharma
- Department of Biology, University of York, York, UK
| | | | | | | | - Richard James
- School of Molecular Medical Sciences, Institute of Infection, Inflammation and Immunity, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, UK
| | - Colin Kleanthous
- Department of Biology, University of York, York, UK,Department of Biology (Area 10), University of York, Heslington, PO Box 373, York, YO10 5YW, UK. Tel.: +44 0 1904 328820; Fax: +44 0 1904 328825; E-mail:
| |
Collapse
|
12
|
Zhang Y, Li C, Vankemmelbeke MN, Bardelang P, Paoli M, Penfold CN, James R. The crystal structure of the TolB box of colicin A in complex with TolB reveals important differences in the recruitment of the common TolB translocation portal used by group A colicins. Mol Microbiol 2009; 75:623-36. [PMID: 19627502 PMCID: PMC2821528 DOI: 10.1111/j.1365-2958.2009.06808.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Interaction of the TolB box of Group A colicins with the TolB protein in the periplasm of Escherichia coli cells promotes transport of the cytotoxic domain of the colicin across the cell envelope. The crystal structure of a complex between a 107-residue peptide (TA1–107) of the translocation domain of colicin A (ColA) and TolB identified the TolB box as a 12-residue peptide that folded into a distorted hairpin within a central canyon of the β-propeller domain of TolB. Comparison of this structure with that of the colicin E9 (ColE9) TolB box–TolB complex, together with site-directed mutagenesis of the ColA TolB box residues, revealed important differences in the interaction of the two TolB boxes with an overlapping binding site on TolB. Substitution of the TolB box residues of ColA with those of ColE9 conferred the ability to competitively recruit TolB from Pal but reduced the biological activity of the mutant ColA. This datum explains (i) the difference in binding affinities of ColA and ColE9 with TolB, and (ii) the inability of ColA, unlike ColE9, to competitively recruit TolB from Pal, allowing an understanding of how these two colicins interact in a different way with a common translocation portal in E. coli cells.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Infection, Immunity and Inflammation, School of Molecular Medical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Vankemmelbeke M, Zhang Y, Moore GR, Kleanthous C, Penfold CN, James R. Energy-dependent immunity protein release during tol-dependent nuclease colicin translocation. J Biol Chem 2009; 284:18932-41. [PMID: 19458090 PMCID: PMC2707214 DOI: 10.1074/jbc.m806149200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nuclease colicins bind their target receptor in the outer membrane of sensitive cells in the form of a high affinity complex with their cognate immunity proteins. Upon cell entry the immunity protein is lost from the complex by means that are poorly understood. We have developed a sensitive fluorescence assay that has enabled us to study the molecular requirements for immunity protein release. Nuclease colicins use members of the tol operon for their translocation across the outer membrane. We have demonstrated that the amino-terminal 80 residues of the colicin E9 molecule, which is the region that interacts with TolB, are essential for immunity protein release. Using tol deletion strains we analyzed the cellular components necessary for immunity protein release and found that in addition to a requirement for tolB, the tolA deletion strain was most affected. Complementation studies showed that the mutation H22A, within the transmembrane segment of TolA, abolishes immunity protein release. Investigation of the energy requirements demonstrated that the proton motive force of the cytoplasmic membrane is critical. Taken together these results demonstrate for the first time a clear energy requirement for the uptake of a nuclease colicin complex and suggest that energy transduced from the cytoplasmic membrane to the outer membrane by TolA could be the driving force for immunity protein release and concomitant translocation of the nuclease domain.
Collapse
Affiliation(s)
- Mireille Vankemmelbeke
- School of Molecular Medical Sciences and Institute of Infection, Immunity, and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
14
|
Duche D, Issouf M, Lloubes R. Immunity Protein Protects Colicin E2 from OmpT Protease. J Biochem 2008; 145:95-101. [DOI: 10.1093/jb/mvn149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|