1
|
Treerat P, de Mattos C, Burnside M, Zhang H, Zhu Y, Zou Z, Anderson D, Wu H, Merritt J, Kreth J. Ribosomal-processing cysteine protease homolog modulates Streptococcus mutans glucan production and interkingdom interactions. J Bacteriol 2024; 206:e0010424. [PMID: 38899897 PMCID: PMC11270869 DOI: 10.1128/jb.00104-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Glucan-dependent biofilm formation is a crucial process in the establishment of Streptococcus mutans as a cariogenic oral microbe. The process of glucan formation has been investigated in great detail, with glycosyltransferases GtfB, GtfC, and GtfD shown to be indispensable for the synthesis of glucans from sucrose. Glucan production can be visualized during biofilm formation through fluorescent labeling, and its abundance, as well as the effect of glucans on general biofilm architecture, is a common phenotype to study S. mutans virulence regulation. Here, we describe an entirely new phenotype associated with glucan production, caused by a mutation in the open reading frame SMU_848, which is located in an operon encoding ribosome-associated proteins. This mutation led to the excess production and accumulation of glucan-containing droplets on the surface of biofilms formed on agar plates after prolonged incubation. While not characterized in S. mutans, SMU_848 shows homology to the phage-related ribosomal protease Prp, essential in cleaving off the N-terminal extension of ribosomal protein L27 for functional ribosome assembly in Staphylococcus aureus. We present a further characterization of SMU_848/Prp, demonstrating that the deletion of this gene leads to significant changes in S. mutans gtfBC expression. Surprisingly, it also profoundly impacts the interkingdom interaction between S. mutans and Candida albicans, a relevant dual-species interaction implicated in severe early childhood caries. The presented data support a potential broader role for SMU_848/Prp, possibly extending its functionality beyond the ribosomal network to influence important ecological processes. IMPORTANCE Streptococcus mutans is an important member of the oral biofilm and is implicated in the initiation of caries. One of the main virulence mechanisms is the glucan-dependent formation of biofilms. We identified a new player in the regulation of glucan production, SMU_848, which is part of an operon that also encodes for ribosomal proteins L27 and L21. A mutation in SMU_848, which encodes a phage-related ribosomal protease Prp, leads to a significant accumulation of glucan-containing droplets on S. mutans biofilms, a previously unknown phenotype. Further investigations expanded our knowledge about the role of SMU_848 beyond its role in glucan production, including significant involvement in interkingdom interactions, thus potentially playing a global role in the virulence regulation of S. mutans.
Collapse
Affiliation(s)
- Puthayalai Treerat
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Camilla de Mattos
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Molly Burnside
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Hua Zhang
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Yanting Zhu
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Zhengzhong Zou
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - David Anderson
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Hui Wu
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Justin Merritt
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Jens Kreth
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| |
Collapse
|
2
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
3
|
Zhao H, Xu Y, Yang L, Wang Y, Li M, Chen L. Biological Function of Prophage-Related Gene Cluster Δ VpaChn25_RS25055~Δ VpaChn25_0714 of Vibrio parahaemolyticus CHN25. Int J Mol Sci 2024; 25:1393. [PMID: 38338671 PMCID: PMC10855970 DOI: 10.3390/ijms25031393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Vibrio parahaemolyticus is the primary foodborne pathogen known to cause gastrointestinal infections in humans. Nevertheless, the molecular mechanisms of V. parahaemolyticus pathogenicity are not fully understood. Prophages carry virulence and antibiotic resistance genes commonly found in Vibrio populations, and they facilitate the spread of virulence and the emergence of pathogenic Vibrio strains. In this study, we characterized three such genes, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055, within the largest prophage gene cluster in V. parahaemolyticus CHN25. The deletion mutants ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 were derived with homologous recombination, and the complementary mutants ΔVpaChn25_0713-com, ΔVpaChn25_0714-com, ΔVpaChn25_RS25055-com, ΔVpaChn25_RS25055-0713-0714-com were also constructed. In the absence of the VpaChn25_RS25055, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055-0713-0714 genes, the mutants showed significant reductions in low-temperature survivability and biofilm formation (p < 0.001). The ΔVpaChn25_0713, ΔVpaChn25_RS25055, and ΔVpaChn25_RS25055-0713-0714 mutants were also significantly defective in swimming motility (p < 0.001). In the Caco-2 model, the above four mutants attenuated the cytotoxic effects of V. parahaemolyticus CHN25 on human intestinal epithelial cells (p < 0.01), especially the ΔVpaChn25_RS25055 and ΔVpaChn25_RS25055-0713-0714 mutants. Transcriptomic analysis showed that 15, 14, 8, and 11 metabolic pathways were changed in the ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 mutants, respectively. We labeled the VpaChn25_RS25055 gene with superfolder green fluorescent protein (sfGFP) and found it localized at both poles of the bacteria cell. In addition, we analyzed the evolutionary origins of the above genes. In summary, the prophage genes VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055 enhance V. parahaemolyticus CHN25's survival in the environment and host. Our work improves the comprehension of the synergy between prophage-associated genes and the evolutionary process of V. parahaemolyticus.
