1
|
Meißner J, Königshof M, Wrede K, Warneke R, Mardoukhi MSY, Commichau FM, Stülke J. Control of asparagine homeostasis in Bacillus subtilis: identification of promiscuous amino acid importers and exporters. J Bacteriol 2024; 206:e0042023. [PMID: 38193659 PMCID: PMC10882977 DOI: 10.1128/jb.00420-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
The Gram-positive model bacterium B. subtilis is able to import all proteinogenic amino acids from the environment as well as to synthesize them. However, the players involved in the acquisition of asparagine have not yet been identified for this bacterium. In this work, we used d-asparagine as a toxic analog of l-asparagine to identify asparagine transporters. This revealed that d- but not l-asparagine is taken up by the malate/lactate antiporter MleN. Specific strains that are sensitive to the presence of l-asparagine due to the lack of the second messenger cyclic di-AMP or due to the intracellular accumulation of this amino acid were used to isolate and characterize suppressor mutants that were resistant to the presence of otherwise growth-inhibiting concentrations of l-asparagine. These screens identified the broad-spectrum amino acid importers AimA and BcaP as responsible for the acquisition of l-asparagine. The amino acid exporter AzlCD allows detoxification of l-asparagine in addition to 4-azaleucine and histidine. This work supports the idea that amino acids are often transported by promiscuous importers and exporters. However, our work also shows that even stereo-enantiomeric amino acids do not necessarily use the same transport systems.IMPORTANCETransport of amino acid is a poorly studied function in many bacteria, including the model organism Bacillus subtilis. The identification of transporters is hampered by the redundancy of transport systems for most amino acids as well as by the poor specificity of the transporters. Here, we apply several strategies to use the growth-inhibitive effect of many amino acids under defined conditions to isolate suppressor mutants that exhibit either reduced uptake or enhanced export of asparagine, resulting in the identification of uptake and export systems for l-asparagine. The approaches used here may be useful for the identification of transporters for other amino acids both in B. subtilis and in other bacteria.
Collapse
Affiliation(s)
- Janek Meißner
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Manuel Königshof
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Katrin Wrede
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Robert Warneke
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Fabian M. Commichau
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Allouche D, Kostova G, Hamon M, Marchand CH, Caron M, Belhocine S, Christol N, Charteau V, Condon C, Durand S. New RoxS sRNA Targets Identified in Bacillus subtilis by Pulsed SILAC. Microbiol Spectr 2023; 11:e0047123. [PMID: 37338392 PMCID: PMC10433868 DOI: 10.1128/spectrum.00471-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/18/2023] [Indexed: 06/21/2023] Open
Abstract
Non-coding RNAs (sRNA) play a key role in controlling gene expression in bacteria, typically by base-pairing with ribosome binding sites to block translation. The modification of ribosome traffic along the mRNA generally affects its stability. However, a few cases have been described in bacteria where sRNAs can affect translation without a major impact on mRNA stability. To identify new sRNA targets in Bacillus subtilis potentially belonging to this class of mRNAs, we used pulsed-SILAC (stable isotope labeling by amino acids in cell culture) to label newly synthesized proteins after short expression of the RoxS sRNA, the best characterized sRNA in this bacterium. RoxS sRNA was previously shown to interfere with the expression of genes involved in central metabolism, permitting control of the NAD+/NADH ratio in B. subtilis. In this study, we confirmed most of the known targets of RoxS, showing the efficiency of the method. We further expanded the number of mRNA targets encoding enzymes of the TCA cycle and identified new targets. One of these is YcsA, a tartrate dehydrogenase that uses NAD+ as co-factor, in excellent agreement with the proposed role of RoxS in management of NAD+/NADH ratio in Firmicutes. IMPORTANCE Non-coding RNAs (sRNA) play an important role in bacterial adaptation and virulence. The identification of the most complete set of targets for these regulatory RNAs is key to fully identifying the perimeter of its function(s). Most sRNAs modify both the translation (directly) and mRNA stability (indirectly) of their targets. However, sRNAs can also influence the translation efficiency of the target primarily, with little or no impact on mRNA stability. The characterization of these targets is challenging. We describe here the application of the pulsed SILAC method to identify such targets and obtain the most complete list of targets for a defined sRNA.
Collapse
Affiliation(s)
- Delphine Allouche
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Gergana Kostova
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Marion Hamon
- FR550, CNRS, Plateforme de Protéomique, Institut de Biologie Physico-Chimique, Paris, France
| | - Christophe H. Marchand
- FR550, CNRS, Plateforme de Protéomique, Institut de Biologie Physico-Chimique, Paris, France
- CNRS, UMR7238, Laboratory of Computational and Quantitative Biology, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Mathias Caron
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Sihem Belhocine
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Ninon Christol
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Violette Charteau
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Ciarán Condon
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Sylvain Durand
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
3
|
Wu Y, Kawabata H, Kita K, Ishikawa S, Tanaka K, Yoshida KI. Constitutive glucose dehydrogenase elevates intracellular NADPH levels and luciferase luminescence in Bacillus subtilis. Microb Cell Fact 2022; 21:266. [PMID: 36539761 PMCID: PMC9768902 DOI: 10.1186/s12934-022-01993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genetic modifications in Bacillus subtilis have allowed the conversion of myo-inositol into scyllo-inositol, which is proposed as a therapeutic agent for Alzheimer's disease. This conversion comprises two reactions catalyzed by two distinct inositol dehydrogenases, IolG and IolW. The IolW-mediated reaction requires the intracellular regeneration of NADPH, and there appears to be a limit to the endogenous supply of NADPH, which may be one of the rate-determining factors for the conversion of inositol. The primary mechanism of NADPH regeneration in this bacterium remains unclear. RESULTS The gdh gene of B. subtilis encodes a sporulation-specific glucose dehydrogenase that can use NADP+ as a cofactor. When gdh was modified to be constitutively expressed, the intracellular NADPH level was elevated, increasing the conversion of inositol. In addition, the bacterial luciferase derived from Photorhabdus luminescens became more luminescent in cells in liquid culture and colonies on culture plates. CONCLUSION The results indicated that the luminescence of luciferase was representative of intracellular NADPH levels. Luciferase can therefore be employed to screen for mutations in genes involved in NADPH regeneration in B. subtilis, and artificial manipulation to enhance NADPH regeneration can promote the production of substances such as scyllo-inositol.
Collapse
Affiliation(s)
- Yuzheng Wu
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Honami Kawabata
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Kyosuke Kita
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Shu Ishikawa
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Kan Tanaka
- grid.32197.3e0000 0001 2179 2105Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan ,grid.419082.60000 0004 1754 9200Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Ken-ichi Yoshida
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| |
Collapse
|
4
|
Hofmann J, Bitew MA, Kuba M, De Souza DP, Newton HJ, Sansom FM. Characterisation of putative lactate synthetic pathways of Coxiella burnetii. PLoS One 2021; 16:e0255925. [PMID: 34388185 PMCID: PMC8362950 DOI: 10.1371/journal.pone.0255925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
The zoonotic pathogen Coxiella burnetii, the causative agent of the human disease Q fever, is an ever-present danger to global public health. Investigating novel metabolic pathways necessary for C. burnetii to replicate within its unusual intracellular niche may identify new therapeutic targets. Recent studies employing stable isotope labelling established the ability of C. burnetii to synthesize lactate, despite the absence of an annotated synthetic pathway on its genome. A noncanonical lactate synthesis pathway could provide a novel anti-Coxiella target if it is essential for C. burnetii pathogenesis. In this study, two C. burnetii proteins, CBU1241 and CBU0823, were chosen for analysis based on their similarities to known lactate synthesizing enzymes. Recombinant GST-CBU1241, a putative malate dehydrogenase (MDH), did not produce measurable lactate in in vitro lactate dehydrogenase (LDH) activity assays and was confirmed to function as an MDH. Recombinant 6xHis-CBU0823, a putative NAD+-dependent malic enzyme, was shown to have both malic enzyme activity and MDH activity, however, did not produce measurable lactate in either LDH or malolactic enzyme activity assays in vitro. To examine potential lactate production by CBU0823 more directly, [13C]glucose labelling experiments compared label enrichment within metabolic pathways of a cbu0823 transposon mutant and the parent strain. No difference in lactate production was observed, but the loss of CBU0823 significantly reduced 13C-incorporation into glycolytic and TCA cycle intermediates. This disruption to central carbon metabolism did not have any apparent impact on intracellular replication within THP-1 cells. This research provides new information about the mechanism of lactate biosynthesis within C. burnetii, demonstrating that CBU1241 is not multifunctional, at least in vitro, and that CBU0823 also does not synthesize lactate. Although critical for normal central carbon metabolism of C. burnetii, loss of CBU0823 did not significantly impair replication of the bacterium inside cells.
