1
|
Hermann L, Dempwolff F, Steinchen W, Freibert SA, Smits SHJ, Seubert A, Bremer E. The MocR/GabR Ectoine and Hydroxyectoine Catabolism Regulator EnuR: Inducer and DNA Binding. Front Microbiol 2022; 12:764731. [PMID: 35003002 PMCID: PMC8739950 DOI: 10.3389/fmicb.2021.764731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022] Open
Abstract
The compatible solutes ectoine and 5-hydroxyectoine are widely synthesized by bacteria as osmostress protectants. These nitrogen-rich tetrahydropyrimidines can also be exploited as nutrients by microorganisms. Many ectoine/5-hydroxyectoine catabolic gene clusters are associated with a regulatory gene (enuR: ectoine nutrient utilization regulator) encoding a repressor protein belonging to the MocR/GabR sub-family of GntR-type transcription factors. Focusing on EnuR from the marine bacterium Ruegeria pomeroyi, we show that the dimerization of EnuR is mediated by its aminotransferase domain. This domain can fold independently from its amino-terminal DNA reading head and can incorporate pyridoxal-5′-phosphate (PLP) as cofactor. The covalent attachment of PLP to residue Lys302 of EnuR was proven by mass-spectrometry. PLP interacts with system-specific, ectoine and 5-hydroxyectoine-derived inducers: alpha-acetyldiaminobutyric acid (alpha-ADABA), and hydroxy-alpha-acetyldiaminobutyric acid (hydroxy-alpha-ADABA), respectively. These inducers are generated in cells actively growing with ectoines as sole carbon and nitrogen sources, by the EutD hydrolase and targeted metabolic analysis allowed their detection. EnuR binds these effector molecules with affinities in the low micro-molar range. Studies addressing the evolutionary conservation of EnuR, modelling of the EnuR structure, and docking experiments with the inducers provide an initial view into the cofactor and effector binding cavity. In this cavity, the two high-affinity inducers for EnuR, alpha-ADABA and hydroxy-alpha-ADABA, are positioned such that their respective primary nitrogen group can chemically interact with PLP. Purified EnuR bound with micro-molar affinity to a 48 base pair DNA fragment containing the sigma-70 type substrate-inducible promoter for the ectoine/5-hydroxyectoine importer and catabolic gene cluster. Consistent with the function of EnuR as a repressor, the core elements of the promoter overlap with two predicted EnuR operators. Our data lend themselves to a straightforward regulatory model for the initial encounter of EnuR-possessing ectoine/5-hydroxyectoine consumers with environmental ectoines and for the situation when the external supply of these compounds has been exhausted by catabolism.
Collapse
Affiliation(s)
- Lucas Hermann
- Faculty of Biology, Philipps-University Marburg, Marburg, Germany.,Department of Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Felix Dempwolff
- SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| | - Wieland Steinchen
- SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| | - Sven-Andreas Freibert
- Department of Medicine, Institute for Cytobiology and Cytopathology, and SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University, Düsseldorf, Germany.,Center for Structural Studies (CSS), Faculty of Biochemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andreas Seubert
- Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Erhard Bremer
- Faculty of Biology, Philipps-University Marburg, Marburg, Germany.,SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
2
|
Mais CN, Hermann L, Altegoer F, Seubert A, Richter AA, Wernersbach I, Czech L, Bremer E, Bange G. Degradation of the microbial stress protectants and chemical chaperones ectoine and hydroxyectoine by a bacterial hydrolase-deacetylase complex. J Biol Chem 2020; 295:9087-9104. [PMID: 32404365 PMCID: PMC7335791 DOI: 10.1074/jbc.ra120.012722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