Collapse
Affiliation(s)
- Hui Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Yingwei Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| | - Yaping Wang
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA 23284, USA;
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (Y.X.); (L.Y.)
| |
Collapse
|
4
|
Jia Y, Huang C, Mao Y, Zhou S, Deng Y. Screening and Constructing a Library of Promoter-5'-UTR Complexes with Gradient Strength in Pediococcus acidilactici. ACS Synth Biol 2023; 12:1794-1803. [PMID: 37172276 DOI: 10.1021/acssynbio.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The GRAS (generally recognized as safe) strain Pediococcus acidilactici is well known for its antibacterial and probiotic functions. Furthermore, as P. acidilactici has excellent high temperature and salt resistance, it is an ideal host for the production of food enzymes, food additives, and pharmaceuticals. In this regard, it is desirable and feasible to enhance the production of these products through the metabolic engineering of P. acidilactici. However, the rare gene expression elements greatly obstruct the development of engineering P. acidilactici. In this study, we screened and constructed a library of promoter-5'-UTR (PUTR) complexes in P. acidilactici DY15 for regulating gene expression at the transcription and translation levels. In the post-log phase, the mRNA and protein expression level ranges of the 90 screened native PUTRs were 0.059-2010% and 0.77-245%, respectively, of the P32 promoter. Besides, several PUTRs exhibited great expression stability under high temperature, salt, and ethanol stress. We analyzed the structure of PUTRs and obtained the conserved regions of the promoter and 5'-UTR. Based on the identified core regions of PUTRs, we constructed a panel of combinatorial PUTRs with higher and stable protein expression levels. The strongest combinatorial PUTR was 853% of the P32 promoter in the protein expression level. Finally, the obtained PUTRs were applied to optimize the expression level of aminotransferase and improve the phenyllactic acid (PLA) production in P. acidilactici DY15. The achieved yield was 950.6 mg/L, which was 79.2% higher than the wild-type strain. These results indicated that the obtained PUTRs with gradient strength had great potential for precisely regulating gene expression to achieve various goals in P. acidilactici.
Collapse
Affiliation(s)
- Yize Jia
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Chao Huang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yin Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Saxena P, Rauniyar S, Thakur P, Singh RN, Bomgni A, Alaba MO, Tripathi AK, Gnimpieba EZ, Lushbough C, Sani RK. Integration of text mining and biological network analysis: Identification of essential genes in sulfate-reducing bacteria. Front Microbiol 2023; 14:1086021. [PMID: 37125195 PMCID: PMC10133479 DOI: 10.3389/fmicb.2023.1086021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
The growth and survival of an organism in a particular environment is highly depends on the certain indispensable genes, termed as essential genes. Sulfate-reducing bacteria (SRB) are obligate anaerobes which thrives on sulfate reduction for its energy requirements. The present study used Oleidesulfovibrio alaskensis G20 (OA G20) as a model SRB to categorize the essential genes based on their key metabolic pathways. Herein, we reported a feedback loop framework for gene of interest discovery, from bio-problem to gene set of interest, leveraging expert annotation with computational prediction. Defined bio-problem was applied to retrieve the genes of SRB from literature databases (PubMed, and PubMed Central) and annotated them to the genome of OA G20. Retrieved gene list was further used to enrich protein-protein interaction and was corroborated to the pangenome analysis, to categorize the enriched gene sets and the respective pathways under essential and non-essential. Interestingly, the sat gene (dde_2265) from the sulfur metabolism was the bridging gene between all the enriched pathways. Gene clusters involved in essential pathways were linked with the genes from seleno-compound metabolism, amino acid metabolism, secondary metabolite synthesis, and cofactor biosynthesis. Furthermore, pangenome analysis demonstrated the gene distribution, where 69.83% of the 116 enriched genes were mapped under "persistent," inferring the essentiality of these genes. Likewise, 21.55% of the enriched genes, which involves specially the formate dehydrogenases and metallic hydrogenases, appeared under "shell." Our methodology suggested that semi-automated text mining and network analysis may play a crucial role in deciphering the previously unexplored genes and key mechanisms which can help to generate a baseline prior to perform any experimental studies.
Collapse
Affiliation(s)
- Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Alain Bomgni
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, United States
| | - Mathew O. Alaba
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, United States
| | - Abhilash Kumar Tripathi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Etienne Z. Gnimpieba
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, United States
- *Correspondence: Etienne Z. Gnimpieba,
| | - Carol Lushbough
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, United States
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Rajesh Kumar Sani,
| |
Collapse
|
6
|
Proteomic Profiling of Outer Membrane Vesicles Released by Escherichia coli LPS Mutants Defective in Heptose Biosynthesis. J Pers Med 2022; 12:jpm12081301. [PMID: 36013250 PMCID: PMC9410366 DOI: 10.3390/jpm12081301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli releases outer membrane vesicles (OMVs) into the extracellular environment. OMVs, which contain the outer membrane protein, lipopolysaccharides (LPS), and genetic material, play an important role in immune response modulation. An isobaric tag for relative and absolute quantitation (iTRAQ) analysis was used to investigate OMV constituent proteins and their functions in burn trauma. OMV sizes ranged from 50 to 200 nm. Proteomics and Gene Ontology analysis revealed that ΔrfaC and ΔrfaG were likely involved in the upregulation of the structural constituent of ribosomes for the outer membrane and of proteins involved in protein binding and OMV synthesis. ΔrfaL was likely implicated in the downregulation of the structural constituent of the ribosome, translation, and cytosolic large ribosomal subunit. Kyoto Encyclopedia of Genes and Genomes analysis indicated that ΔrfaC and ΔrfaG downregulated ACP, ACEF, and ADHE genes; ΔrfaL upregulated ACP, ACEF, and ADHE genes. Heat map analysis demonstrated upregulation of galF, clpX, accA, fabB, and grpE and downregulation of pspA, ydiY, rpsT, and rpmB. These results suggest that RfaC, RfaG, and RfaL proteins were involved in outer membrane and LPS synthesis. Therefore, direct contact between wounds and LPS may lead to apoptosis, reduction in local cell proliferation, and delayed wound healing.
