1
|
Pollet RM, Foley MH, Kumar SS, Elmore A, Jabara NT, Venkatesh S, Vasconcelos Pereira G, Martens EC, Koropatkin NM. Multiple TonB homologs are important for carbohydrate utilization by Bacteroides thetaiotaomicron. J Bacteriol 2023; 205:e0021823. [PMID: 37874167 PMCID: PMC10662123 DOI: 10.1128/jb.00218-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE The human gut microbiota, including Bacteroides, is required for the degradation of otherwise undigestible polysaccharides. The gut microbiota uses polysaccharides as an energy source, and fermentation products such as short-chain fatty acids are beneficial to the human host. This use of polysaccharides is dependent on the proper pairing of a TonB protein with polysaccharide-specific TonB-dependent transporters; however, the formation of these protein complexes is poorly understood. In this study, we examine the role of 11 predicted TonB homologs in polysaccharide uptake. We show that two proteins, TonB4 and TonB6, may be functionally redundant. This may allow for the development of drugs targeting Bacteroides species containing only a TonB4 homolog with limited impact on species encoding the redundant TonB6.
Collapse
Affiliation(s)
- Rebecca M. Pollet
- Department of Chemistry, Vassar College, Poughkeepsie, New York, USA
- Biochemistry Program, Vassar College, Poughkeepsie, New York, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew H. Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Supriya Suresh Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amanda Elmore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Sameeksha Venkatesh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Pollet RM, Foley MH, Kumar SS, Elmore A, Jabara NT, Venkatesh S, Pereira GV, Martens EC, Koropatkin NM. Multiple TonB Homologs are Important for Carbohydrate Utilization by Bacteroides thetaiotaomicron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548152. [PMID: 37461508 PMCID: PMC10350073 DOI: 10.1101/2023.07.07.548152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The human gut microbiota is able to degrade otherwise undigestible polysaccharides, largely through the activity of the Bacteroides. Uptake of polysaccharides into Bacteroides is controlled by TonB-dependent transporters (TBDT) whose transport is energized by an inner membrane complex composed of the proteins TonB, ExbB, and ExbD. Bacteroides thetaiotaomicron (B. theta) encodes 11 TonB homologs which are predicted to be able to contact TBDTs to facilitate transport. However, it is not clear which TonBs are important for polysaccharide uptake. Using strains in which each of the 11 predicted tonB genes are deleted, we show that TonB4 (BT2059) is important but not essential for proper growth on starch. In the absence of TonB4, we observed an increase in abundance of TonB6 (BT2762) in the membrane of B. theta, suggesting functional redundancy of these TonB proteins. Growth of the single deletion strains on pectin galactan, chondroitin sulfate, arabinan, and levan suggests a similar functional redundancy of the TonB proteins. A search for highly homologous proteins across other Bacteroides species and recent work in B. fragilis suggests that TonB4 is widely conserved and may play a common role in polysaccharide uptake. However, proteins similar to TonB6 are found only in B. theta and closely related species suggesting that the functional redundancy of TonB4 and TonB6 may be limited across the Bacteroides. This study extends our understanding of the protein network required for polysaccharide utilization in B. theta and highlights differences in TonB complexes across Bacteroides species.