Collapse
Affiliation(s)
- Janine Hofmann
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| | - Miku Kuba
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David P. De Souza
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Hayley J. Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Fiona M. Sansom
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Impact of activation of neotrehalosadiamine/kanosamine biosynthetic pathway on the metabolism of Bacillus subtilis. J Bacteriol 2021; 203:JB.00603-20. [PMID: 33619155 PMCID: PMC8092168 DOI: 10.1128/jb.00603-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pentose phosphate (PP) pathway is one of the major sources of cellular NADPH. A B. subtilis zwf mutant that lacks glucose-6-phosphate dehydrogenase (the enzyme that catalyzes the first step of the PP pathway) showed inoculum-dose-dependent growth. This growth defect was suppressed by glcP disruption, which causes the upregulation of an autoinducer neotrehalosadiamine (NTD)/kanosamine biosynthetic pathway. A metabolome analysis showed that the stimulation of NTD/kanosamine biosynthesis caused significant accumulation of TCA cycle intermediates and NADPH. Because the major malic enzyme YtsJ concomitantly generates NADPH through malate-to-pyruvate conversion, de novo NTD/kanosamine biosynthesis can result in an increase in the intracellular NADPH pool via the accumulation of malate. In fact, a zwf mutant grew in malate-supplemented medium. Artificial induction of glcP in the zwf mutant caused a reduction in the intracellular NADPH pool. Moreover, the correlation between the expression level of the NTD/kanosamine biosynthesis operon ntdABC and the intracellular NADPH pool was confirmed. Our results suggest that NTD/kanosamine has the potential to modulate the carbon-energy metabolism through an autoinduction mechanism.ImportanceAutoinducers enable bacteria to sense cell density and to coordinate collective behavior. NTD/kanosamine is an autoinducer produced by B. subtilis and several close relatives, although its physiological function remains unknown. The most important finding of this study was the significance of de novo NTD/kanosamine biosynthesis in the modulation of the central carbon metabolism in B. subtilis We showed that NTD/kanosamine biosynthesis caused an increase in the NADPH pool via the accumulation of TCA cycle intermediates. These results suggest a possible role for NTD/kanosamine in the carbon-energy metabolism. As Bacillus species are widely used for the industrial production of various useful enzymes and compounds, the NTD/kanosamine biosynthetic pathway might be utilized to control metabolic pathways in these industrial strains.
Collapse
|
6
|
Bifunctional Malic/Malolactic Enzyme Provides a Novel Mechanism for NADPH-Balancing in Bacillus subtilis. mBio 2021; 12:mBio.03438-20. [PMID: 33824210 PMCID: PMC8092299 DOI: 10.1128/mbio.03438-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new mechanism for NADPH balancing was discovered in Bacillus subtilis. It pivots on the bifunctional enzyme YtsJ, which is known to catalyze NADP-dependent malate decarboxylation. We found that in the presence of excessive NADPH, the same enzyme switches to malolactic activity and creates a transhydrogenation cycle that ultimately converts NADPH to NADH. This provides a regulated mechanism to immediately adjust NADPH/NADP+ in response to instantaneous needs. The redox cofactor NADPH is required as a reducing equivalent in about 100 anabolic reactions throughout metabolism. To ensure fitness under all conditions, the demand is fulfilled by a few dehydrogenases in central carbon metabolism that reduce NADP+ with electrons derived from the catabolism of nutrients. In the case of Bacillus subtilis growing on glucose, quantitative flux analyses indicate that NADPH production largely exceeds biosynthetic needs, suggesting a hitherto unknown mechanism for NADPH balancing. We investigated the role of the four malic enzymes present in B. subtilis that could bring about a metabolic cycle for transhydrogenation of NADPH into NADH. Using quantitative 13C metabolic flux analysis, we found that isoform YtsJ alone contributes to NADPH balancing in vivo and demonstrated relevant NADPH-oxidizing activity by YtsJ in vitro. To our surprise, we discovered that depending on NADPH, YtsJ switches activity from a pyruvate-producing malic enzyme to a lactate-generating malolactic enzyme. This switch in activity allows YtsJ to adaptively compensate for cellular NADPH over- and underproduction upon demand. Finally, NADPH-dependent bifunctional activity was also detected in the YtsJ homolog in Escherichia coli MaeB. Overall, our study extends the known redox cofactor balancing mechanisms by providing first-time evidence that the type of catalyzed reaction by an enzyme depends on metabolite abundance.
Collapse
|
7
|
Harding CJ, Cadby IT, Moynihan PJ, Lovering AL. A rotary mechanism for allostery in bacterial hybrid malic enzymes. Nat Commun 2021; 12:1228. [PMID: 33623032 PMCID: PMC7902834 DOI: 10.1038/s41467-021-21528-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Bacterial hybrid malic enzymes (MaeB grouping, multidomain) catalyse the transformation of malate to pyruvate, and are a major contributor to cellular reducing power and carbon flux. Distinct from other malic enzyme subtypes, the hybrid enzymes are regulated by acetyl-CoA, a molecular indicator of the metabolic state of the cell. Here we solve the structure of a MaeB protein, which reveals hybrid enzymes use the appended phosphotransacetylase (PTA) domain to form a hexameric sensor that communicates acetyl-CoA occupancy to the malic enzyme active site, 60 Å away. We demonstrate that allostery is governed by a large-scale rearrangement that rotates the catalytic subunits 70° between the two states, identifying MaeB as a new model enzyme for the study of ligand-induced conformational change. Our work provides the mechanistic basis for metabolic control of hybrid malic enzymes, and identifies inhibition-insensitive variants that may find utility in synthetic biology.
Collapse
Affiliation(s)
- Christopher John Harding
- grid.6572.60000 0004 1936 7486Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Ian Thomas Cadby
- grid.6572.60000 0004 1936 7486Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Patrick Joseph Moynihan
- grid.6572.60000 0004 1936 7486Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Andrew Lee Lovering
- grid.6572.60000 0004 1936 7486Department of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Burley KH, Cuthbert BJ, Basu P, Newcombe J, Irimpan EM, Quechol R, Foik IP, Mobley DL, Beste DJV, Goulding CW. Structural and Molecular Dynamics of Mycobacterium tuberculosis Malic Enzyme, a Potential Anti-TB Drug Target. ACS Infect Dis 2021; 7:174-188. [PMID: 33356117 DOI: 10.1021/acsinfecdis.0c00735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tuberculosis (TB) is the most lethal bacterial infectious disease worldwide. It is notoriously difficult to treat, requiring a cocktail of antibiotics administered over many months. The dense, waxy outer membrane of the TB-causing agent, Mycobacterium tuberculosis (Mtb), acts as a formidable barrier against uptake of antibiotics. Subsequently, enzymes involved in maintaining the integrity of the Mtb cell wall are promising drug targets. Recently, we demonstrated that Mtb lacking malic enzyme (MEZ) has altered cell wall lipid composition and attenuated uptake by macrophages. These results suggest that MEZ contributes to lipid biosynthesis by providing reductants in the form of NAD(P)H. Here, we present the X-ray crystal structure of MEZ to 3.6 Å. We use biochemical assays to demonstrate MEZ is dimeric in solution and to evaluate the effects of pH and allosteric regulators on its kinetics and thermal stability. To assess the interactions between MEZ and its substrate malate and cofactors, Mn2+ and NAD(P)+, we ran a series of molecular dynamics (MD) simulations. First, the MD analysis corroborates our empirical observations that MEZ is unusually flexible, which persists even with the addition of substrate and cofactors. Second, the MD simulations reveal that dimeric MEZ subunits alternate between open and closed states, and that MEZ can stably bind its NAD(P)+ cofactor in multiple conformations, including an inactive, compact NAD+ form. Together the structure of MEZ and insights from its dynamics can be harnessed to inform the design of MEZ inhibitors that target Mtb and not human malic enzyme homologues.