Collapse
|
7
|
Wang D, Zhang X, Yin L, Liu Q, Yu Z, Xu C, Ma Z, Xia Y, Shi J, Gong Y, Bai F, Cheng Z, Wu W, Lin J, Jin Y. RplI interacts with 5’ UTR of exsA to repress its translation and type III secretion system in Pseudomonas aeruginosa. PLoS Pathog 2022; 18:e1010170. [PMID: 34986198 PMCID: PMC8730436 DOI: 10.1371/journal.ppat.1010170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen capable of causing variety of infections in humans. The type III secretion system (T3SS) is a critical virulence determinant of P. aeruginosa in the host infections. Expression of the T3SS is regulated by ExsA, a master regulator that activates the expression of all known T3SS genes. Expression of the exsA gene is controlled at both transcriptional and posttranscriptional levels. Here, we screened a P. aeruginosa transposon (Tn5) insertional mutant library and found rplI, a gene coding for the ribosomal large subunit protein L9, to be a repressor for the T3SS gene expression. Combining real-time quantitative PCR (qPCR), western blotting and lacZ fusion assays, we show that RplI controls the expression of exsA at the posttranscriptional level. Further genetic experiments demonstrated that RplI mediated control of the exsA translation involves 5’ untranslated region (5’ UTR). A ribosome immunoprecipitation assay and qPCR revealed higher amounts of a 24 nt fragment from exsA mRNA being associated with ribosomes in the ΔrplI mutant. An interaction between RplI and exsA mRNA harboring its 24 nt, but not 12 nt, 5’ UTR was confirmed by RNA Gel Mobility Shift and Microscale Thermophoresis assays. Overall, this study identifies the ribosomal large subunit protein L9 as a novel T3SS repressor that inhibits ExsA translation in P. aeruginosa. Ribosomes provide all living organisms the capacity to synthesize proteins. The production of many ribosomal proteins is often controlled by an autoregulatory feedback mechanism. P. aeruginosa is an opportunistic human pathogen and its type III secretion system (T3SS) is a critical virulence determinant in host infections. In this study, by screening a Tn5 mutant library, we identified rplI, encoding ribosomal large subunit protein L9, as a novel repressor for the T3SS. Further exploring the regulatory mechanism, we found that the RplI protein interacts with the 5’ UTR (5’ untranslated region) of exsA, a gene coding for transcriptional activator of the T3SS. Such an interaction likely blocks ribosome loading on the exsA 5’ UTR, inhibiting the initiation of exsA translation. The significance of this work is in the identification of a novel repressor for the T3SS and elucidation of its molecular mechanism. Furthermore, this work provides evidence for individual ribosomal protein regulating mRNA translation beyond its autogenous feedback control.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Liwen Yin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhaoli Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenzhen Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yushan Xia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuehua Gong
- Cancer Institute, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
8
|
Rain-Franco A, Mouquet N, Gougat-Barbera C, Bouvier T, Beier S. Niche breadth affects bacterial transcription patterns along a salinity gradient. Mol Ecol 2021; 31:1216-1233. [PMID: 34878694 DOI: 10.1111/mec.16316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
Understanding the molecular mechanisms that determine a species' life history is important for predicting their susceptibility to environmental change. While specialist species with a narrow niche breadth (NB) maximize their fitness in their optimum habitat, generalists with broad NB adapt to multiple environments. The main objective of this study was to identify general transcriptional patterns that would distinguish bacterial strains characterized by contrasted NBs along a salinity gradient. More specifically, we hypothesized that genes encoding fitness-related traits, such as biomass production, have a higher degree of transcriptional regulation in specialists than in generalists, because the fitness of specialists is more variable under environmental change. By contrast, we expected that generalists would exhibit enhanced transcriptional regulation of genes encoding traits that protect them against cellular damage. To test these hypotheses, we assessed the transcriptional regulation of fitness-related and adaptation-related genes of 11 bacterial strains in relation to their NB and stress exposure under changing salinity conditions. The results suggested that transcriptional regulation levels of fitness- and adaptation-related genes correlated with the NB and/or the stress exposure of the inspected strains. We further identified a shortlist of candidate stress marker genes that could be used in future studies to monitor the susceptibility of bacterial populations or communities to environmental changes.
Collapse
Affiliation(s)
- Angel Rain-Franco
- CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Sorbonne Université, Banyuls/mer, France
| | - Nicolas Mouquet
- MARBEC, CNRS, Ifremer, IRD, Université de Montpellier, Montpellier, France
| | | | - Thierry Bouvier
- MARBEC, CNRS, Ifremer, IRD, Université de Montpellier, Montpellier, France
| | - Sara Beier
- CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Sorbonne Université, Banyuls/mer, France.,Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| |
Collapse
|
9
|
Aseev LV, Koledinskaya LS, Bychenko OS, Boni IV. Regulation of Ribosomal Protein Synthesis in Mycobacteria: The Autogenous Control of rpsO. Int J Mol Sci 2021; 22:9679. [PMID: 34575857 PMCID: PMC8470358 DOI: 10.3390/ijms22189679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/23/2023] Open
Abstract
The autogenous regulation of ribosomal protein (r-protein) synthesis plays a key role in maintaining the stoichiometry of ribosomal components in bacteria. In this work, taking the rpsO gene as a classic example, we addressed for the first time the in vivo regulation of r-protein synthesis in the mycobacteria M. smegmatis (Msm) and M. tuberculosis (Mtb). We used a strategy based on chromosomally integrated reporters under the control of the rpsO regulatory regions and the ectopic expression of Msm S15 to measure its impact on the reporter expression. Because the use of E. coli as a host appeared inefficient, a fluorescent reporter system was developed by inserting Msm or Mtb rpsO-egfp fusions into the Msm chromosome and expressing Msm S15 or E. coli S15 in trans from a novel replicative shuttle vector, pAMYC. The results of the eGFP expression measurements in Msm cells provided evidence that the rpsO gene in Msm and Mtb was feedback-regulated at the translation level. The mutagenic analysis showed that the folding of Msm rpsO 5'UTR in a pseudoknot appeared crucial for repression by both Msm S15 and E. coli S15, thus indicating a striking resemblance of the rpsO feedback control in mycobacteria and in E. coli.