Collapse
Affiliation(s)
- Rebecca M Pollet
- Department of Chemistry, Vassar College, Poughkeepsie, NY, 12604, USA
- Biochemistry Program, Vassar College, Poughkeepsie, NY, 12604, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew H Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Supriya Suresh Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Amanda Elmore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nisrine T Jabara
- Biochemistry Program, Vassar College, Poughkeepsie, NY, 12604, USA
| | - Sameeksha Venkatesh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Kopp DR, Postle K. The Intrinsically Disordered Region of ExbD Is Required for Signal Transduction. J Bacteriol 2020; 202:e00687-19. [PMID: 31932309 PMCID: PMC7167468 DOI: 10.1128/jb.00687-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
The TonB system actively transports vital nutrients across the unenergized outer membranes of the majority of Gram-negative bacteria. In this system, integral membrane proteins ExbB, ExbD, and TonB work together to transduce the proton motive force (PMF) of the inner membrane to customized active transporters in the outer membrane by direct and cyclic binding of TonB to the transporters. A PMF-dependent TonB-ExbD interaction is prevented by 10-residue deletions within a periplasmic disordered domain of ExbD adjacent to the cytoplasmic membrane. Here, we explored the function of the ExbD disordered domain in more detail. In vivo photo-cross-linking through sequential pBpa substitutions in the ExbD disordered domain captured five different ExbD complexes, some of which had been previously detected using in vivo formaldehyde cross-linking, a technique that lacks the residue-specific information that can be achieved through photo-cross-linking: two ExbB-ExbD heterodimers (one of which had not been detected previously), previously detected ExbD homodimers, previously detected PMF-dependent ExbD-TonB heterodimers, and for the first time, a predicted, ExbD-TonB PMF-independent interaction. The fact that multiple complexes were captured by the same pBpa substitution indicated the dynamic nature of ExbD interactions as the energy transduction cycle proceeded in vivo In this study, we also discovered that a conserved motif-V45, V47, L49, and P50-within the disordered domain was required for signal transduction to TonB and to the C-terminal domain of ExbD and was the source of motif essentiality.IMPORTANCE The TonB system is a virulence factor for Gram-negative pathogens. The mechanism by which cytoplasmic membrane proteins of the TonB system transduce an electrochemical gradient into mechanical energy is a long-standing mystery. TonB, ExbB, and ExbD primary amino acid sequences are characterized by regions of predicted intrinsic disorder, consistent with a proposed multiplicity of protein-protein contacts as TonB proceeds through an energy transduction cycle, a complex process that has yet to be recapitulated in vitro This study validates a region of intrinsic disorder near the ExbD transmembrane domain and identifies an essential conserved motif embedded within it that transduces signals to distal regions of ExbD suggested to configure TonB for productive interaction with outer membrane transporters.
Collapse
Affiliation(s)
- Dale R Kopp
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kathleen Postle
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Going Outside the TonB Box: Identification of Novel FepA-TonB Interactions In Vivo. J Bacteriol 2017; 199:JB.00649-16. [PMID: 28264993 DOI: 10.1128/jb.00649-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/15/2017] [Indexed: 01/30/2023] Open
Abstract
In Gram-negative bacteria, the cytoplasmic membrane protein TonB transmits energy derived from proton motive force to energize transport of important nutrients through TonB-dependent transporters in the outer membrane. Each transporter consists of a beta barrel domain and a lumen-occluding cork domain containing an essential sequence called the TonB box. To date, the only identified site of transporter-TonB interaction is between the TonB box and residues ∼158 to 162 of TonB. While the mechanism of ligand transport is a mystery, a current model based on site-directed spin labeling and molecular dynamics simulations is that, following ligand binding, the otherwise-sequestered TonB box extends into the periplasm for recognition by TonB, which mediates transport by pulling or twisting the cork. In this study, we tested that hypothesis with the outer membrane transporter FepA using in vivo photo-cross-linking to explore interactions of its TonB box and determine whether additional FepA-TonB interaction sites exist. We found numerous specific sites of FepA interaction with TonB on the periplasmic face of the FepA cork in addition to the TonB box. Two residues, T32 and A33, might constitute a ligand-sensitive conformational switch. The facts that some interactions were enhanced in the absence of ligand and that other interactions did not require the TonB box argued against the current model and suggested that the transport process is more complex than originally conceived, with subtleties that might provide a mechanism for discrimination among ligand-loaded transporters. These results constitute the first study on the dynamics of TonB-gated transporter interaction with TonB in vivoIMPORTANCE The TonB system of Gram-negative bacteria has a noncanonical active transport mechanism involving signal transduction and proteins integral to both membranes. To achieve transport, the cytoplasmic membrane protein TonB physically contacts outer membrane transporters such as FepA. Only one contact between TonB and outer membrane transporters has been identified to date: the TonB box at the transporter amino terminus. The TonB box has low information content, raising the question of how TonB can discriminate among multiple different TonB-dependent transporters present in the bacterium if it is the only means of contact. Here we identified several additional sites through which FepA contacts TonB in vivo, including two neighboring residues that may explain how FepA signals to TonB that ligand has bound.