Collapse
Affiliation(s)
| | | | - Piyali Basu
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Jane Newcombe
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | | | | | | | | | - Dany J. V. Beste
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | | |
Collapse
|
9
|
Bacillus subtilis Regulators MntR and Zur Participate in Redox Cycling, Antibiotic Sensitivity, and Cell Wall Plasticity. J Bacteriol 2020; 202:JB.00547-19. [PMID: 31818924 DOI: 10.1128/jb.00547-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
The Bacillus subtilis MntR and Zur transcriptional regulators control homeostasis of manganese and zinc, two essential elements required in various cellular processes. In this work, we describe the global impact of mntR and zur deletions at the protein level. Using a comprehensive proteomic approach, we showed that 33 and 55 proteins are differentially abundant in ΔmntR and Δzur cells, respectively, including proteins involved in metal acquisition, translation, central metabolism, and cell wall homeostasis. In addition, both mutants showed modifications in intracellular metal ion pools, with significant Mg2+ accumulation in the ΔmntR mutant. Phenotypic and morphological analyses of ΔmntR and Δzur mutants revealed their high sensitivity to lysozyme, beta-lactam antibiotics, and external oxidative stress. Mutant strains had a modified cell wall thickness and accumulated lower levels of intracellular reactive oxygen species (ROS) than the wild-type strain. Remarkably, our results highlight an intimate connection between MntR, Zur, antibiotic sensitivity, and cell wall structure.IMPORTANCE Manganese and zinc are essential transition metals involved in many fundamental cellular processes, including protection against external oxidative stress. In Bacillus subtilis, Zur and MntR are key transcriptional regulators of zinc and manganese homeostasis, respectively. In this work, proteome analysis of B. subtilis wild-type, ΔmntR, and Δzur strains provided new insights into bacterial adaptation to deregulation of essential metal ions. Deletions of mntR and zur genes increased bacterial sensitivity to lysozyme, beta-lactam antibiotics, and external oxidative stress and impacted the cell wall thickness. Overall, these findings highlight that Zur and MntR regulatory networks are connected to antibiotic sensitivity and cell wall plasticity.
Collapse
|
10
|
Rozova ON, Mustakhimov II, But SY, Reshetnikov AS, Khmelenina VN. Role of the malic enzyme in metabolism of the halotolerant methanotroph Methylotuvimicrobium alcaliphilum 20Z. PLoS One 2019; 14:e0225054. [PMID: 31738793 PMCID: PMC6860931 DOI: 10.1371/journal.pone.0225054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023] Open
Abstract
The bacteria utilizing methane as a growth substrate (methanotrophs) are important constituents of the biosphere. Methanotrophs mitigate the emission of anthropogenic and natural greenhouse gas methane to the environment and are the promising agents for future biotechnologies. Many aspects of CH4 bioconversion by methanotrophs require further clarification. This study was aimed at characterizing the biochemical properties of the malic enzyme (Mae) from the halotolerant obligate methanotroph Methylotuvimicrobium alcaliphilum 20Z. The His6-tagged Mae was obtained by heterologous expression in Escherichia coli BL21 (DE3) and purified by affinity metal chelating chromatography. As determined by gel filtration and non-denaturating gradient gel electrophoresis, the molecular mass of the native enzyme is 260 kDa. The homotetrameric Mae (65x4 kDa) catalyzed an irreversible NAD+-dependent reaction of L-malate decarboxylation into pyruvate with a specific activity of 32 ± 2 units mg-1 and Km value of 5.5 ± 0.8 mM for malate and 57 ± 5 μM for NAD+. The disruption of the mae gene by insertion mutagenesis resulted in a 20-fold increase in intracellular malate level in the mutant compared to the wild type strain. Based on both enzyme and mutant properties, we conclude that the malic enzyme is involved in the control of intracellular L-malate level in Mtm. alcaliphilum 20Z. Genomic analysis has revealed that Maes present in methanotrophs fall into two different clades in the amino acid-based phylogenetic tree, but no correlation of the division with taxonomic affiliations of the host bacteria was observed.
Collapse
Affiliation(s)
- Olga N. Rozova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Ildar I. Mustakhimov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Sergei Y. But
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Aleksandr S. Reshetnikov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Valentina N. Khmelenina
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
11
|
Quinn B, Rodman N, Jara E, Fernandez JS, Martinez J, Traglia GM, Montaña S, Cantera V, Place K, Bonomo RA, Iriarte A, Ramírez MS. Human serum albumin alters specific genes that can play a role in survival and persistence in Acinetobacter baumannii. Sci Rep 2018; 8:14741. [PMID: 30282985 PMCID: PMC6170387 DOI: 10.1038/s41598-018-33072-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/21/2018] [Indexed: 01/13/2023] Open
Abstract
In the past few decades Acinetobacter baumannii has emerged as a notorious nosocomial pathogen because of its ability to acquire genetic material and persist in extreme environments. Recently, human serum albumin (HSA) was shown to significantly increase natural transformation frequency in A. baumannii. This observation led us to perform transcriptomic analysis of strain A118 under HSA induction to identify genes that are altered by HSA. Our results revealed the statistically significant differential expression of 296 protein-coding genes, including those associated with motility, biofilm formation, metabolism, efflux pumps, capsule synthesis, and transcriptional regulation. Phenotypic analysis of these traits showed an increase in surface-associated motility, a decrease in biofilm formation, reduced activity of a citric acid cycle associated enzyme, and increased survival associated with zinc availability. Furthermore, the expression of genes known to play a role in pathogenicity and antibiotic resistance were altered. These genes included those associated with RND-type efflux pumps, the type VI secretion system, iron acquisition/metabolism, and ß-lactam resistance. Together, these results illustrate how human products, in particular HSA, may play a significant role in both survival and persistence of A. baumannii.
Collapse
Affiliation(s)
- Brettni Quinn
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Nyah Rodman
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Eugenio Jara
- Área Genética, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Jennifer S Fernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Jasmine Martinez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - German M Traglia
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Sabrina Montaña
- Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos, Aires, Argentina
| | - Virginia Cantera
- Laboratorio de Biología Computacional, Dpto. de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - Kori Place
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Robert A Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA.,Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Andres Iriarte
- Laboratorio de Biología Computacional, Dpto. de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA.
| |
Collapse
|
12
|
Zuo S, Xiao J, Zhang Y, Zhang X, Nomura CT, Chen S, Wang Q. Rational design and medium optimization for shikimate production in recombinant Bacillus licheniformis strains. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Transcriptomic profiles of Clostridium ljungdahlii during lithotrophic growth with syngas or H 2 and CO 2 compared to organotrophic growth with fructose. Sci Rep 2017; 7:13135. [PMID: 29030620 PMCID: PMC5640608 DOI: 10.1038/s41598-017-12712-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/14/2017] [Indexed: 01/13/2023] Open
Abstract
Clostridium ljungdahlii derives energy by lithotrophic and organotrophic acetogenesis. C. ljungdahlii was grown organotrophically with fructose and also lithotrophically, either with syngas - a gas mixture containing hydrogen (H2), carbon dioxide (CO2), and carbon monoxide (CO), or with H2 and CO2. Gene expression was compared quantitatively by microarrays using RNA extracted from all three conditions. Gene expression with fructose and with H2/CO2 was compared by RNA-Seq. Upregulated genes with both syngas and H2/CO2 (compared to fructose) point to the urea cycle, uptake and degradation of peptides and amino acids, response to sulfur starvation, potentially NADPH-producing pathways involving (S)-malate and ornithine, quorum sensing, sporulation, and cell wall remodeling, suggesting a global and multicellular response to lithotrophic conditions. With syngas, the upregulated (R)-lactate dehydrogenase gene represents a route of electron transfer from ferredoxin to NAD. With H2/CO2, flavodoxin and histidine biosynthesis genes were upregulated. Downregulated genes corresponded to an intracytoplasmic microcompartment for disposal of methylglyoxal, a toxic byproduct of glycolysis, as 1-propanol. Several cytoplasmic and membrane-associated redox-active protein genes were differentially regulated. The transcriptomic profiles of C. ljungdahlii in lithotrophic and organotrophic growth modes indicate large-scale physiological and metabolic differences, observations that may guide biofuel and commodity chemical production with this species.
Collapse
|
14
|
Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in Bacillus subtilis. mBio 2017; 8:mBio.00976-17. [PMID: 28974613 PMCID: PMC5626966 DOI: 10.1128/mbio.00976-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
At the heart of central carbon metabolism, pyruvate is a pivotal metabolite in all living cells. Bacillus subtilis is able to excrete pyruvate as well as to use it as the sole carbon source. We herein reveal that ysbAB (renamed pftAB), the only operon specifically induced in pyruvate-grown B. subtilis cells, encodes a hetero-oligomeric membrane complex which operates as a facilitated transport system specific for pyruvate, thereby defining a novel class of transporter. We demonstrate that the LytST two-component system is responsible for the induction of pftAB in the presence of pyruvate by binding of the LytT response regulator to a palindromic region upstream of pftAB. We show that both glucose and malate, the preferred carbon sources for B. subtilis, trigger the binding of CcpA upstream of pftAB, which results in its catabolite repression. However, an additional CcpA-independent mechanism represses pftAB in the presence of malate. Screening a genome-wide transposon mutant library, we find that an active malic enzyme replenishing the pyruvate pool is required for this repression. We next reveal that the higher the influx of pyruvate, the stronger the CcpA-independent repression of pftAB, which suggests that intracellular pyruvate retroinhibits pftAB induction via LytST. Such a retroinhibition challenges the rational design of novel nature-inspired sensors and synthetic switches but undoubtedly offers new possibilities for the development of integrated sensor/controller circuitry. Overall, we provide evidence for a complete system of sensors, feed-forward and feedback controllers that play a major role in environmental growth of B. subtilis. Pyruvate is a small-molecule metabolite ubiquitous in living cells. Several species also use it as a carbon source as well as excrete it into the environment. The bacterial systems for pyruvate import/export have yet to be discovered. Here, we identified in the model bacterium Bacillus subtilis the first import/export system specific for pyruvate, PftAB, which defines a novel class of transporter. In this bacterium, extracellular pyruvate acts as the signal molecule for the LytST two-component system (TCS), which in turn induces expression of PftAB. However, when the pyruvate influx is high, LytST activity is drastically retroinhibited. Such a retroinhibition challenges the rational design of novel nature-inspired sensors and synthetic switches but undoubtedly offers new possibilities for the development of integrated sensor/controller circuitry.