Collapse
Affiliation(s)
| | | | | | - Irina V. Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (L.V.A.); (L.S.K.); (O.S.B.)
| |
Collapse
|
10
|
Anti-biofilm potential of Lavandula preparations against Campylobacter jejuni. Appl Environ Microbiol 2021; 87:e0109921. [PMID: 34319799 DOI: 10.1128/aem.01099-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New approaches for the control of Campylobacter jejuni biofilms in the food industry are being studied intensively. Natural products are promising alternative antimicrobial substances to control biofilm production, with particular emphasis on plant extracts. Dried flowers of Lavandula angustifolia were used to produce LEO, LEF, and LEW. The chemical compositions determined for these Lavandula preparations included seven major compounds that were selected for further testing. These were tested against C. jejuni, for biofilm degradation and removal. Next-generation sequencing was used to study the molecular mechanisms underlying LEO actions against C. jejuni adhesion and motility. Analysis of LEO revealed 1,8-cineol, linalool and linalyl acetate as the main components. For LEF and LEW, the main components were phenolic acid glycosides, with flavonoids rarely present. The minimal inhibitory concentrations of the Lavandula preparations and pure compounds against C. jejuni ranged from 0.2 mg/mL to 1 mg/mL. LEO showed the strongest biofilm degradation. The reduction of C. jejuni adhesion was by ≥1 log10 CFU/mL, which satisfies European Food Safety Authority recommendations. Lavandula preparations reduced C. jejuni motility by almost 50%, which consequently can impact upon biofilm formation. These data are in line with the transcriptome analysis of C. jejuni, where LEO down-regulated genes important for biofilm formation. LEW also showed good antibacterial and anti-biofilm effects, particularly against adhesion and motility mechanisms. This defines an innovative approach using alternative strategies and novel targets to combat bacterial biofilm formation, and hence the potential to develop new effective agents with biofilm-degrading activities. Importance The Lavandula preparations used in this study are found to be effective against C. jejuni, a common foodborne pathogen. They show anti-biofilm properties at sub-inhibitory concentrations in terms of promoting biofilm degradation and inhibiting cell adhesion and motility, which are involved in the initial steps of biofilm formation. These results are confirmed by transcriptome analysis, which highlights the effect of Lavandula essential oil on C. jejuni biofilm properties. We show that the waste material from the hydrodistillation of Lavandula has particular anti-biofilm effects, suggesting that it may find reuse for industrial purposes. This study highlights the need for efforts directed towards such innovative approaches and alternative strategies against biofilm formation and maintenance by developing new naturally derived agents with anti-biofilm activities.
Collapse
|
11
|
Kaech H, Dennis AB, Vorburger C. Triple RNA-Seq characterizes aphid gene expression in response to infection with unequally virulent strains of the endosymbiont Hamiltonella defensa. BMC Genomics 2021; 22:449. [PMID: 34134631 PMCID: PMC8207614 DOI: 10.1186/s12864-021-07742-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Secondary endosymbionts of aphids provide benefits to their hosts, but also impose costs such as reduced lifespan and reproductive output. The aphid Aphis fabae is host to different strains of the secondary endosymbiont Hamiltonella defensa, which encode different putative toxins. These strains have very different phenotypes: They reach different densities in the host, and the costs and benefits (protection against parasitoid wasps) they confer to the host vary strongly. Results We used RNA-Seq to generate hypotheses on why four of these strains inflict such different costs to A. fabae. We found different H. defensa strains to cause strain-specific changes in aphid gene expression, but little effect of H. defensa on gene expression of the primary endosymbiont, Buchnera aphidicola. The highly costly and over-replicating H. defensa strain H85 was associated with strongly reduced aphid expression of hemocytin, a marker of hemocytes in Drosophila. The closely related strain H15 was associated with downregulation of ubiquitin-related modifier 1, which is related to nutrient-sensing and oxidative stress in other organisms. Strain H402 was associated with strong differential regulation of a set of hypothetical proteins, the majority of which were only differentially regulated in presence of H402. Conclusions Overall, our results suggest that costs of different strains of H. defensa are likely caused by different mechanisms, and that these costs are imposed by interacting with the host rather than the host’s obligatory endosymbiont B. aphidicola. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07742-8.
Collapse
Affiliation(s)
- Heidi Kaech
- Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland. .,D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Alice B Dennis
- Institute of Biochemistry and Biology, University Potsdam, Potsdam, Germany
| | - Christoph Vorburger
- Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
12
|
Qureshi NA, Bakhtiar SM, Faheem M, Shah M, Bari A, Mahmood HM, Sohaib M, Mothana RA, Ullah R, Jamal SB. Genome-Based Drug Target Identification in Human Pathogen Streptococcus gallolyticus. Front Genet 2021; 12:564056. [PMID: 33841489 PMCID: PMC8027347 DOI: 10.3389/fgene.2021.564056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
Streptococcus gallolysticus (Sg) is an opportunistic Gram-positive, non-motile bacterium, which causes infective endocarditis, an inflammation of the inner lining of the heart. As Sg has acquired resistance with the available antibiotics, therefore, there is a dire need to find new therapeutic targets and potent drugs to prevent and treat this disease. In the current study, an in silico approach is utilized to link genomic data of Sg species with its proteome to identify putative therapeutic targets. A total of 1,138 core proteins have been identified using pan genomic approach. Further, using subtractive proteomic analysis, a set of 18 proteins, essential for bacteria and non-homologous to host (human), is identified. Out of these 18 proteins, 12 cytoplasmic proteins were selected as potential drug targets. These selected proteins were subjected to molecular docking against drug-like compounds retrieved from ZINC database. Furthermore, the top docked compounds with lower binding energy were identified. In this work, we have identified novel drug and vaccine targets against Sg, of which some have already been reported and validated in other species. Owing to the experimental validation, we believe our methodology and result are significant contribution for drug/vaccine target identification against Sg-caused infective endocarditis.
