1
|
Seok B, Kim MS, Kim BS. Genome-wide analysis of quorum sensing regulon in marine fish pathogen Vibrio scophthalmi. Sci Rep 2024; 14:27740. [PMID: 39533010 PMCID: PMC11558012 DOI: 10.1038/s41598-024-78803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Opportunistic fish pathogen Vibrio scophthalmi frequently infects olive flounder and turbot, which are primary marine species cultured for seafood production in Far East Asia. These infections cause substantial yield reductions and significant economic losses. Although quorum sensing (QS) genes were previously reported in V. scophthalmi, the impacts of QS on genome-wide gene expression and consequent behaviors and physiological traits have remained largely unexplored. In this study, we conducted genomic and transcriptomic analyses to uncover the global regulatory network governed by LuxRVs, a QS master regulator in V. scophthalmi. By comparing the wild-type strain and a luxRVs deletion mutant strain, we found that LuxRVs positively regulates biosynthetic genes for poly-hydroxyalkanoate (PHA) while negatively controlling genes for biofilm formation. Quantification of intracellular PHAs and biofilm biomass on borosilicate tubes confirmed these results. Gene set enrichment analyses further demonstrated that LuxRVs also governs genes related to osmoprotection and defense against reactive oxygen species. Overall, these findings indicate that LuxRVs acts as a global transcriptional regulator, controlling a wide range of physiological processes in V. scophthalmi. Targeting LuxRVs could therefore be a promising strategy for improving seafood production by disrupting diverse physiological and pathogenic traits in this fish pathogen.
Collapse
Affiliation(s)
- Bokyung Seok
- Department of Food Science and Biotechnology, College of Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Myoung Sug Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan, 46083, South Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, College of Engineering, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
2
|
Geyman LJ, Tanner MP, Rosario-Meléndez N, Peters JM, Mandel MJ, van Kessel JC. Mobile-CRISPRi as a powerful tool for modulating Vibrio gene expression. Appl Environ Microbiol 2024; 90:e0006524. [PMID: 38775491 PMCID: PMC11218623 DOI: 10.1128/aem.00065-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
CRISPRi (Clustered Regularly Interspaced Palindromic Repeats interference) is a gene knockdown method that uses a deactivated Cas9 protein (dCas9) that binds a specific gene target locus dictated by an encoded guide RNA (sgRNA) to block transcription. Mobile-CRISPRi is a suite of modular vectors that enable CRISPRi knockdowns in diverse bacteria by integrating IPTG-inducible dcas9 and sgRNA genes into the genome using Tn7 transposition. Here, we show that the Mobile-CRISPRi system functions robustly and specifically in multiple Vibrio species: Vibrio cholerae, Vibrio fischeri, Vibrio vulnificus, Vibrio parahaemolyticus, and Vibrio campbellii. We demonstrate efficacy by targeting both essential and non-essential genes that function to produce defined, measurable phenotypes: bioluminescence, quorum sensing, cell division, and growth arrest. We anticipate that Mobile-CRISPRi will be used in Vibrio species to systematically probe gene function and essentiality in various behaviors and native environments.IMPORTANCEThe genetic manipulation of bacterial genomes is an invaluable tool in experimental microbiology. The development of CRISPRi (Clustered Regularly Interspaced Palindromic Repeats interference) tools has revolutionized genetics in many organisms, including bacteria. Here, we optimized the use of Mobile-CRISPRi in five Vibrio species, each of which has significant impacts on marine environments and organisms that include squid, shrimp, shellfish, finfish, corals, and multiple of which pose direct threats to human health. The Mobile-CRISPRi technology is easily adaptable, moveable from strain to strain, and enables researchers to selectively turn off gene expression. Our experiments demonstrate Mobile-CRISPRi is effective and robust at repressing gene expression of both essential and non-essential genes in Vibrio species.