When faced with increased osmolarity in the environment, many bacterial cells accumulate the compatible solute ectoine and its derivative 5-hydroxyectoine. Both compounds are not only potent osmostress protectants, but also serve as effective chemical chaperones stabilizing protein functionality. Ectoines are energy-rich nitrogen and carbon sources that have an ecological impact that shapes microbial communities. Although the biochemistry of ectoine and 5-hydroxyectoine biosynthesis is well understood, our understanding of their catabolism is only rudimentary. Here, we combined biochemical and structural approaches to unravel the core of ectoine and 5-hydroxy-ectoine catabolisms. We show that a conserved enzyme bimodule consisting of the EutD ectoine/5-hydroxyectoine hydrolase and the EutE deacetylase degrades both ectoines. We determined the high-resolution crystal structures of both enzymes, derived from the salt-tolerant bacteria Ruegeria pomeroyi and Halomonas elongata These structures, either in their apo-forms or in forms capturing substrates or intermediates, provided detailed insights into the catalytic cores of the EutD and EutE enzymes. The combined biochemical and structural results indicate that the EutD homodimer opens the pyrimidine ring of ectoine through an unusual covalent intermediate, N-α-2 acetyl-l-2,4-diaminobutyrate (α-ADABA). We found that α-ADABA is then deacetylated by the zinc-dependent EutE monomer into diaminobutyric acid (DABA), which is further catabolized to l-aspartate. We observed that the EutD-EutE bimodule synthesizes exclusively the α-, but not the γ-isomers of ADABA or hydroxy-ADABA. Of note, α-ADABA is known to induce the MocR/GabR-type repressor EnuR, which controls the expression of many ectoine catabolic genes clusters. We conclude that hydroxy-α-ADABA might serve a similar function.
Collapse
Affiliation(s)
- Christopher-Nils Mais
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Marburg, Germany
| | - Lucas Hermann
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Biology, Marburg, Germany
| | - Florian Altegoer
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Marburg, Germany
| | - Andreas Seubert
- Philipps-University Marburg, Faculty of Chemistry, Marburg, Germany
| | - Alexandra A Richter
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Biology, Marburg, Germany
| | - Isa Wernersbach
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Marburg, Germany
| | - Laura Czech
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Biology, Marburg, Germany
| | - Erhard Bremer
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Biology, Marburg, Germany.
| | - Gert Bange
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Marburg, Germany.
| |
Collapse
|
3
|
Bouillaut L, Newton W, Sonenshein AL, Belitsky BR. DdlR, an essential transcriptional regulator of peptidoglycan biosynthesis in Clostridioides difficile. Mol Microbiol 2019; 112:1453-1470. [PMID: 31483905 DOI: 10.1111/mmi.14371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
D-Ala-D-Ala ligase, encoded by ddl genes, is responsible for the synthesis of a dipeptide, D-Ala-D-Ala, an essential precursor of bacterial peptidoglycan. In Clostridioides difficile, the single ddl gene is located upstream of the ddlR gene, which encodes a putative transcriptional regulator. Using mutational and transcriptional analysis and DNA-binding assays, DdlR was found to be a direct activator of the ddl ddlR operon. DdlR is a member of the MocR/GabR-type proteins that have aminotransferase-like, pyridoxal 5'-phosphate-binding domains. A DdlR mutation that prevented covalent binding of pyridoxal 5'-phosphate abolished the ability of DdlR to activate transcription. Addition of D-Ala-D-Ala to the medium inactivated DdlR, reducing dipeptide biosynthesis. In contrast, D-Ala-D-Ala limitation caused a dramatic increase in expression from the ddl promoter. Though uncommon for transcription regulators, C. difficile DdlR is essential, as the ddlR null mutant cells could not grow even in complex laboratory media in the absence of D-Ala-D-Ala. A dyad symmetry sequence, which is located immediately upstream of the -35 region of the ddl promoter, serves as an important element of the DdlR-binding site. This sequence is conserved upstream of putative DdlR targets in other bacteria of classes Clostridia and Bacilli, indicating a similar mode of regulation of these genes.