Collapse
|
15
|
Durand S, Braun F, Helfer AC, Romby P, Condon C. sRNA-mediated activation of gene expression by inhibition of 5'-3' exonucleolytic mRNA degradation. eLife 2017; 6. [PMID: 28436820 PMCID: PMC5419742 DOI: 10.7554/elife.23602] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/23/2017] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional control by small regulatory RNA (sRNA) is critical for rapid adaptive processes. sRNAs can directly modulate mRNA degradation in Proteobacteria without interfering with translation. However, Firmicutes have a fundamentally different set of ribonucleases for mRNA degradation and whether sRNAs can regulate the activity of these enzymes is an open question. We show that Bacillus subtilis RoxS, a major trans-acting sRNA shared with Staphylococus aureus, prevents degradation of the yflS mRNA, encoding a malate transporter. In the presence of malate, RoxS transiently escapes from repression by the NADH-sensitive transcription factor Rex and binds to the extreme 5'-end of yflS mRNA. This impairs the 5'-3' exoribonuclease activity of RNase J1, increasing the half-life of the primary transcript and concomitantly enhancing ribosome binding to increase expression of the transporter. Globally, the different targets regulated by RoxS suggest that it helps readjust the cellular NAD+/NADH balance when perturbed by different stimuli.
Collapse
Affiliation(s)
- Sylvain Durand
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Frédérique Braun
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Anne-Catherine Helfer
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Pascale Romby
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France.,Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Ciarán Condon
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
16
|
Zhang Y, Smallbone LA, diCenzo GC, Morton R, Finan TM. Loss of malic enzymes leads to metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium meliloti. BMC Microbiol 2016; 16:163. [PMID: 27456220 PMCID: PMC4960864 DOI: 10.1186/s12866-016-0780-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malic enzymes decarboxylate the tricarboxylic acid (TCA) cycle intermediate malate to the glycolytic end-product pyruvate and are well positioned to regulate metabolic flux in central carbon metabolism. Despite the wide distribution of these enzymes, their biological roles are unclear in part because the reaction catalyzed by these enzymes can be by-passed by other pathways. The N2-fixing alfalfa symbiont Sinorhizobium meliloti contains both a NAD(P)-malic enzyme (DME) and a separate NADP-malic enzyme (TME) and to help understand the role of these enzymes, we investigated growth, metabolomic, and transcriptional consequences resulting from loss of these enzymes in free-living cells. RESULTS Loss of DME, TME, or both enzymes had no effect on growth with the glycolytic substrate, glucose. In contrast, the dme mutants, but not tme, grew slowly on the gluconeogenic substrate succinate and this slow growth was further reduced upon the addition of glucose. The dme mutant strains incubated with succinate accumulated trehalose and hexose sugar phosphates, secreted malate, and relative to wild-type, these cells had moderately increased transcription of genes involved in gluconeogenesis and pathways that divert metabolites away from the TCA cycle. While tme mutant cells grew at the same rate as wild-type on succinate, they accumulated the compatible solute putrescine. CONCLUSIONS NAD(P)-malic enzyme (DME) of S. meliloti is required for efficient metabolism of succinate via the TCA cycle. In dme mutants utilizing succinate, malate accumulates and is excreted and these cells appear to increase metabolite flow via gluconeogenesis with a resulting increase in the levels of hexose-6-phosphates and trehalose. For cells utilizing succinate, TME activity alone appeared to be insufficient to produce the levels of pyruvate required for efficient TCA cycle metabolism. Putrescine was found to accumulate in tme cells growing with succinate, and whether this is related to altered levels of NADPH requires further investigation.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Laura Anne Smallbone
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - George C diCenzo
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - Richard Morton
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
17
|
Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. NADPH-generating systems in bacteria and archaea. Front Microbiol 2015; 6:742. [PMID: 26284036 PMCID: PMC4518329 DOI: 10.3389/fmicb.2015.00742] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided.
Collapse
Affiliation(s)
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen UniversityWageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
18
|
Luche S, Eymard-Vernain E, Diemer H, Van Dorsselaer A, Rabilloud T, Lelong C. Zinc oxide induces the stringent response and major reorientations in the central metabolism of Bacillus subtilis. J Proteomics 2015. [PMID: 26211718 DOI: 10.1016/j.jprot.2015.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microorganisms, such as bacteria, are one of the first targets of nanoparticles in the environment. In this study, we tested the effect of two nanoparticles, ZnO and TiO2, with the salt ZnSO4 as the control, on the Gram-positive bacterium Bacillus subtilis by 2D gel electrophoresis-based proteomics. Despite a significant effect on viability (LD50), TiO2 NPs had no detectable effect on the proteomic pattern, while ZnO NPs and ZnSO4 significantly modified B. subtilis metabolism. These results allowed us to conclude that the effects of ZnO observed in this work were mainly attributable to Zn dissolution in the culture media. Proteomic analysis highlighted twelve modulated proteins related to central metabolism: MetE and MccB (cysteine metabolism), OdhA, AspB, IolD, AnsB, PdhB and YtsJ (Krebs cycle) and XylA, YqjI, Drm and Tal (pentose phosphate pathway). Biochemical assays, such as free sulfhydryl, CoA-SH and malate dehydrogenase assays corroborated the observed central metabolism reorientation and showed that Zn stress induced oxidative stress, probably as a consequence of thiol chelation stress by Zn ions. The other patterns affected by ZnO and ZnSO4 were the stringent response and the general stress response. Nine proteins involved in or controlled by the stringent response showed a modified expression profile in the presence of ZnO NPs or ZnSO4: YwaC, SigH, YtxH, YtzB, TufA, RplJ, RpsB, PdhB and Mbl. An increase in the ppGpp concentration confirmed the involvement of the stringent response during a Zn stress. All these metabolic reorientations in response to Zn stress were probably the result of complex regulatory mechanisms including at least the stringent response via YwaC.
Collapse
Affiliation(s)
- Sylvie Luche
- Pro-MD team, Université Joseph Fourier, CEA Grenoble, iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR CNRS-CEA-UJF, Grenoble, France
| | - Elise Eymard-Vernain
- Pro-MD team, Université Joseph Fourier, CEA Grenoble, iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR CNRS-CEA-UJF, Grenoble, France
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France; CNRS, UMR7178, 67087 Strasbourg, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France; CNRS, UMR7178, 67087 Strasbourg, France
| | - Thierry Rabilloud
- Pro-MD team, UMR CNRS 5249, Laboratoire de Chimie et Biologie des Métaux, UMR CNRS-CEA-UJF, Grenoble, France
| | - Cécile Lelong
- Pro-MD team, Université Joseph Fourier, CEA Grenoble, iRTSV, Laboratoire de Chimie et Biologie des Métaux, UMR CNRS-CEA-UJF, Grenoble, France.
| |
Collapse
|
19
|
Tanaka K, Takanaka S, Yoshida KI. A second-generation Bacillus cell factory for rare inositol production. Bioengineered 2015; 5:331-4. [PMID: 25482235 DOI: 10.4161/bioe.29897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Some rare inositol stereoisomers are known to exert specific health-promoting effects, including scyllo-inositol (SI), which is a promising therapeutic agent for Alzheimer disease. We recently reported a Bacillus subtilis cell factory that performed the efficient production of SI from the cheapest and most abundant isomer myo-inositol (MI). In the cell factory all "useless" genes involved in MI and SI metabolism were deleted and overexpression of the key enzymes, IolG and IolW, was appended. It converted 10 g/L MI into the same amount of SI in 48 h of cultivation. In this addendum, we discuss further improvement in the cell factory and its possible applications.