Collapse
Affiliation(s)
- Logan J. Geyman
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Madeline P. Tanner
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Natalia Rosario-Meléndez
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark J. Mandel
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
3
|
Rasal TA, Mallery CP, Brockley MW, Brown LC, Paczkowski JE, van Kessel JC. Ligand binding determines proteolytic stability of Vibrio LuxR/HapR quorum sensing transcription factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580527. [PMID: 38405947 PMCID: PMC10888775 DOI: 10.1101/2024.02.15.580527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In Vibrio species, quorum sensing signaling culminates in the production of a TetR-type master transcription factor collectively called the LuxR/HapR family, which regulates genes required for colonization and infection of host organisms. These proteins possess a solvent accessible putative ligand binding pocket. However, a native ligand has not been identified, and the role of ligand binding in LuxR/HapR function in Vibrionaceae is unknown. To probe the role of the ligand binding pocket, we utilize the small molecule thiophenesulfonamide inhibitor PTSP (3- p henyl-1-( t hiophen-2-yl s ulfonyl)-1 H - p yrazole) that we previously showed targets LuxR/HapR proteins. Amino acid conservation in the ligand binding pocket determines the specificity and efficacy of PTSP inhibition across Vibrio species. Here, we used structure-function analyses to identify PTSP-interacting residues in the ligand binding pocket of SmcR - the Vibrio vulnificus LuxR/HapR homolog - that are required for PTSP inhibition of SmcR activity in vivo . Forward genetic screening combined with X-ray crystallography structural determination of SmcR bound to PTSP identified substitutions at eight residues that were sufficient to reduce or eliminate PTSP-mediated SmcR inhibition. Small-angle X-ray scattering and computational modeling determined that PTSP drives allosteric unfolding at the N-terminal DNA binding domain. We discovered that SmcR is degraded by the ClpAP protease in the presence of PTSP in vivo ; substitution of key PTSP-interacting residues stabilized or increased SmcR levels in the cell. This mechanism of inhibition is observed for all thiophenesulfonamide compounds tested and against other Vibrio species. We conclude that thiophenesulfonamides specifically bind in the ligand binding pocket of LuxR/HapR proteins, promoting protein degradation and thereby suppressing downstream gene expression, implicating ligand binding as a mediator of LuxR/HapR protein stability and function to govern virulence gene expression in Vibrio pathogens. SIGNIFICANCE LuxR/HapR proteins were discovered in the 1990s as central regulators of quorum sensing gene expression and later discovered to be conserved in all studied Vibrio species. LuxR/HapR homologs regulate a wide range of genes involved in pathogenesis, including but not limited to genes involved in biofilm production and toxin secretion. As archetypal members of the broad class of TetR-type transcription factors, each LuxR/HapR protein has a predicted ligand binding pocket. However, no ligand has been identified for LuxR/HapR proteins that control their function as regulators. Here, we used LuxR/HapR-specific chemical inhibitors to determine that ligand binding drives proteolytic degradation in vivo , the first demonstration of LuxR/HapR function connected to ligand binding for this historical protein family.
Collapse
|
4
|
Li Z, Li W, Lu J, Liu Z, Lin X, Liu Y. Quantitative Proteomics Analysis Reveals the Effect of a MarR Family Transcriptional Regulator AHA_2124 on Aeromonas hydrophila. BIOLOGY 2023; 12:1473. [PMID: 38132299 PMCID: PMC10740729 DOI: 10.3390/biology12121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The transcriptional regulators of the MarR family play an important role in diverse bacterial physiologic functions, whereas their effect and intrinsic regulatory mechanism on the aquatic pathogenic bacterium Aeromonas hydrophila are, clearly, still unknown. In this study, we firstly constructed a deletion strain of AHA_2124 (ΔAHA_2124) of a MarR family transcriptional regulator in Aeromonas hydrophila ATCC 7966 (wild type), and found that the deletion of AHA_2124 caused significantly enhanced hemolytic activity, extracellular protease activity, and motility when compared with the wild type. The differentially abundant proteins (DAPs) were compared by using data-independent acquisition (DIA), based on a quantitative proteomics technology, between the ΔAHA_2124 strain and wild type, and there were 178 DAPs including 80 proteins up-regulated and 98 proteins down-regulated. The bioinformatics analysis showed that the deletion of gene AHA_2124 led to some changes in the abundance of proteins related to multiple biological processes, such as translation, peptide transport, and oxidation and reduction. These results provided a theoretical basis for better exploring the regulatory mechanism of the MarR family transcriptional regulators of Aeromonas hydrophila on bacterial physiological functions.