Collapse
Affiliation(s)
- Laurent Bouillaut
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - William Newton
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Boris R Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| |
Collapse
|
4
|
Sood U, Hira P, Kumar R, Bajaj A, Rao DLN, Lal R, Shakarad M. Comparative Genomic Analyses Reveal Core-Genome-Wide Genes Under Positive Selection and Major Regulatory Hubs in Outlier Strains of Pseudomonas aeruginosa. Front Microbiol 2019; 10:53. [PMID: 30787911 PMCID: PMC6372532 DOI: 10.3389/fmicb.2019.00053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Genomic information for outlier strains of Pseudomonas aeruginosa is exiguous when compared with classical strains. We sequenced and constructed the complete genome of an environmental strain CR1 of P. aeruginosa and performed the comparative genomic analysis. It clustered with the outlier group, hence we scaled up the analyses to understand the differences in environmental and clinical outlier strains. We identified eight new regions of genomic plasticity and a plasmid pCR1 with a VirB/D4 complex followed by trimeric auto-transporter that can induce virulence phenotype in the genome of strain CR1. Virulence genotype analysis revealed that strain CR1 lacked hemolytic phospholipase C and D, three genes for LPS biosynthesis and had reduced antibiotic resistance genes when compared with clinical strains. Genes belonging to proteases, bacterial exporters and DNA stabilization were found to be under strong positive selection, thus facilitating pathogenicity and survival of the outliers. The outliers had the complete operon for the production of vibrioferrin, a siderophore present in plant growth promoting bacteria. The competence to acquire multidrug resistance and new virulence factors makes these strains a potential threat. However, we identified major regulatory hubs that can be used as drug targets against both the classical and outlier groups.
Collapse
Affiliation(s)
- Utkarsh Sood
- Department of Zoology, University of Delhi, New Delhi, India
- PhiXGen Private Limited, Gurugram, India
| | - Princy Hira
- Department of Zoology, University of Delhi, New Delhi, India
| | - Roshan Kumar
- Department of Zoology, University of Delhi, New Delhi, India
- PhiXGen Private Limited, Gurugram, India
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Abhay Bajaj
- Department of Zoology, University of Delhi, New Delhi, India
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | | | - Rup Lal
- Department of Zoology, University of Delhi, New Delhi, India
- PhiXGen Private Limited, Gurugram, India
| | | |
Collapse
|
5
|
Tramonti A, Nardella C, di Salvo ML, Pascarella S, Contestabile R. The MocR-like transcription factors: pyridoxal 5'-phosphate-dependent regulators of bacterial metabolism. FEBS J 2018; 285:3925-3944. [PMID: 29974999 DOI: 10.1111/febs.14599] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
Many biological functions played by current proteins were not created by evolution from scratch, rather they were obtained combining already available protein scaffolds. This is the case of MocR-like bacterial transcription factors (MocR-TFs), a subclass of GntR transcription regulators, whose structure is the outcome of the fusion between DNA-binding proteins and pyridoxal 5'-phosphate (PLP)-dependent enzymes. The resultant chimeras can count on the properties of both protein classes, i.e. the capability to recognize specific DNA sequences and to bind PLP and amino-compounds; it is the modulation of such binding properties to confer to MocR-TFs chimeras the ability to interact with effector molecules and DNA so as to regulate transcription. MocR-TFs control different metabolic processes involving vitamin B6 and amino acids, which are canonical ligands of PLP-dependent enzymes. However, MocR-TFs are also implicated in the metabolism of compounds that are not substrates of PLP-dependent enzymes, such as rhizopine and ectoine. Genomic analyses show that MocR-TFs are widespread among eubacteria, implying an essential role in their metabolism and highlighting the scarcity of our knowledge on these important players in microbial metabolism. Although MocR-TFs have been discovered 15 years ago, the research activity on these transcriptional regulators has only recently intensified, producing a wealth of information that needs to be brought back to general principles. This is the main task of this review, which reports and analyses the available information concerning MocR-TFs functional role, structural features, interaction with effector molecules and the characteristics of DNA transcriptional factor-binding sites of MocR-based regulatory systems.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| |
Collapse
|
6
|
Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E. Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. Genes (Basel) 2018; 9:genes9040177. [PMID: 29565833 PMCID: PMC5924519 DOI: 10.3390/genes9040177] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/26/2023] Open