Collapse
Affiliation(s)
- Kosei Tanaka
- a Organization of Advanced Science and Technology; Kobe University; Kobe, Japan
| | | | | |
Collapse
|
20
|
Meyer H, Weidmann H, Mäder U, Hecker M, Völker U, Lalk M. A time resolved metabolomics study: the influence of different carbon sources during growth and starvation of Bacillus subtilis. MOLECULAR BIOSYSTEMS 2015; 10:1812-23. [PMID: 24727859 DOI: 10.1039/c4mb00112e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In its natural environment, the soil, the Gram-positive model bacterium Bacillus subtilis frequently encounters nutrient limitation and other stress factors. Efficient adaptation mechanisms are necessary to cope with this wide range of environmental challenges. The ability to utilize diverse carbon sources represents a key adaptation process that allows B. subtilis to thrive in its natural habitat. To gain a comprehensive insight into the metabolism of B. subtilis, global metabolite analyses were performed during growth with glucose alone or glucose with either malate, fumarate or citrate as carbon/energy sources. Furthermore, to achieve a comprehensive coverage of a wide range of chemically different metabolites, complementary GC-MS, LC-MS and (1)H-NMR analyses were applied. This study reveals that the availability of different carbon sources results in different extracellular metabolite profiles whereas a regulated intracellular metabolite equilibrium was observed. In addition, the typical energy-starvation induced activation of the general stress sigma factor σ(B) was only observed upon entry into the stationary phase with glucose or glucose and malate as carbon sources.
Collapse
Affiliation(s)
- Hanna Meyer
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Fu J, Wang Z, Chen T, Liu W, Shi T, Wang G, Tang YJ, Zhao X. NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnol Bioeng 2014; 111:2126-31. [PMID: 24788512 DOI: 10.1002/bit.25265] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 03/12/2014] [Accepted: 04/10/2014] [Indexed: 02/05/2023]
Abstract
Compared with traditional pathogenic producers, Bacillus subtilis as a Class I microorganism offers many advantages for industrial-scale 2,3-butanediol production. Unlike previous reports in which two stereoisomers (with a ratio of 3:2) were produced, we first found that wild type B. subtilis 168 generates only D-(-)-2,3-butanediol (purity >99%) under low oxygen conditions. The total high yield of 2,3-butanediol and acetoin, and acetoin reductase enzyme assay indicate that it is the high level of NADH availability, instead of high acetoin reductase activity, contributes more to 2,3-butanediol production in B. subtilis. The strategy for increasing the pool of NADH availability, the key factor for 2,3-butanediol production, was designed through low dissolved oxygen control, adding reducing substrates and rationally metabolic engineering. A transhydrogenase encoded by udhA was introduced to provide more NADH from NADPH and allowed enhanced 2,3-butanediol production. Finally, BSF20 produced 49.29 g/L D(-)-2,3-butanediol. These results demonstrated that B. subtilis is a competitive producer for chiral 2,3-butanediol production.
Collapse
Affiliation(s)
- Jing Fu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China; Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Qi H, Li S, Zhao S, Huang D, Xia M, Wen J. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis. PLoS One 2014; 9:e93815. [PMID: 24705866 PMCID: PMC3976320 DOI: 10.1371/journal.pone.0093815] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/06/2014] [Indexed: 12/05/2022] Open
Abstract
To rationally guide the improvement of isobutanol production, metabolic network and metabolic profiling analysis were performed to provide global and profound insights into cell metabolism of isobutanol-producing Bacillus subtilis. The metabolic flux distribution of strains with different isobutanol production capacity (BSUL03, BSUL04 and BSUL05) drops a hint of the importance of NADPH on isobutanol biosynthesis. Therefore, the redox pathways were redesigned in this study. To increase NADPH concentration, glucose-6-phosphate isomerase was inactivated (BSUL06) and glucose-6-phosphate dehydrogenase was overexpressed (BSUL07) successively. As expected, NADPH pool size in BSUL07 was 4.4-fold higher than that in parental strain BSUL05. However, cell growth, isobutanol yield and production were decreased by 46%, 22%, and 80%, respectively. Metabolic profiling analysis suggested that the severely imbalanced redox status might be the primary reason. To solve this problem, gene udhA of Escherichia coli encoding transhydrogenase was further overexpressed (BSUL08), which not only well balanced the cellular ratio of NAD(P)H/NAD(P)+, but also increased NADH and ATP concentration. In addition, a straightforward engineering approach for improving NADPH concentrations was employed in BSUL05 by overexpressing exogenous gene pntAB and obtained BSUL09. The performance for isobutanol production by BSUL09 was poorer than BSUL08 but better than other engineered strains. Furthermore, in fed-batch fermentation the isobutanol production and yield of BSUL08 increased by 11% and 19%, up to the value of 6.12 g/L and 0.37 C-mol isobutanol/C-mol glucose (63% of the theoretical value), respectively, compared with parental strain BSUL05. These results demonstrated that model-driven complemented with metabolic profiling analysis could serve as a useful approach in the strain improvement for higher bio-productivity in further application.
Collapse
Affiliation(s)
- Haishan Qi
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Shanshan Li
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Sumin Zhao
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Di Huang
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Menglei Xia
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Jianping Wen
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People's Republic of China
- * E-mail:
| |
Collapse
|
23
|
Kohlstedt M, Sappa PK, Meyer H, Maaß S, Zaprasis A, Hoffmann T, Becker J, Steil L, Hecker M, van Dijl JM, Lalk M, Mäder U, Stülke J, Bremer E, Völker U, Wittmann C. Adaptation ofBacillus subtiliscarbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective. Environ Microbiol 2014; 16:1898-917. [DOI: 10.1111/1462-2920.12438] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/18/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Michael Kohlstedt
- Institute of Systems Biotechnology; Saarland University; Campus A1 5 66123 Saarbrücken Germany
- Institute of Biochemical Engineering; Braunschweig University of Technology; Braunschweig Germany
| | - Praveen K. Sappa
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Hanna Meyer
- Institutes of Biochemistry; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Sandra Maaß
- Microbiology; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Adrienne Zaprasis
- Department of Biology; Laboratory of Microbiology; Philipps-University Marburg; Marburg Germany
| | - Tamara Hoffmann
- Department of Biology; Laboratory of Microbiology; Philipps-University Marburg; Marburg Germany
| | - Judith Becker
- Institute of Systems Biotechnology; Saarland University; Campus A1 5 66123 Saarbrücken Germany
- Institute of Biochemical Engineering; Braunschweig University of Technology; Braunschweig Germany
| | - Leif Steil
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Michael Hecker
- Microbiology; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - Michael Lalk
- Institutes of Biochemistry; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Ulrike Mäder
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Jörg Stülke
- Department for General Microbiology; Georg-August-University Göttingen; Göttingen Germany
| | - Erhard Bremer
- Department of Biology; Laboratory of Microbiology; Philipps-University Marburg; Marburg Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics; Department Functional Genomics; University Medicine Greifswald; Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology; Saarland University; Campus A1 5 66123 Saarbrücken Germany
- Institute of Biochemical Engineering; Braunschweig University of Technology; Braunschweig Germany
| |
Collapse
|
24
|
The presence of conjugative plasmid pLS20 affects global transcription of Its Bacillus subtilis host and confers beneficial stress resistance to cells. Appl Environ Microbiol 2013; 80:1349-58. [PMID: 24334659 DOI: 10.1128/aem.03154-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Conjugation activity of plasmid pLS20 from Bacillus subtilis subsp. natto is induced when cells are diluted into fresh medium and diminishes as cells enter into stationary-phase growth. Transcriptional profiling shows that during mid-exponential growth, more than 5% of the host genes are affected in the presence of the plasmid, in contrast to the minor changes seen in freshly diluted and stationary-phase cells. Changes occurred in many metabolic pathways, although pLS20 does not confer any detectable burden on its host cell, as well as in membrane and cell wall-associated processes, in the large motility operon, and in several other cellular processes. In agreement with these changes, we found considerable alterations in motility and enzyme activity and increased resistance against several different forms of stress in cells containing the plasmid, revealing that the presence of pLS20 has a broad impact on the physiology of its host cell and increases its stress resistance in multiple aspects. Additionally, we found that the lack of chromosomal gene yueB, known to encode a phage receptor protein, which is upregulated in cells containing pLS20, strongly reduced conjugation efficiency, revealing that pLS20 not only increases fitness of its host but also employs host proteins for efficient transfer into a new cell.