Collapse
Affiliation(s)
- Nosheen Afzal Qureshi
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Syeda Marriam Bakhtiar
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hafiz M Mahmood
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Sohaib
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ramzi A Mothana
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Riaz Ullah
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
13
|
Tan MF, Zou G, Wei Y, Liu WQ, Li HQ, Hu Q, Zhang LS, Zhou R. Protein-protein interaction network and potential drug target candidates of Streptococcus suis. J Appl Microbiol 2021; 131:658-670. [PMID: 33249680 DOI: 10.1111/jam.14950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
AIMS This study aimed to explore potential drug targets of Streptococcus suis at the system level. METHODS AND RESULTS A homologous protein mapping method was used in the construction of a protein-protein interaction (PPI) network of S. suis, which presented 1147 non-redundant interaction pairs among 286 proteins. The parameters of PPI networks were calculated and showed scale-free network properties. In all, 41 possibly essential proteins identified from 47 highly connected proteins were selected as potential drug target candidates. Of these proteins, 30 were already regarded as drug targets in other bacterial species. Six transporters with high connections to other functional proteins were identified as probably not essential but important functional proteins. Afterward, the subnetwork centred with cell division protein FtsZ was used in confirming the PPI network through bacterial two-hybrid analysis. CONCLUSIONS The predicted PPI network covers 13·04% of the proteome in S. suis. The selected 41 potential drug target candidates are conserved between S. suis and several model bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY The predictions included proteins known to be drug targets, and a verifying experiment confirmed the reliability of predicted interactions. This work is the first to present systematic computational PPI data for S. suis and provides potential drug targets, which are valuable in exploring novel anti-streptococcus drugs.
Collapse
Affiliation(s)
- M-F Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China.,Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - G Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - Y Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - W-Q Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - H-Q Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Q Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - L-S Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - R Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China.,International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| |
Collapse
|
14
|
Xu Y, Liu S, Zhang Y, Zhang W. DNA adenine methylation is involved in persister formation in E. coli. Microbiol Res 2021; 246:126709. [PMID: 33578264 DOI: 10.1016/j.micres.2021.126709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTI). UPEC persister bacteria play crucial roles in clinical treatment failure and relapse. Although DNA methylation is known to regulate gene expression, its role in persister formation has not been investigated. Here, we show that Δdam (adenine methylase) mutant from UPEC strain UTI89 had significant defect in persister formation and complementation of the Δdam mutant restored this defect. Using PacBio sequencing of methylome and RNA sequencing of Δdam, we defined, for the first time, the role of Dam in persister formation. We found that Δdam mutation had an overwhelming effect on demethylation of the genome and the demethylation sites affected expression of genes involved in broad transcriptional and metabolic processes. Using comparative COG analysis of methylome and transcriptome, we demonstrate that Dam mediates persister formation through transcriptional control, cell motility, DNA repair and metabolite transport processes. These findings provide the first evidence and molecular basis for DNA methylation mediated persister formation and implicate Dam DNA methylation as a potential drug target for persister bacteria.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Infectious Diseases, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Shuang Liu
- Department of Infectious Diseases, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA.
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital of Fudan University, Shanghai, 200040, China.
| |
Collapse
|
15
|
Petibon C, Malik Ghulam M, Catala M, Abou Elela S. Regulation of ribosomal protein genes: An ordered anarchy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1632. [PMID: 33038057 PMCID: PMC8047918 DOI: 10.1002/wrna.1632] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Ribosomal protein genes are among the most highly expressed genes in most cell types. Their products are generally essential for ribosome synthesis, which is the cornerstone for cell growth and proliferation. Many cellular resources are dedicated to producing ribosomal proteins and thus this process needs to be regulated in ways that carefully balance the supply of nascent ribosomal proteins with the demand for new ribosomes. Ribosomal protein genes have classically been viewed as a uniform interconnected regulon regulated in eukaryotic cells by target of rapamycin and protein kinase A pathway in response to changes in growth conditions and/or cellular status. However, recent literature depicts a more complex picture in which the amount of ribosomal proteins produced varies between genes in response to two overlapping regulatory circuits. The first includes the classical general ribosome‐producing program and the second is a gene‐specific feature responsible for fine‐tuning the amount of ribosomal proteins produced from each individual ribosomal gene. Unlike the general pathway that is mainly controlled at the level of transcription and translation, this specific regulation of ribosomal protein genes is largely achieved through changes in pre‐mRNA splicing efficiency and mRNA stability. By combining general and specific regulation, the cell can coordinate ribosome production, while allowing functional specialization and diversity. Here we review the many ways ribosomal protein genes are regulated, with special focus on the emerging role of posttranscriptional regulatory events in fine‐tuning the expression of ribosomal protein genes and its role in controlling the potential variation in ribosome functions. This article is categorized under:Translation > Ribosome Biogenesis Translation > Ribosome Structure/Function Translation > Translation Regulation
Collapse
Affiliation(s)
- Cyrielle Petibon
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mustafa Malik Ghulam