Abstract
Fluctuations in environmental osmolarity are ubiquitous stress factors in many natural habitats of microorganisms, as they inevitably trigger osmotically instigated fluxes of water across the semi-permeable cytoplasmic membrane. Under hyperosmotic conditions, many microorganisms fend off the detrimental effects of water efflux and the ensuing dehydration of the cytoplasm and drop in turgor through the accumulation of a restricted class of organic osmolytes, the compatible solutes. Ectoine and its derivative 5-hydroxyectoine are prominent members of these compounds and are synthesized widely by members of the Bacteria and a few Archaea and Eukarya in response to high salinity/osmolarity and/or growth temperature extremes. Ectoines have excellent function-preserving properties, attributes that have led to their description as chemical chaperones and fostered the development of an industrial-scale biotechnological production process for their exploitation in biotechnology, skin care, and medicine. We review, here, the current knowledge on the biochemistry of the ectoine/hydroxyectoine biosynthetic enzymes and the available crystal structures of some of them, explore the genetics of the underlying biosynthetic genes and their transcriptional regulation, and present an extensive phylogenomic analysis of the ectoine/hydroxyectoine biosynthetic genes. In addition, we address the biochemistry, phylogenomics, and genetic regulation for the alternative use of ectoines as nutrients.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Lucas Hermann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Nadine Stöveken
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Alexandra A Richter
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Astrid Höppner
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Johann Heider
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| |
Collapse
|
7
|
Schulz A, Hermann L, Freibert SA, Bönig T, Hoffmann T, Riclea R, Dickschat JS, Heider J, Bremer E. Transcriptional regulation of ectoine catabolism in response to multiple metabolic and environmental cues. Environ Microbiol 2017; 19:4599-4619. [PMID: 28892254 DOI: 10.1111/1462-2920.13924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/04/2023]
Abstract
Ectoine and hydroxyectoine are effective microbial osmostress protectants, but can also serve as versatile nutrients for bacteria. We have studied the genetic regulation of ectoine and hydroxyectoine import and catabolism in the marine Roseobacter species Ruegeria pomeroyi and identified three transcriptional regulators involved in these processes: the GabR/MocR-type repressor EnuR, the feast and famine-type regulator AsnC and the two-component system NtrYX. The corresponding genes are widely associated with ectoine and hydroxyectoine uptake and catabolic gene clusters (enuR, asnC), and with microorganisms predicted to consume ectoines (ntrYX). EnuR contains a covalently bound pyridoxal-5'-phosphate as a co-factor and the chemistry underlying the functioning of MocR/GabR-type regulators typically requires a system-specific low molecular mass effector molecule. Through ligand binding studies with purified EnuR, we identified N-(alpha)-L-acetyl-2,4-diaminobutyric acid and L-2,4-diaminobutyric acid as inducers for EnuR that are generated through ectoine catabolism. AsnC/Lrp-type proteins can wrap DNA into nucleosome-like structures, and we found that the asnC gene was essential for use of ectoines as nutrients. Furthermore, we discovered through transposon mutagenesis that the NtrYX two-component system is required for their catabolism. Database searches suggest that our findings have important ramifications for an understanding of the molecular biology of most microbial consumers of ectoines.
Collapse
Affiliation(s)
- Annina Schulz
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Lucas Hermann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Sven-Andreas Freibert
- Department of Medicine, Institute for Cytobiology and Cytopathology, Philipps-University Marburg, Robert-Koch Str. 6, D-35032 Marburg, Germany
| | - Tobias Bönig
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Tamara Hoffmann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Ramona Riclea
- Institute of Organic Chemistry, Technical University Braunschweig, D-38106 Braunschweig, Germany.,Kekulé-Institute for Organic Chemistry and Biochemistry, Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Jeroen S Dickschat
- Institute of Organic Chemistry, Technical University Braunschweig, D-38106 Braunschweig, Germany.,Kekulé-Institute for Organic Chemistry and Biochemistry, Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Johann Heider
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| |
Collapse
|