Collapse
|
25
|
Hörl M, Schnidder J, Sauer U, Zamboni N. Non-stationary13C-metabolic flux ratio analysis. Biotechnol Bioeng 2013; 110:3164-76. [DOI: 10.1002/bit.25004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Manuel Hörl
- Institute of Molecular Systems Biology; ETH Zurich; Wolfgang Pauli Str. 16 8093 Zurich Switzerland
- PhD Program Systems Biology; Life Science Zurich Graduate School; Zurich Switzerland
| | - Julian Schnidder
- Institute of Molecular Systems Biology; ETH Zurich; Wolfgang Pauli Str. 16 8093 Zurich Switzerland
- PhD Program Systems Biology; Life Science Zurich Graduate School; Zurich Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology; ETH Zurich; Wolfgang Pauli Str. 16 8093 Zurich Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology; ETH Zurich; Wolfgang Pauli Str. 16 8093 Zurich Switzerland
| |
Collapse
|
26
|
Meyer FM, Stülke J. Malate metabolism in Bacillus subtilis: distinct roles for three classes of malate-oxidizing enzymes. FEMS Microbiol Lett 2012; 339:17-22. [PMID: 23136871 DOI: 10.1111/1574-6968.12041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 11/30/2022] Open
Abstract
The Gram-positive soil bacterium Bacillus subtilis uses glucose and malate as the preferred carbon sources. In the presence of either glucose or malate, the expression of genes and operons for the utilization of secondary carbon sources is subject to carbon catabolite repression. While glucose is a preferred substrate in many organisms from bacteria to man, the factors that contribute to the preference for malate have so far remained elusive. In this work, we have studied the contribution of the different malate-metabolizing enzymes in B. subtilis, and we have elucidated their distinct functions. The malate dehydrogenase and the phosphoenolpyruvate carboxykinase are both essential for malate utilization; they introduce malate into gluconeogenesis. The NADPH-generating malic enzyme YtsJ is important to establish the cellular pools of NADPH for anabolic reactions. Finally, the NADH-generating malic enzymes MaeA, MalS, and MleA are involved in keeping the ATP levels high. Together, this unique array of distinct activities makes malate a preferred carbon source for B. subtilis.
Collapse
Affiliation(s)
- Frederik M Meyer
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | | |
Collapse
|
27
|
Rühl M, Le Coq D, Aymerich S, Sauer U. 13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis. J Biol Chem 2012; 287:27959-70. [PMID: 22740702 DOI: 10.1074/jbc.m112.366492] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In their natural habitat, microorganisms are typically confronted with nutritional limitations that restrict growth and force them to persevere in a stationary phase. Despite the importance of this phase, little is known about the metabolic state(s) that sustains it. Here, we investigate metabolically active but non-growing Bacillus subtilis during nitrogen starvation. In the absence of biomass formation as the major NADPH sink, the intracellular flux distribution in these resting B. subtilis reveals a large apparent catabolic NADPH overproduction of 5.0 ± 0.6 mmol g(-1)h(-1) that was partly caused by high pentose phosphate pathway fluxes. Combining transcriptome analysis, stationary (13)C-flux analysis in metabolic deletion mutants, (2)H-labeling experiments, and kinetic flux profiling, we demonstrate that about half of the catabolic excess NADPH is oxidized by two transhydrogenation cycles, i.e. isoenzyme pairs of dehydrogenases with different cofactor specificities that operate in reverse directions. These transhydrogenation cycles were constituted by the combined activities of the glyceraldehyde 3-phosphate dehydrogenases GapA/GapB and the malic enzymes MalS/YtsJ. At least an additional 6% of the overproduced NADPH is reoxidized by continuous cycling between ana- and catabolism of glutamate. Furthermore, in vitro enzyme data show that a not yet identified transhydrogenase could potentially reoxidize ∼20% of the overproduced NADPH. Overall, we demonstrate the interplay between several metabolic mechanisms that concertedly enable network-wide NADPH homeostasis under conditions of high catabolic NADPH production in the absence of cell growth in B. subtilis.
Collapse
Affiliation(s)
- Martin Rühl
- Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
28
|
Regulation of the malic enzyme gene malE by the transcriptional regulator MalR in Corynebacterium glutamicum. J Biotechnol 2012; 159:204-15. [DOI: 10.1016/j.jbiotec.2012.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 11/18/2022]
|
29
|
Cabrera-Valladares N, Martínez LM, Flores N, Hernández-Chávez G, Martínez A, Bolívar F, Gosset G. Physiologic Consequences of Glucose Transport and Phosphoenolpyruvate Node Modifications inBacillus subtilis168. J Mol Microbiol Biotechnol 2012; 22:177-97. [DOI: 10.1159/000339973] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
30
|
Biochemical properties and physiological roles of NADP-dependent malic enzyme in Escherichia coli. J Microbiol 2011; 49:797-802. [PMID: 22068497 DOI: 10.1007/s12275-011-0487-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/25/2011] [Indexed: 10/15/2022]
Abstract
Malic enzymes catalyze the reversible oxidative decarboxylation of L-malate using NAD(P)(+) as a cofactor. NADP-dependent malic enzyme (MaeB) from Escherichia coli MG1655 was expressed and purified as a fusion protein. The molecular weight of MaeB was about 83 kDa, as determined by SDS-PAGE. The recombinant MaeB showed a maximum activity at pH 7.8 and 46°C. MaeB activity was dependent on the presence of Mn(2+) but was strongly inhibited by Zn(2+). In order to understand the physiological roles, recombinant E. coli strains (icd (NADP)/ΔmaeB and icd (NAD)/ΔmaeB) containing NADP-dependent isocitrate dehydrogenase (IDH), or engineered NAD-dependent IDH with the deletion of the maeB gene, were constructed using homologous recombination. During growth on acetate, icd (NAD)/ΔmaeB grew poorly, having a growth rate only 60% that of the wild-type strain (icd (NADP)). Furthermore, icd (NADP)/ΔmaeB exhibited a 2-fold greater adaptability to acetate than icd (NAD)/ΔmaeB, which may be explained by more NADPH production for biosynthesis in icd (NADP)/ΔmaeB due to its NADP-dependent IDH. These results indicated that MaeB was important for NADPH production for bacterial growth on acetate. We also observed that MaeB activity was significantly enhanced (7.83-fold) in icd (NAD), which was about 3-fold higher than that in icd (NADP), when switching from glucose to acetate. The marked increase of MaeB activity was probably induced by the shortage of NADPH in icd (NAD). Evidently, MaeB contributed to the NADPH generation needed for bacterial growth on two carbon compounds.
Collapse
|
31
|
Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway. J Bacteriol 2011; 193:6939-49. [PMID: 22001508 DOI: 10.1128/jb.06197-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most organisms can choose their preferred carbon source from a mixture of nutrients. This process is called carbon catabolite repression. The Gram-positive bacterium Bacillus subtilis uses glucose as the preferred source of carbon and energy. Glucose-mediated catabolite repression is caused by binding of the CcpA transcription factor to the promoter regions of catabolic operons. CcpA binds DNA upon interaction with its cofactors HPr(Ser-P) and Crh(Ser-P). The formation of the cofactors is catalyzed by the metabolite-activated HPr kinase/phosphorylase. Recently, it has been shown that malate is a second preferred carbon source for B. subtilis that also causes catabolite repression. In this work, we addressed the mechanism by which malate causes catabolite repression. Genetic analyses revealed that malate-dependent catabolite repression requires CcpA and its cofactors. Moreover, we demonstrate that HPr(Ser-P) is present in malate-grown cells and that CcpA and HPr interact in vivo in the presence of glucose or malate but not in the absence of a repressing carbon source. The formation of the cofactor HPr(Ser-P) could be attributed to the concentrations of ATP and fructose 1,6-bisphosphate in cells growing with malate. Both metabolites are available at concentrations that are sufficient to stimulate HPr kinase activity. The adaptation of cells to environmental changes requires dynamic metabolic and regulatory adjustments. The repression strength of target promoters was similar to that observed in steady-state growth conditions, although it took somewhat longer to reach the second steady-state of expression when cells were shifted to malate.
Collapse
|
32
|
Espariz M, Repizo G, Blancato V, Mortera P, Alarcón S, Magni C. Identification of malic and soluble oxaloacetate decarboxylase enzymes in Enterococcus faecalis. FEBS J 2011; 278:2140-51. [PMID: 21518252 DOI: 10.1111/j.1742-4658.2011.08131.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two paralogous genes, maeE and citM, that encode putative malic enzyme family members were identified in the Enterococcus faecalis genome. MaeE (41 kDa) and CitM (42 kDa) share a high degree of homology between them (47% identities and 68% conservative substitutions). However, the genetic context of each gene suggested that maeE is associated with malate utilization whereas citM is linked to the citrate fermentation pathway. In the present work, we focus on the biochemical characterization and physiological contribution of these enzymes in E. faecalis. With this aim, the recombinant versions of the two proteins were expressed in Escherichia coli, affinity purified and finally their kinetic parameters were determined. This approach allowed us to establish that MaeE is a malate oxidative decarboxylating enzyme and CitM is a soluble oxaloacetate decarboxylase. Moreover, our genetic studies in E. faecalis showed that the citrate fermentation phenotype is not affected by citM deletion. On the other hand, maeE gene disruption resulted in a malate fermentation deficient strain indicating that MaeE is responsible for malate metabolism in E. faecalis. Lastly, it was demonstrated that malate fermentation in E. faecalis is associated with cytoplasmic and extracellular alkalinization which clearly contributes to pH homeostasis in neutral or mild acidic conditions.