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mathieu Catala
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| |
Collapse
|
16
|
Aseev LV, Koledinskaya LS, Boni IV. Autogenous regulation in vivo of the rpmE gene encoding ribosomal protein L31 (bL31), a key component of the protein-protein intersubunit bridge B1b. RNA (NEW YORK, N.Y.) 2020; 26:814-826. [PMID: 32209634 PMCID: PMC7297116 DOI: 10.1261/rna.074237.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/22/2020] [Indexed: 06/10/2023]
Abstract
Bacterial ribosomal proteins (r-proteins) encoded by nonessential genes often carry out very important tasks in translation. In particular, this is the case of a small basic bacteria-specific r-protein L31 (bL31). Recent studies revealed a crucial role of bL31 in formation of the protein-protein intersubunit bridge B1b and hence its contribution to ribosome dynamics. Our goal was to study in vivo regulation of the rpmE operon encoding bL31. We used a previously developed approach based on chromosomally integrated fusions with the lacZ reporter. E. coli rpmE is transcribed from two promoter regions, and translation of both mRNA transcripts was shown to be feedback regulated by bL31, indicating that the autogenous operator is located within the shorter transcript. The bL31-mediated control of rpmE is gene-specific, as no regulation was found for rpmE-unrelated reporters. Thus, bL31, as many other r-proteins, possesses dual activity in living cells, acting both as an integral ribosome component and an autogenous repressor. Phylogenetic studies revealed the presence of a highly conserved stem-loop structure in the rpmE 5'UTR, a presumable translational operator targeted by bL31, which was further confirmed by site-directed mutagenesis. This stable operator stem-loop separates an AU-rich translational enhancer from a Shine-Dalgarno element, which is a rare case of a noncontiguous translation initiation region. Sequence/structure computational approaches classify bL31 as an RNA-binding protein, consistent with its repressor function discovered here. Mutational analysis of bL31 showed that its unstructured amino-terminal part enriched in lysine is necessary for the repressor activity.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
17
|
Discovery of 20 novel ribosomal leader candidates in bacteria and archaea. BMC Microbiol 2020; 20:130. [PMID: 32448158 PMCID: PMC7247131 DOI: 10.1186/s12866-020-01823-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNAs perform many functions in addition to supplying coding templates, such as binding proteins. RNA-protein interactions are important in multiple processes in all domains of life, and the discovery of additional protein-binding RNAs expands the scope for studying such interactions. To find such RNAs, we exploited a form of ribosomal regulation. Ribosome biosynthesis must be tightly regulated to ensure that concentrations of rRNAs and ribosomal proteins (r-proteins) match. One regulatory mechanism is a ribosomal leader (r-leader), which is a domain in the 5' UTR of an mRNA whose genes encode r-proteins. When the concentration of one of these r-proteins is high, the protein binds the r-leader in its own mRNA, reducing gene expression and thus protein concentrations. To date, 35 types of r-leaders have been validated or predicted. RESULTS By analyzing additional conserved RNA structures on a multi-genome scale, we identified 20 novel r-leader structures. Surprisingly, these included new r-leaders in the highly studied organisms Escherichia coli and Bacillus subtilis. Our results reveal several cases where multiple unrelated RNA structures likely bind the same r-protein ligand, and uncover previously unknown r-protein ligands. Each r-leader consistently occurs upstream of r-protein genes, suggesting a regulatory function. That the predicted r-leaders function as RNAs is supported by evolutionary correlations in the nucleotide sequences that are characteristic of a conserved RNA secondary structure. The r-leader predictions are also consistent with the locations of experimentally determined transcription start sites. CONCLUSIONS This work increases the number of known or predicted r-leader structures by more than 50%, providing additional opportunities to study structural and evolutionary aspects of RNA-protein interactions. These results provide a starting point for detailed experimental studies.
Collapse
|
18
|
Gomes LP, Anjo SI, Manadas B, Coelho AV, Paschoalin VMF. Proteomic Analyses Reveal New Insights on the Antimicrobial Mechanisms of Chitosan Biopolymers and Their Nanosized Particles against Escherichia coli. Int J Mol Sci 2019; 21:ijms21010225. [PMID: 31905672 PMCID: PMC6981525 DOI: 10.3390/ijms21010225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/19/2022] Open
Abstract
The well-known antimicrobial effects of chitosan (CS) polymers make them a promising adjuvant in enhancing antibiotic effectiveness against human pathogens. However, molecular CS antimicrobial mechanisms remain unclear, despite the insights presented in the literature. Thus, the aim of the present study was to depict the molecular effects implicated in the interaction of low or medium molecular mass CS polymers and their nanoparticle-counterparts against Escherichia coli. The differential E. coli proteomes sensitized to either CS polymers or nanoparticles were investigated by nano liquid chromatography–mass spectrometry (micro-LC-MS/MS). A total of 127 proteins differentially expressed in CS-sensitized bacteria were predominantly involved in (i) structural functions associated to the stability of outer membrane, (ii) increment of protein biosynthesis due to high abundance of ribosomal proteins and (iii) activation of biosynthesis of amino acid and purine metabolism pathways. Antibacterial activity of CS polymers/nanoparticles seems to be triggered by the outer bacterial membrane disassembly, leading to increased protein biosynthesis by diverting the metabolic flux to amino acid and purine nucleotides supply. Understanding CS-antibacterial molecular effects can be valuable to optimize the use of CS-based nanomaterials in food decontamination, and may represent a breakthrough on CS nanocapsules-drug delivery devices for novel antibiotics, as the chitosan-disassembly of bacteria cell membranes can potentialize antibiotic effects.
Collapse
Affiliation(s)
- Laidson P. Gomes
- Chemistry Institute, Federal University of Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21949-909, RJ, Brazil
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da Republica, 2780-157 Oeiras, Portugal;
- Correspondence: (L.P.G.); (V.M.F.P.); Tel.: +55-21-39387362 (L.P.G. & V.M.F.P.)
| | - Sandra I. Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (S.I.A.); (B.M.)