Collapse
|
5
|
From Homodimer to Heterodimer and Back: Elucidating the TonB Energy Transduction Cycle. J Bacteriol 2015; 197:3433-45. [PMID: 26283773 DOI: 10.1128/jb.00484-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The TonB system actively transports large, scarce, and important nutrients through outer membrane (OM) transporters of Gram-negative bacteria using the proton gradient of the cytoplasmic membrane (CM). In Escherichia coli, the CM proteins ExbB and ExbD harness and transfer proton motive force energy to the CM protein TonB, which spans the periplasmic space and cyclically binds OM transporters. TonB has two activity domains: the amino-terminal transmembrane domain with residue H20 and the periplasmic carboxy terminus, through which it binds to OM transporters. TonB is inactivated by all substitutions at residue H20 except H20N. Here, we show that while TonB trapped as a homodimer through its amino-terminal domain retained full activity, trapping TonB through its carboxy terminus inactivated it by preventing conformational changes needed for interaction with OM transporters. Surprisingly, inactive TonB H20A had little effect on homodimerization through the amino terminus and instead decreased TonB carboxy-terminal homodimer formation prior to reinitiation of an energy transduction cycle. That result suggested that the TonB carboxy terminus ultimately interacts with OM transporters as a monomer. Our findings also suggested the existence of a separate equimolar pool of ExbD homodimers that are not in contact with TonB. A model is proposed where interaction of TonB homodimers with ExbD homodimers initiates the energy transduction cycle, and, ultimately, the ExbD carboxy terminus modulates interactions of a monomeric TonB carboxy terminus with OM transporters. After TonB exchanges its interaction with ExbD for interaction with a transporter, ExbD homodimers undergo a separate cycle needed to re-energize them. IMPORTANCE Canonical mechanisms of active transport across cytoplasmic membranes employ ion gradients or hydrolysis of ATP for energy. Gram-negative bacterial outer membranes lack these resources. The TonB system embodies a novel means of active transport across the outer membrane for nutrients that are too large, too scarce, or too important for diffusion-limited transport. A proton gradient across the cytoplasmic membrane is converted by a multiprotein complex into mechanical energy that drives high-affinity active transport across the outer membrane. This system is also of interest since one of its uses in pathogenic bacteria is for competition with the host for the essential element iron. Understanding the mechanism of the TonB system will allow design of antibiotics targeting iron acquisition.
Collapse
|
6
|
Mutations in Escherichia coli ExbB transmembrane domains identify scaffolding and signal transduction functions and exclude participation in a proton pathway. J Bacteriol 2013; 195:2898-911. [PMID: 23603742 DOI: 10.1128/jb.00017-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The TonB system couples cytoplasmic membrane proton motive force (pmf) to active transport of diverse nutrients across the outer membrane. Current data suggest that cytoplasmic membrane proteins ExbB and ExbD harness pmf energy. Transmembrane domain (TMD) interactions between TonB and ExbD allow the ExbD C terminus to modulate conformational rearrangements of the periplasmic TonB C terminus in vivo. These conformational changes somehow allow energization of high-affinity TonB-gated transporters by direct interaction with TonB. While ExbB is essential for energy transduction, its role is not well understood. ExbB has N-terminus-out, C-terminus-in topology with three TMDs. TMDs 1 and 2 are punctuated by a cytoplasmic loop, with the C-terminal tail also occupying the cytoplasm. We tested the hypothesis that ExbB TMD residues play roles in proton translocation. Reassessment of TMD boundaries based on hydrophobic character and residue conservation among distantly related ExbB proteins brought earlier widely divergent predictions into congruence. All TMD residues with potentially function-specific side chains (Lys, Cys, Ser, Thr, Tyr, Glu, and Asn) and residues with probable structure-specific side chains (Trp, Gly, and Pro) were substituted with Ala and evaluated in multiple assays. While all three TMDs were essential, they had different roles: TMD1 was a region through which ExbB interacted with the TonB TMD. TMD2 and TMD3, the most conserved among the ExbB/TolQ/MotA/PomA family, played roles in signal transduction between cytoplasm and periplasm and the transition from ExbB homodimers to homotetramers. Consideration of combined data excludes ExbB TMD residues from direct participation in a proton pathway.