Collapse
Affiliation(s)
- Zhen Li
- Zhangzhou Health Vocational College, Zhangzhou 363000, China;
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
| | - Wanxin Li
- School of Public Health, Fujian Medical University, Fuzhou 350122, China;
| | - Jinlian Lu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziqiu Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanling Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Miller Conrad LC, Perez LJ. A Geneticist Transcribing the Chemical Language of Bacteria. Isr J Chem 2023; 63:e202200079. [PMID: 37469628 PMCID: PMC10353724 DOI: 10.1002/ijch.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 12/05/2022]
Abstract
The study of quorum sensing, bacterial cell-to-cell communication mediated by the production and detection of small molecule signals, has skyrocketed since its discovery in the last third of the 20th century. Building from early investigations of bacterial bioluminescence, the process has been characterized to control a numerous and growing number of group behaviors, including virulence and biofilm formation. Bonnie Bassler has made key contributions to the understanding of quorum sensing, leading interdisciplinary efforts to characterize key signaling pathway components and their respective signaling molecules across a range of gram-negative bacteria. This review highlights her work in the field, with a particular emphasis on the chemical contributions of her work.
Collapse
Affiliation(s)
- Laura C. Miller Conrad
- Department of Chemistry, San José State University, 1 Washington Sq, San Jose, CA 95192, USA
| | - Lark J. Perez
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| |
Collapse
|
6
|
Zhang M, Xue X, Li X, Wu Q, Zhang T, Yang W, Hu L, Zhou D, Lu R, Zhang Y. QsvR and OpaR coordinately repress biofilm formation by Vibrio parahaemolyticus. Front Microbiol 2023; 14:1079653. [PMID: 36846774 PMCID: PMC9948739 DOI: 10.3389/fmicb.2023.1079653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Mature biofilm formation by Vibrio parahaemolyticus requires exopolysaccharide (EPS), type IV pili, and capsular polysaccharide (CPS). Production of each is strictly regulated by various control pathways including quorum sensing (QS) and bis-(3'-5')-cyclic di-GMP (c-di-GMP). QsvR, an AraC-type regulator, integrates into the QS regulatory cascade via direct control of the transcription of the master QS regulators, AphA and OpaR. Deletion of qsvR in wild-type or opaR mutant backgrounds altered the biofilm formation by V. parahaemolyticus, suggesting that QsvR may coordinate with OpaR to control biofilm formation. Herein, we demonstrated both QsvR and OpaR repressed biofilm-associated phenotypes, c-di-GMP metabolism, and the formation of V. parahaemolyticus translucent (TR) colonies. QsvR restored the biofilm-associated phenotypic changes caused by opaR mutation, and vice versa. In addition, QsvR and OpaR worked coordinately to regulate the transcription of EPS-associated genes, type IV pili genes, CPS genes and c-di-GMP metabolism-related genes. These results demonstrated how QsvR works with the QS system to regulate biofilm formation by precisely controlling the transcription of multiple biofilm formation-associated genes in V. parahaemolyticus.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xingfan Xue
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Qimin Wu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China,Dongsheng Zhou, ✉
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China,Renfei Lu, ✉
| | - Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China,*Correspondence: Yiquan Zhang, ✉
| |
Collapse
|
7
|
Li Z, Li X, Xia H. Roles of LuxR-family regulators in the biosynthesis of secondary metabolites in Actinobacteria. World J Microbiol Biotechnol 2022; 38:250. [DOI: 10.1007/s11274-022-03414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
|
8
|
Zhang X, Liu B, Ding X, Bin P, Yang Y, Zhu G. Regulatory Mechanisms between Quorum Sensing and Virulence in Salmonella. Microorganisms 2022; 10:2211. [PMID: 36363803 PMCID: PMC9693372 DOI: 10.3390/microorganisms10112211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 08/28/2023] Open
Abstract
Salmonella is a foodborne pathogen that causes enterogastritis among humans, livestock and poultry, and it not only causes huge economic losses for the feed industry but also endangers public health around the world. However, the prevention and treatment of Salmonella infection has remained poorly developed because of its antibiotic resistance. Bacterial quorum sensing (QS) system is an intercellular cell-cell communication mechanism involving multiple cellular processes, especially bacterial virulence, such as biofilm formation, motility, adherence, and invasion. Therefore, blocking the QS system may be a new strategy for Salmonella infection independent of antibiotic treatment. Here, we have reviewed the central role of the QS system in virulence regulation of Salmonella and summarized the most recent advances about quorum quenching (QQ) in virulence attenuation during Salmonella infection. Unraveling the complex relationship between QS and bacterial virulence may provide new insight into the therapy of pathogen infection.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Baobao Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyan Ding
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Peng Bin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yang Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqiang Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Gene Regulatory Network of the Noncoding RNA Qrr5 Involved in the Cytotoxicity of Vibrio parahaemolyticus during Infection. Microorganisms 2022; 10:microorganisms10102084. [PMID: 36296357 PMCID: PMC9610228 DOI: 10.3390/microorganisms10102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Small non-coding RNAs (sRNAs) in bacteria are important regulatory molecules for controlling virulence. In Vibrio spp., Qrr sRNAs are critical for quorum-sensing pathways and regulating the release of some virulence factors. However, the detailed role of Qrr sRNAs in the virulence of Vibrio parahaemolyticus remains poorly understood. In this study, we identified a Vibrio sRNA Qrr5 that positively regulates cytotoxicity and adherence in Caco-2 cells by primarily regulating the T3SS1 gene cluster. A number of 185, 586, 355, and 74 differentially expressed genes (DEGs) detected at 0, 2, 4, and 6 h post-infection, respectively, were mainly associated with ABC transporters and two-component system pathways. The DEGs exhibited a dynamic change in expression at various time points post-infection owing to the deletion of Qrr5. Accordingly, 17 related genes were identified in the co-expression network, and their interaction with Qrr5 was determined based on weighted co-expression network analysis during infection. Taken together, our results provide a comprehensive transcriptome profile of V. parahaemolyticus during infection in Caco-2 cells.