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (S.I.A.); (B.M.)
| | - Ana V. Coelho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da Republica, 2780-157 Oeiras, Portugal;
| | - Vania M. F. Paschoalin
- Chemistry Institute, Federal University of Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21949-909, RJ, Brazil
- Correspondence: (L.P.G.); (V.M.F.P.); Tel.: +55-21-39387362 (L.P.G. & V.M.F.P.)
| |
Collapse
|
19
|
Integrated Metabolomics and Transcriptomics Suggest the Global Metabolic Response to 2-Aminoacrylate Stress in Salmonella enterica. Metabolites 2019; 10:metabo10010012. [PMID: 31878179 PMCID: PMC7023182 DOI: 10.3390/metabo10010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023] Open
Abstract
In Salmonella enterica, 2-aminoacrylate (2AA) is a reactive enamine intermediate generated during a number of biochemical reactions. When the 2-iminobutanoate/2-iminopropanoate deaminase (RidA; EC: 3.5.99.10) is eliminated, 2AA accumulates and inhibits the activity of multiple pyridoxal 5’-phosphate(PLP)-dependent enzymes. In this study, untargeted proton nuclear magnetic resonance (1H NMR) metabolomics and transcriptomics data were used to uncover the global metabolic response of S. enterica to the accumulation of 2AA. The data showed that elimination of RidA perturbed folate and branched chain amino acid metabolism. Many of the resulting perturbations were consistent with the known effect of 2AA stress, while other results suggested additional potential enzyme targets of 2AA-dependent damage. The majority of transcriptional and metabolic changes appeared to be the consequence of downstream effects on the metabolic network, since they were not directly attributable to a PLP-dependent enzyme. In total, the results highlighted the complexity of changes stemming from multiple perturbations of the metabolic network, and suggested hypotheses that will be valuable in future studies of the RidA paradigm of endogenous 2AA stress.
Collapse
|
20
|
Iost I, Jain C. A DEAD-box protein regulates ribosome assembly through control of ribosomal protein synthesis. Nucleic Acids Res 2019; 47:8193-8206. [PMID: 31188443 PMCID: PMC6736130 DOI: 10.1093/nar/gkz502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
DEAD-box proteins (DBPs) comprise a large family of proteins that most commonly have been identified as regulators of ribosome assembly. The Escherichia coli DBP, SrmB, represents a model bacterial DBP whose absence impairs formation of the large ribosomal subunit (LSU). To define the basis for SrmB function, suppressors of the ribosomal defect of ΔsrmB strains were isolated. The major class of suppressors was found to map to the 5′ untranslated region (UTR) of the rplM-rpsI operon, which encodes the ribosomal proteins (r-proteins) L13 and S9. An analysis of protein abundance indicated that both r-proteins are under-produced in the ΔsrmB strain, but are increased in these suppressors, implicating r-protein underproduction as the molecular basis for the observed ribosomal defects. Reduced r-protein synthesis was determined to be caused by intrinsic transcription termination within the rplM 5′ UTR that is abrogated by SrmB. These results reveal a specific mechanism for DBP regulation of ribosomal assembly, indirectly mediated through its effects on r-protein expression.
Collapse
Affiliation(s)
- Isabelle Iost
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Chaitanya Jain
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
21
|
In Vitro Thermal and Ethanol Adaptations to Improve Vinegar Fermentation at High Temperature of Komagataeibacter oboediens MSKU 3. Appl Biochem Biotechnol 2019; 189:144-159. [PMID: 30957194 DOI: 10.1007/s12010-019-03003-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/27/2019] [Indexed: 12/30/2022]
Abstract
High temperature and high ethanol concentrations obviously affect vinegar fermentation. The thermotolerant and ethanol-resistant strains are expected to become one of the technologies for effective vinegar fermentation. This study aimed to further improve thermotolerant Komagataeibacter oboediens MSKU 3 through thermal and ethanol adaptations for acetic acid fermentation. The MSKU 3 strain was independently cultured by a repetitive cultivation in gradually increasing temperature from 37 to 39 °C for thermal adaptation, while adaptation to ethanol was carried out from concentrations of 3 to 5.5% (v/v) at 37 °C. Acetic acid fermentation revealed that the thermo-adapted T4 strain could produce 2.82% acidity with 3% ethanol at 39 °C, whereas the ethanol-adapted E3 strain could produce 3.54% acidity with 5.5% ethanol at 37 °C, in contrast to the parental strain, MSKU 3, in which no fermentation occurs at either 39 °C or 5.5% ethanol. Furthermore, genome mapping analysis of T4 and E3 strains against the genome of parental strain MSKU 3 revealed several mutated genes that are associated with thermotolerance or ethanol adaptation. The occurrence of these adaptation-associated mutations during adaptive evolution was also analyzed. Therefore, adapted strains T4 and E3 revealed the potential of Komagataeibacter oboediens strain improvement to further enhance vinegar fermentation with high ethanol concentration at high temperature.
Collapse
|
22
|
Babina AM, Parker DJ, Li GW, Meyer MM. Fitness advantages conferred by the L20-interacting RNA cis-regulator of ribosomal protein synthesis in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2018; 24:1133-1143. [PMID: 29925569 PMCID: PMC6097659 DOI: 10.1261/rna.065011.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/18/2018] [Indexed: 05/09/2023]
Abstract
In many bacteria, ribosomal proteins autogenously repress their own expression by interacting with RNA structures typically located in the 5'-UTRs of their mRNA transcripts. This regulation is necessary to maintain a balance between ribosomal proteins and rRNA to ensure proper ribosome production. Despite advances in noncoding RNA discovery and validation of RNA-protein regulatory interactions, the selective pressures that govern the formation and maintenance of such RNA cis-regulators in the context of an organism remain largely undetermined. To examine the impact disruptions to this regulation have on bacterial fitness, we introduced point mutations that abolish ribosomal protein binding and regulation into the RNA structure that controls expression of ribosomal proteins L20 and L35 within the Bacillus subtilis genome. Our studies indicate that removing this regulation results in reduced log phase growth, improper rRNA maturation, and the accumulation of a kinetically trapped or misassembled ribosomal particle at low temperatures, suggesting defects in ribosome synthesis. Such work emphasizes the important role regulatory RNAs play in the stoichiometric production of ribosomal components for proper ribosome composition and overall organism viability and reinforces the potential of targeting ribosomal protein production and ribosome assembly with novel antimicrobials.