Collapse
|
7
|
Identification of functionally important TonB-ExbD periplasmic domain interactions in vivo. J Bacteriol 2012; 194:3078-87. [PMID: 22493017 DOI: 10.1128/jb.00018-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-negative bacteria, the cytoplasmic membrane proton-motive force energizes the active transport of TonB-dependent ligands through outer membrane TonB-gated transporters. In Escherichia coli, cytoplasmic membrane proteins ExbB and ExbD couple the proton-motive force to conformational changes in TonB, which are hypothesized to form the basis of energy transduction through direct contact with the transporters. While the role of ExbB is not well understood, contact between periplasmic domains of TonB and ExbD is required, with the conformational response of TonB to presence or absence of proton motive force being modulated through ExbD. A region (residues 92 to 121) within the ExbD periplasmic domain was previously identified as being important for TonB interaction. Here, the specific sites of periplasmic domain interactions between that region and the TonB carboxy terminus were identified by examining 270 combinations of 45 TonB and 6 ExbD individual cysteine substitutions for disulfide-linked heterodimer formation. ExbD residues A92C, K97C, and T109C interacted with multiple TonB substitutions in four regions of the TonB carboxy terminus. Two regions were on each side of the TonB residues known to interact with the TonB box of TonB-gated transporters, suggesting that ExbD positions TonB for correct interaction at that site. A third region contained a functionally important glycine residue, and the fourth region involved a highly conserved predicted amphipathic helix. Three ExbD substitutions, F103C, L115C, and T121C, were nonreactive with any TonB cysteine substitutions. ExbD D25, a candidate to be on a proton translocation pathway, was important to support efficient TonB-ExbD heterodimerization at these specific regions.
Collapse
|
8
|
Novel colicin Fy of Yersinia frederiksenii inhibits pathogenic Yersinia strains via YiuR-mediated reception, TonB import, and cell membrane pore formation. J Bacteriol 2012; 194:1950-9. [PMID: 22343298 DOI: 10.1128/jb.05885-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A novel colicin type, designated colicin Fy, was found to be encoded and produced by the strain Yersinia frederiksenii Y27601. Colicin Fy was active against both pathogenic and nonpathogenic strains of the genus Yersinia. Plasmid YF27601 (5,574 bp) of Y. frederiksenii Y27601 was completely sequenced. The colicin Fy activity gene (cfyA) and the colicin Fy immunity gene (cfyI) were identified. The deduced amino acid sequence of colicin Fy was very similar in its C-terminal pore-forming domain to colicin Ib (69% identity in the last 178 amino acid residues), indicating pore forming as its lethal mode of action. Transposon mutagenesis of the colicin Fy-susceptible strain Yersinia kristensenii Y276 revealed the yiuR gene (ykris001_4440), which encodes the YiuR outer membrane protein with unknown function, as the colicin Fy receptor molecule. Introduction of the yiuR gene into the colicin Fy-resistant strain Y. kristensenii Y104 restored its susceptibility to colicin Fy. In contrast, the colicin Fy-resistant strain Escherichia coli TOP10F' acquired susceptibility to colicin Fy only when both the yiuR and tonB genes from Y. kristensenii Y276 were introduced. Similarities between colicins Fy and Ib, similarities between the Cir and YiuR receptors, and the detected partial cross-immunity of colicin Fy and colicin Ib producers suggest a common evolutionary origin of the colicin Fy-YiuR and colicin Ib-Cir systems.