Collapse
Affiliation(s)
- Martín Espariz
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Whole-cell biocatalysis utilizes native or recombinant enzymes produced by cellular metabolism to perform synthetically interesting reactions. Besides hydrolases, oxidoreductases represent the most applied enzyme class in industry. Oxidoreductases are attributed a high future potential, especially for applications in the chemical and pharmaceutical industries, as they enable highly interesting chemistry (e.g., the selective oxyfunctionalization of unactivated C-H bonds). Redox reactions are characterized by electron transfer steps that often depend on redox cofactors as additional substrates. Their regeneration typically is accomplished via the metabolism of whole-cell catalysts. Traditionally, studies towards productive redox biocatalysis focused on the biocatalytic enzyme, its activity, selectivity, and specificity, and several successful examples of such processes are running commercially. However, redox cofactor regeneration by host metabolism was hardly considered for the optimization of biocatalytic rate, yield, and/or titer. This article reviews molecular mechanisms of oxidoreductases with synthetic potential and the host redox metabolism that fuels biocatalytic reactions with redox equivalents. The tools discussed in this review for investigating redox metabolism provide the basis for studies aiming at a deeper understanding of the interplay between synthetically active enzymes and metabolic networks. The ultimate goal of rational whole-cell biocatalyst engineering and use for fine chemical production is discussed.
Collapse
|
34
|
Maertens J, Vanrolleghem PA. Modeling with a view to target identification in metabolic engineering: a critical evaluation of the available tools. Biotechnol Prog 2010; 26:313-31. [PMID: 20052739 DOI: 10.1002/btpr.349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The state of the art tools for modeling metabolism, typically used in the domain of metabolic engineering, were reviewed. The tools considered are stoichiometric network analysis (elementary modes and extreme pathways), stoichiometric modeling (metabolic flux analysis, flux balance analysis, and carbon modeling), mechanistic and approximative modeling, cybernetic modeling, and multivariate statistics. In the context of metabolic engineering, one should be aware that the usefulness of these tools to optimize microbial metabolism for overproducing a target compound depends predominantly on the characteristic properties of that compound. Because of their shortcomings not all tools are suitable for every kind of optimization; issues like the dependence of the target compound's synthesis on severe (redox) constraints, the characteristics of its formation pathway, and the achievable/desired flux towards the target compound should play a role when choosing the optimization strategy.
Collapse
Affiliation(s)
- Jo Maertens
- BIOMATH, Dept. of Applied Mathematics, Biometrics, and Process Control, Ghent University, Ghent 9000, Belgium.
| | | |
Collapse
|
35
|
Rühl M, Zamboni N, Sauer U. Dynamic flux responses in riboflavin overproducing Bacillus subtilis to increasing glucose limitation in fed-batch culture. Biotechnol Bioeng 2010; 105:795-804. [PMID: 19882734 DOI: 10.1002/bit.22591] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
How do intracellular fluxes respond to dynamically increasing glucose limitation when the physiology changes from strong overflow metabolism near to exclusively maintenance metabolism? Here we investigate this question in a typical industrial, glucose-limited fed-batch cultivation with a riboflavin overproducing Bacillus subtilis strain. To resolve dynamic flux changes, a novel approach to (13)C flux analysis was developed that is based on recording (13)C labeling patterns in free intracellular amino acids. Fluxes are then estimated with stationary flux ratio and iterative isotopomer balancing methods, for which a decomposition of the process into quasi-steady states and estimation of isotopic steady state (13)C labeling patterns was necessary. By this approach, we achieve a temporal resolution of 30-60 min that allows us to resolve the slow metabolic transients that typically occur in such cultivations. In the late process phase we found, most prominently, almost exclusive respiratory metabolism, significantly increased pentose phosphate pathway contribution and a strongly decreased futile cycle through the PEP carboxykinase. As a consequence, higher catabolic NADPH formation occurred than was necessary to satisfy the anabolic demands, suggesting a transhydrogenase-like mechanism to close the balance of reducing equivalents.
Collapse
Affiliation(s)
- Martin Rühl
- Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli-Str. 16, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
36
|
Kleijn RJ, Buescher JM, Le Chat L, Jules M, Aymerich S, Sauer U. Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis. J Biol Chem 2009; 285:1587-96. [PMID: 19917605 DOI: 10.1074/jbc.m109.061747] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Commonly glucose is considered to be the only preferred substrate in Bacillus subtilis whose presence represses utilization of other alternative substrates. Because recent data indicate that malate might be an exception, we quantify here the carbon source utilization hierarchy. Based on physiology and transcriptional data during co-utilization experiments with eight carbon substrates, we demonstrate that malate is a second preferred carbon source for B. subtilis, which is rapidly co-utilized with glucose and strongly represses the uptake of alternative substrates. From the different hierarchy and degree of catabolite repression exerted by glucose and malate, we conclude that both substrates might act through different molecular mechanisms. To obtain a quantitative and functional network view of how malate is (co)metabolized, we developed a novel approach to metabolic flux analysis that avoids error-prone, intuitive, and ad hoc decisions on (13)C rearrangements. In particular, we developed a rigorous approach for deriving reaction reversibilities by combining in vivo intracellular metabolite concentrations with a thermodynamic feasibility analysis. The thus-obtained analytical model of metabolism was then used for network-wide isotopologue balancing to estimate the intracellular fluxes. These (13)C-flux data revealed an extraordinarily high malate influx that is primarily catabolized via the gluconeogenic reactions and toward overflow metabolism. Furthermore, a considerable NADPH-producing malic enzyme flux is required to supply the biosynthetically required NADPH in the presence of malate. Co-utilization of glucose and malate resulted in a synergistic decrease of the respiratory tricarboxylic acid cycle flux.
Collapse
Affiliation(s)
- Roelco J Kleijn
- Institute of Molecular System Biology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway. Appl Environ Microbiol 2009; 76:84-95. [PMID: 19897756 DOI: 10.1128/aem.02145-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus casei can metabolize L-malic acid via malolactic enzyme (malolactic fermentation [MLF]) or malic enzyme (ME). Whereas utilization of L-malic acid via MLF does not support growth, the ME pathway enables L. casei to grow on L-malic acid. In this work, we have identified in the genomes of L. casei strains BL23 and ATCC 334 a cluster consisting of two diverging operons, maePE and maeKR, encoding a putative malate transporter (maeP), an ME (maeE), and a two-component (TC) system belonging to the citrate family (maeK and maeR). Homologous clusters were identified in Enterococcus faecalis, Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus uberis. Our results show that ME is essential for L-malic acid utilization in L. casei. Furthermore, deletion of either the gene encoding the histidine kinase or the response regulator of the TC system resulted in the loss of the ability to grow on L-malic acid, thus indicating that the cognate TC system regulates and is essential for the expression of ME. Transcriptional analyses showed that expression of maeE is induced in the presence of L-malic acid and repressed by glucose, whereas TC system expression was induced by L-malic acid and was not repressed by glucose. DNase I footprinting analysis showed that MaeR binds specifically to a set of direct repeats [5'-TTATT(A/T)AA-3'] in the mae promoter region. The location of the repeats strongly suggests that MaeR activates the expression of the diverging operons maePE and maeKR where the first one is also subjected to carbon catabolite repression.
Collapse
|
38
|
Decorosi F, Tatti E, Mini A, Giovannetti L, Viti C. Characterization of two genes involved in chromate resistance in a Cr(VI)-hyper-resistant bacterium. Extremophiles 2009; 13:917-23. [PMID: 19768364 DOI: 10.1007/s00792-009-0279-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 08/26/2009] [Indexed: 11/30/2022]
Abstract
Mechanisms underlying chromate resistance in Cr(VI)-hyper-resistant Pseudomonas corrugata strain 28, isolated from a highly Cr(VI) polluted soil, were studied by analyzing its two Cr(VI)-sensitive mutants obtained by insertion mutagenesis. The mutants, namely Crg3 and Crg96, were characterized by the identification of disrupted genes, and by the high-throughput approach called Phenotype MicroArray (PM), which permitted the assay of 1,536 phenotypes simultaneously. Crg3 and Crg96 mutants were affected in a malic enzyme family gene and in a gene encoding for a RecG helicase, respectively. The application of PM provided a wealth of new information relating to the disrupted genes and permitted to establish that chromate resistance in P. corrugata strain 28 also depends on supply on NADPH required in repairing damage induced by chromate and on DNA integrity maintenance.