Collapse
Affiliation(s)
- Arianne M Babina
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Darren J Parker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Michelle M Meyer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
23
|
Mustoe AM, Busan S, Rice GM, Hajdin CE, Peterson BK, Ruda VM, Kubica N, Nutiu R, Baryza JL, Weeks KM. Pervasive Regulatory Functions of mRNA Structure Revealed by High-Resolution SHAPE Probing. Cell 2018; 173:181-195.e18. [PMID: 29551268 DOI: 10.1016/j.cell.2018.02.034] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
mRNAs can fold into complex structures that regulate gene expression. Resolving such structures de novo has remained challenging and has limited our understanding of the prevalence and functions of mRNA structure. We use SHAPE-MaP experiments in living E. coli cells to derive quantitative, nucleotide-resolution structure models for 194 endogenous transcripts encompassing approximately 400 genes. Individual mRNAs have exceptionally diverse architectures, and most contain well-defined structures. Active translation destabilizes mRNA structure in cells. Nevertheless, mRNA structure remains similar between in-cell and cell-free environments, indicating broad potential for structure-mediated gene regulation. We find that the translation efficiency of endogenous genes is regulated by unfolding kinetics of structures overlapping the ribosome binding site. We discover conserved structured elements in 35% of UTRs, several of which we validate as novel protein binding motifs. RNA structure regulates every gene studied here in a meaningful way, implying that most functional structures remain to be discovered.
Collapse
Affiliation(s)
- Anthony M Mustoe
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA.
| | - Steven Busan
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Greggory M Rice
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA; Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | | | - Brant K Peterson
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Vera M Ruda
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Neil Kubica
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Razvan Nutiu
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Jeremy L Baryza
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
Meyer MM. rRNA Mimicry in RNA Regulation of Gene Expression. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0006-2017. [PMID: 29546840 PMCID: PMC11633770 DOI: 10.1128/microbiolspec.rwr-0006-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 12/12/2022] Open
Abstract
The rRNA is the largest and most abundant RNA in bacterial and archaeal cells. It is also one of the best-characterized RNAs in terms of its structural motifs and sequence variation. Production of ribosome components including >50 ribosomal proteins (r-proteins) consumes significant cellular resources. Thus, RNA cis-regulatory structures that interact with r-proteins to repress further r-protein synthesis play an important role in maintaining appropriate stoichiometry between r-proteins and rRNA. Classically, such mRNA structures were thought to directly mimic the rRNA. However, more than 30 years of research has demonstrated that a variety of different recognition and regulatory paradigms are present. This review will demonstrate how structural mimicry between the rRNA and mRNA cis-regulatory structures may take many different forms. The collection of mRNA structures that interact with r-proteins to regulate r-protein operons are best characterized in Escherichia coli, but are increasingly found within species from nearly all phyla of bacteria and several archaea. Furthermore, they represent a unique opportunity to assess the plasticity of RNA structure in the context of RNA-protein interactions. The binding determinants imposed by r-proteins to allow regulation can be fulfilled in many ways. Some r-protein-interacting mRNAs are immediately obvious as rRNA mimics from primary sequence similarity, others are identifiable only after secondary or tertiary structure determination, and some show no obvious similarity. In addition, across different bacterial species a host of different mechanisms of action have been characterized, showing that there is no simple one-size-fits-all solution.
Collapse
|
25
|
Roles of Transcriptional and Translational Control Mechanisms in Regulation of Ribosomal Protein Synthesis in Escherichia coli. J Bacteriol 2017; 199:JB.00407-17. [PMID: 28784818 DOI: 10.1128/jb.00407-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022] Open
Abstract
Bacterial ribosome biogenesis is tightly regulated to match nutritional conditions and to prevent formation of defective ribosomal particles. In Escherichia coli, most ribosomal protein (r-protein) synthesis is coordinated with rRNA synthesis by a translational feedback mechanism: when r-proteins exceed rRNAs, specific r-proteins bind to their own mRNAs and inhibit expression of the operon. It was recently discovered that the second messenger nucleotide guanosine tetra and pentaphosphate (ppGpp), which directly regulates rRNA promoters, is also capable of regulating many r-protein promoters. To examine the relative contributions of the translational and transcriptional control mechanisms to the regulation of r-protein synthesis, we devised a reporter system that enabled us to genetically separate the cis-acting sequences responsible for the two mechanisms and to quantify their relative contributions to regulation under the same conditions. We show that the synthesis of r-proteins from the S20 and S10 operons is regulated by ppGpp following shifts in nutritional conditions, but most of the effect of ppGpp required the 5' region of the r-protein mRNA containing the target site for translational feedback regulation and not the promoter. These results suggest that most regulation of the S20 and S10 operons by ppGpp following nutritional shifts is indirect and occurs in response to changes in rRNA synthesis. In contrast, we found that the promoters for the S20 operon were regulated during outgrowth, likely in response to increasing nucleoside triphosphate (NTP) levels. Thus, r-protein synthesis is dynamic, with different mechanisms acting at different times.IMPORTANCE Bacterial cells have evolved complex and seemingly redundant strategies to regulate many high-energy-consuming processes. In E. coli, synthesis of ribosomal components is tightly regulated with respect to nutritional conditions by mechanisms that act at both the transcription and translation steps. In this work, we conclude that NTP and ppGpp concentrations can regulate synthesis of ribosomal proteins, but most of the effect of ppGpp is indirect as a consequence of translational feedback in response to changes in rRNA levels. Our results illustrate how effects of seemingly redundant regulatory mechanisms can be separated in time and that even when multiple mechanisms act concurrently their contributions are not necessarily equivalent.
Collapse
|