Collapse
|
9
|
Mutations in the ExbB cytoplasmic carboxy terminus prevent energy-dependent interaction between the TonB and ExbD periplasmic domains. J Bacteriol 2011; 193:5649-57. [PMID: 21840979 DOI: 10.1128/jb.05674-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB system of Gram-negative bacteria provides passage across the outer membrane (OM) diffusion barrier that otherwise limits access to large, scarce, or important nutrients. In Escherichia coli, the integral cytoplasmic membrane (CM) proteins TonB, ExbB, and ExbD couple the CM proton motive force (PMF) to active transport of iron-siderophore complexes and vitamin B(12) across the OM through high-affinity transporters. ExbB is an integral CM protein with three transmembrane domains. The majority of ExbB occupies the cytoplasm. Here, the importance of the cytoplasmic ExbB carboxy terminus (residues 195 to 244) was evaluated by cysteine scanning mutagenesis. D211C and some of the substitutions nearest the carboxy terminus spontaneously formed disulfide cross-links, even though the cytoplasm is a reducing environment. ExbB N196C and D211C substitutions were converted to Ala substitutions to stabilize them. Only N196A, D211A, A228C, and G244C substitutions significantly decreased ExbB activity. With the exception of ExbB(G244C), all of the substituted forms were dominant. Like wild-type ExbB, they all formed a formaldehyde cross-linked tetramer, as well as a tetramer cross-linked to an unidentified protein(s). In addition, they could be formaldehyde cross-linked to ExbD and TonB. Taken together, the data suggested that they assembled normally. Three of four ExbB mutants were defective in supporting both the PMF-dependent formaldehyde cross-link between the periplasmic domains of TonB and ExbD and the proteinase K-resistant conformation of TonB. Thus, mutations in a cytoplasmic region of ExbB prevented a periplasmic event and constituted evidence for signal transduction from cytoplasm to periplasm in the TonB system.
Collapse
|
10
|
Taking the Escherichia coli TonB transmembrane domain "offline"? Nonprotonatable Asn substitutes fully for TonB His20. J Bacteriol 2011; 193:3693-701. [PMID: 21665976 DOI: 10.1128/jb.05219-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB system of Gram-negative bacteria uses the proton motive force (PMF) of the cytoplasmic membrane to energize active transport of nutrients across the outer membrane. The single transmembrane domain (TMD) anchor of TonB, the energy transducer, is essential. Within that TMD, His20 is the only TMD residue that is unable to withstand alanine replacement without a loss of activity. H20 is required for a PMF-dependent conformational change, suggesting that the importance of H20 lies in its ability to be reversibly protonated and deprotonated. Here all possible residues were substituted at position 20 (H20X substitutions). The His residue was also relocated throughout the TonB TMD. Surprisingly, Asn, a structurally similar but nonprotonatable residue, supported full activity at position 20; H20S was very weakly active. All the remaining substitutions, including H20K, H20R, H20E, and H20D, the obvious candidates to mimic a protonated state or support proton translocation, were inactive. A second-site suppressor, ExbB(A39E), indiscriminately reactivated the majority of H20 substitutions and relocations, including H20V, which cannot be made protonatable. These results suggested that the TonB TMD was not on a proton conductance pathway and thus only indirectly responds to PMF, probably via ExbD.
Collapse
|
11
|
Abstract
The TonB system energizes transport of nutrients across the outer membrane of Escherichia coli using cytoplasmic membrane proton motive force (PMF) for energy. Integral cytoplasmic membrane proteins ExbB and ExbD appear to harvest PMF and transduce it to TonB. The carboxy terminus of TonB then physically interacts with outer membrane transporters to allow translocation of ligands into the periplasmic space. The structure of the TonB carboxy terminus (residues ~150 to 239) has been solved several times with similar results. Our previous results hinted that in vitro structures might not mimic the dimeric conformations that characterize TonB in vivo. To test structural predictions and to identify irreplaceable residues, the entire carboxy terminus of TonB was scanned with Cys substitutions. TonB I232C and N233C, predicted to efficiently form disulfide-linked dimers in the crystal structures, did not do so. In contrast, Cys substitutions positioned at large distances from one another in the crystal structures efficiently formed dimers. Cys scanning identified seven functionally important residues. However, no single residue was irreplaceable. The phenotypes conferred by changes of the seven residues depended on both the specific assay used and the residue substituted. All seven residues were synergistic with one another. The buried nature of the residues in the structures was also inconsistent with these properties. Taken together, these results indicate that the solved dimeric crystal structures of TonB do not exist. The most likely explanation for the aberrant structures is that they were obtained in the absence of the TonB transmembrane domain, ExbB, ExbD, and/or the PMF. The TonB system of Gram-negative bacteria is an attractive target for development of novel antibiotics because of its importance in iron acquisition and virulence. Logically, therefore, the structure of TonB must be accurately understood. TonB functions as a dimer in vivo, and two different but similar crystal structures of the dimeric carboxy-terminal ~90 amino acids gave rise to mechanistic models. Here we demonstrate that the crystal structures, and therefore the models based on them, are not biologically relevant. The idiosyncratic phenotypes conferred by substitutions at the only seven functionally important residues in the carboxy terminus suggest that similar to interaction of cytochromes P450 with numerous substrates, these residues allow TonB to differentially interact with different outer membrane transporters. Taken together, data suggest that TonB is maintained poised between order and disorder by ExbB, ExbD, and the proton motive force (PMF) before energy transduction to the outer membrane transporters.