Collapse
|
10
|
Morot A, El Fekih S, Bidault A, Le Ferrand A, Jouault A, Kavousi J, Bazire A, Pichereau V, Dufour A, Paillard C, Delavat F. Virulence of Vibrio harveyi ORM4 towards the European abalone Haliotis tuberculata involves both quorum sensing and a type III secretion system. Environ Microbiol 2021; 23:5273-5288. [PMID: 33989448 DOI: 10.1111/1462-2920.15592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 02/05/2023]
Abstract
Environmental Vibrio strains represent a major threat in aquaculture, but the understanding of their virulence mechanisms heavily relies on the transposition of knowledge from human-pathogen vibrios. Here, the genetic bases of the virulence of Vibrio harveyi ORM4 towards the European abalone Haliotis tuberculata were characterized. We demonstrated that luxO, encoding a major regulator of the quorum sensing system, is crucial for the virulence of this strain, and that its deletion leads to a decrease in swimming motility, biofilm formation, and exopolysaccharide production. Furthermore, the biofilm formation by V. harveyi ORM4 was increased by abalone serum, which required LuxO. The absence of LuxO in V. harveyi ORM4 yielded opposite phenotypes compared with other Vibrio species including V. campbellii (still frequently named V. harveyi). In addition, we report a full type III secretion system (T3SS) gene cluster in the V. harveyi ORM4 genome. LuxO was shown to negatively regulate the promoter activity of exsA, encoding the major regulator of the T3SS genes, and the deletion of exsA abolished the virulence of V. harveyi ORM4. These results unveil virulence mechanisms set up by this environmentally important bacterial pathogen and pave the way for a better molecular understanding of the regulation of its pathogenicity.
Collapse
Affiliation(s)
- Amandine Morot
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, Lorient, France
| | | | | | | | - Albane Jouault
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, Lorient, France
| | - Javid Kavousi
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
| | - Alexis Bazire
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, Lorient, France
| | | | - Alain Dufour
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, Lorient, France
| | | | - François Delavat
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
- UMR CNRS 6286 UFIP, University of Nantes, Nantes, France
| |
Collapse
|
11
|
Sausen CW, Bochman ML. Overcoming stochastic variations in culture variables to quantify and compare growth curve data. Bioessays 2021; 43:e2100108. [PMID: 34128245 DOI: 10.1002/bies.202100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 11/06/2022]
Abstract
The comparison of growth, whether it is between different strains or under different growth conditions, is a classic microbiological technique that can provide genetic, epigenetic, cell biological, and chemical biological information depending on how the assay is used. When employing solid growth media, this technique is limited by being largely qualitative and low throughput. Collecting data in the form of growth curves, especially automated data collection in multi-well plates, circumvents these issues. However, the growth curves themselves are subject to stochastic variation in several variables, most notably the length of the lag phase, the doubling rate, and the maximum expansion of the culture. Thus, growth curves are indicative of trends but cannot always be conveniently averaged and statistically compared. Here, we summarize a simple method to compile growth curve data into a quantitative format that is amenable to statistical comparisons and easy to graph and display.
Collapse
Affiliation(s)
- Christopher W Sausen
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA.,Pfizer Inc., Andover, Massachusetts, USA
| | - Matthew L Bochman
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|