Collapse
Affiliation(s)
- Francesca Decorosi
- Dipartimento di Biotecnologie Agrarie, Sez. Microbiologia, Università degli Studi di Firenze, Florence, Italy
| | | | | | | | | |
Collapse
|
39
|
Zamboni N, Sauer U. Novel biological insights through metabolomics and 13C-flux analysis. Curr Opin Microbiol 2009; 12:553-8. [PMID: 19744879 DOI: 10.1016/j.mib.2009.08.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/31/2009] [Accepted: 08/06/2009] [Indexed: 11/28/2022]
Abstract
Metabolomics and (13)C-flux analysis have become instrumental for analyzing cellular metabolism and its regulation. Driven primarily by technical advances in mass spectrometry-based analytics, they provide unmatched readouts on metabolic state and activity. Functional genomics leverages metabolomics for the discovery of novel enzymes and unexpected secondary activities of annotated enzymes. (13)C-flux analyses are frequently used for empirical elucidation of pathways in poorly characterized species and for network-wide analysis of mechanisms that realize energy and redox balancing. Integration of metabolomics, (13)C-flux analysis and other data enable the condition-dependent characterization of regulatory circuits that ultimately govern the metabolic phenotype.
Collapse
Affiliation(s)
- Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
40
|
Aklujkar M, Krushkal J, DiBartolo G, Lapidus A, Land ML, Lovley DR. The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. BMC Microbiol 2009; 9:109. [PMID: 19473543 PMCID: PMC2700814 DOI: 10.1186/1471-2180-9-109] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 05/27/2009] [Indexed: 12/12/2022] Open
Abstract
Background The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second putative succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae.
Collapse
Affiliation(s)
- Muktak Aklujkar
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The transcriptional regulator CcpN of Bacillus subtilis has been recently characterized as a repressor of two gluconeogenic genes, gapB and pckA, and of a small noncoding regulatory RNA, sr1, involved in arginine catabolism. Deletion of ccpN impairs growth on glucose and strongly alters the distribution of intracellular fluxes, rerouting the main glucose catabolism from glycolysis to the pentose phosphate (PP) pathway. Using transcriptome analysis, we show that during growth on glucose, gapB and pckA are the only protein-coding genes directly repressed by CcpN. By quantifying intracellular fluxes in deletion mutants, we demonstrate that derepression of pckA under glycolytic condition causes the growth defect observed in the ccpN mutant due to extensive futile cycling through the pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and pyruvate kinase. Beyond ATP dissipation via this cycle, PckA activity causes a drain on tricarboxylic acid cycle intermediates, which we show to be the main reason for the reduced growth of a ccpN mutant. The high flux through the PP pathway in the ccpN mutant is modulated by the flux through the alternative glyceraldehyde-3-phosphate dehydrogenases, GapA and GapB. Strongly increased concentrations of intermediates in upper glycolysis indicate that GapB overexpression causes a metabolic jamming of this pathway and, consequently, increases the relative flux through the PP pathway. In contrast, derepression of sr1, the third known target of CcpN, plays only a marginal role in ccpN mutant phenotypes.
Collapse
|
42
|
Bologna FP, Andreo CS, Drincovich MF. Escherichia coli malic enzymes: two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure. J Bacteriol 2007; 189:5937-46. [PMID: 17557829 PMCID: PMC1952036 DOI: 10.1128/jb.00428-07] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malic enzymes (MEs) catalyze the oxidative decarboxylation of malate in the presence of a divalent metal ion. In eukaryotes, well-conserved cytoplasmic, mitochondrial, and plastidic MEs have been characterized. On the other hand, distinct groups can be detected among prokaryotic MEs, which are more diverse in structure and less well characterized than their eukaryotic counterparts. In Escherichia coli, two genes with a high degree of homology to ME can be detected: sfcA and maeB. MaeB possesses a multimodular structure: the N-terminal extension shows homology to ME, while the C-terminal extension shows homology to phosphotransacetylases (PTAs). In the present work, a detailed characterization of the products of E. coli sfcA and maeB was performed. The results indicate that the two MEs exhibit relevant kinetic, regulatory, and structural differences. SfcA is a NAD(P) ME, while MaeB is a NADP-specific ME highly regulated by key metabolites. Characterization of truncated versions of MaeB indicated that the PTA domain is not essential for the ME reaction. Nevertheless, truncated MaeB without the PTA domain loses most of its metabolic ME modulation and its native oligomeric state. Thus, the association of the two structural domains in MaeB seems to facilitate metabolic control of the enzyme. Although the PTA domain in MaeB is highly similar to the domains of proteins with PTA activity, MaeB and its PTA domain do not exhibit PTA activity. Determination of the distinct properties of recombinant products of sfcA and maeB performed in the present work will help to clarify the roles of MEs in prokaryotic metabolism.
Collapse
Affiliation(s)
- Federico P Bologna
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI)-Facultad Cs Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | | | | |
Collapse
|
43
|
Thomaides HB, Davison EJ, Burston L, Johnson H, Brown DR, Hunt AC, Errington J, Czaplewski L. Essential bacterial functions encoded by gene pairs. J Bacteriol 2006; 189:591-602. [PMID: 17114254 PMCID: PMC1797375 DOI: 10.1128/jb.01381-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To address the need for new antibacterials, a number of bacterial genomes have been systematically disrupted to identify essential genes. Such programs have focused on the disruption of single genes and may have missed functions encoded by gene pairs or multiple genes. In this work, we hypothesized that we could predict the identity of pairs of proteins within one organism that have the same function. We identified 135 putative protein pairs in Bacillus subtilis and attempted to disrupt the genes forming these, singly and then in pairs. The single gene disruptions revealed new genes that could not be disrupted individually and other genes required for growth in minimal medium or for sporulation. The pairwise disruptions revealed seven pairs of proteins that are likely to have the same function, as the presence of one protein can compensate for the absence of the other. Six of these pairs are essential for bacterial viability and in four cases show a pattern of species conservation appropriate for potential antibacterial development. This work highlights the importance of combinatorial studies in understanding gene duplication and identifying functional redundancy.
Collapse
Affiliation(s)
- Helena B Thomaides
- Prolysis Ltd., Begbroke Science Park, Sandy Lane, Yarnton OX5 1PF, Oxfordshire, UK.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mitsch MJ, Cowie A, Finan TM. Malic enzyme cofactor and domain requirements for symbiotic N2 fixation by Sinorhizobium meliloti. J Bacteriol 2006; 189:160-8. [PMID: 17071765 PMCID: PMC1797227 DOI: 10.1128/jb.01425-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NAD(+)-dependent malic enzyme (DME) and the NADP(+)-dependent malic enzyme (TME) of Sinorhizobium meliloti are representatives of a distinct class of malic enzymes that contain a 440-amino-acid N-terminal region homologous to other malic enzymes and a 330-amino-acid C-terminal region with similarity to phosphotransacetylase enzymes (PTA). We have shown previously that dme mutants of S. meliloti fail to fix N(2) (Fix(-)) in alfalfa root nodules, whereas tme mutants are unimpaired in their N(2)-fixing ability (Fix(+)). Here we report that the amount of DME protein in bacteroids is 10 times greater than that of TME. We therefore investigated whether increased TME activity in nodules would allow TME to function in place of DME. The tme gene was placed under the control of the dme promoter, and despite elevated levels of TME within bacteroids, no symbiotic nitrogen fixation occurred in dme mutant strains. Conversely, expression of dme from the tme promoter resulted in a large reduction in DME activity and symbiotic N(2) fixation. Hence, TME cannot replace the symbiotic requirement for DME. In further experiments we investigated the DME PTA-like domain and showed that it is not required for N(2) fixation. Thus, expression of a DME C-terminal deletion derivative or the Escherichia coli NAD(+)-dependent malic enzyme (sfcA), both of which lack the PTA-like region, restored wild-type N(2) fixation to a dme mutant. Our results have defined the symbiotic requirements for malic enzyme and raise the possibility that a constant high ratio of NADPH + H(+) to NADP in nitrogen-fixing bacteroids prevents TME from functioning in N(2)-fixing bacteroids.
Collapse
Affiliation(s)
- Michael J Mitsch
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | | | | |
Collapse
|