Collapse
|
12
|
Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae. J Bacteriol 2009; 191:1941-50. [PMID: 19151141 DOI: 10.1128/jb.00601-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FimH is an adhesive subunit of type 1 fimbriae expressed by different enterobacterial species. The enteric bacterium Klebsiella pneumoniae is an environmental organism that is also a frequent cause of sepsis, urinary tract infection (UTI), and liver abscess. Type 1 fimbriae have been shown to be critical for the ability of K. pneumoniae to cause UTI in a murine model. We show here that the K. pneumoniae fimH gene is found in 90% of strains from various environmental and clinical sources. The fimH alleles exhibit relatively low nucleotide and structural diversity but are prone to frequent horizontal-transfer events between different bacterial clones. Addition of the fimH locus to multiple-locus sequence typing significantly improved the resolution of the clonal structure of pathogenic strains, including the K1 encapsulated liver isolates. In addition, the K. pneumoniae FimH protein is targeted by adaptive point mutations, though not to the same extent as FimH from uropathogenic Escherichia coli or TonB from the same K. pneumoniae strains. Such adaptive mutations include a single amino acid deletion from the signal peptide that might affect the length of the fimbrial rod by affecting FimH translocation into the periplasm. Another FimH mutation (S62A) occurred in the course of endemic circulation of a nosocomial uropathogenic clone of K. pneumoniae. This mutation is identical to one found in a highly virulent uropathogenic strain of E. coli, suggesting that the FimH mutations are pathoadaptive in nature. Considering the abundance of type 1 fimbriae in Enterobacteriaceae, our present finding that fimH genes are subject to adaptive microevolution substantiates the importance of type 1 fimbria-mediated adhesion in K. pneumoniae.
Collapse
|
13
|
Interactions of the energy transducer TonB with noncognate energy-harvesting complexes. J Bacteriol 2007; 190:421-7. [PMID: 17965155 DOI: 10.1128/jb.01093-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB and TolA proteins are energy transducers that couple the ion electrochemical potential of the cytoplasmic membrane to support energy-dependent processes at the outer membrane of the gram-negative envelope. The transfer of energy to these transducers is facilitated by energy-harvesting complexes, which are heteromultimers of cytoplasmic membrane proteins with homologies to proton pump proteins of the flagellar motor. Although the cognate energy-harvesting complex best services each transducer, components of the complexes (for TonB, ExbB and ExbD; for TolA, TolQ and TolR) are sufficiently similar that each complex can imperfectly replace the other. Previous investigations of this molecular cross talk considered energy-harvesting complex components expressed from multicopy plasmids in strains in which the corresponding genes were interrupted by insertions, partially absent due to polarity, or missing due to a larger deletion. These questions were reexamined here using strains in which individual genes were removed by precise deletions and, where possible, components were expressed from single-copy genes with native promoters. By more closely approximating natural stoichiometries between components, this study provided insight into the roles of energy-harvesting complexes in both the energization and the stabilization of TonB. Further, the data suggest a distinct role for ExbD in the TonB energy transduction cycle.
Collapse
|