1
|
Zhang M, Li Z, Hu H, Liu J, Qi C. Two HbpA-like proteins HbpA1 and HbpA2 from Actinobacillus pleuropneumoniae protect bacteria from sulfur source limitation, oxidative and cold stresses, but not essential to virulence. Gene 2024; 931:148875. [PMID: 39173979 DOI: 10.1016/j.gene.2024.148875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Porcine pleuropneumonia is one of the respiratory diseases that pigs are susceptible to Actinobacillus pleuropneumoniae (A. pleuropneumoniae), poses a great threat to the global pig industry. Glutathione (GSH) is an important sulfur source, cellular antioxidant and virulence determinant of many pathogenic bacteria. In this study, roles of two HbpA-like proteins HbpA1 and HbpA2 of A. pleuropneumoniae were analyzed. A. pleuropneumoniae mutants without HbpA2 were basically unable to grow in chemically defined medium (CDM) with GSH as the sole sulfur source and had significantly reduced oxidative tolerance; whereas mutation in hbpA1 led to reduced survival under low-temperature environments. Neither HbpA1 nor HbpA2 affects utilization of heme. These two HbpA-like proteins are not associated with the virulence of A. pleuropneumoniae. Our results reveal the correlation of A. pleuropneumoniae HbpA1 and HbpA2 in GSH utilization, highlight the roles of HbpA1 in the cold stress resistance and HbpA2 in the anti-oxidative response. GSH limitation is not a way to attenuate colonization and pathogenicity of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Miao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Zhuo Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Hanwen Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Jinlin Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
2
|
Li Y, Han S, Gao H. Heme homeostasis and its regulation by hemoproteins in bacteria. MLIFE 2024; 3:327-342. [PMID: 39359680 PMCID: PMC11442138 DOI: 10.1002/mlf2.12120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 10/04/2024]
Abstract
Heme is an important cofactor and a regulatory molecule involved in various physiological processes in virtually all living cellular organisms, and it can also serve as the primary iron source for many bacteria, particularly pathogens. However, excess heme is cytotoxic to cells. In order to meet physiological needs while preventing deleterious effects, bacteria have evolved sophisticated cellular mechanisms to maintain heme homeostasis. Recent advances in technologies have shaped our understanding of the molecular mechanisms that govern the biological processes crucial to heme homeostasis, including synthesis, acquisition, utilization, degradation, trafficking, and efflux, as well as their regulation. Central to these mechanisms is the regulation of the heme, by the heme, and for the heme. In this review, we present state-of-the-art findings covering the biochemical, physiological, and structural characterization of important, newly identified hemoproteins/systems involved in heme homeostasis.
Collapse
Affiliation(s)
- Yingxi Li
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Sirui Han
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Haichun Gao
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
3
|
Mahoney BJ, Goring AK, Wang Y, Dasika P, Zhou A, Grossbard E, Cascio D, Loo JA, Clubb RT. Development and atomic structure of a new fluorescence-based sensor to probe heme transfer in bacterial pathogens. J Inorg Biochem 2023; 249:112368. [PMID: 37729854 DOI: 10.1016/j.jinorgbio.2023.112368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Heme is the most abundant source of iron in the human body and is actively scavenged by bacterial pathogens during infections. Corynebacterium diphtheriae and other species of actinobacteria scavenge heme using cell wall associated and secreted proteins that contain Conserved Region (CR) domains. Here we report the development of a fluorescent sensor to measure heme transfer from the C-terminal CR domain within the HtaA protein (CR2) to other hemoproteins within the heme-uptake system. The sensor contains the CR2 domain inserted into the β2 to β3 turn of the Enhanced Green Fluorescent Protein (EGFP). A 2.45 Å crystal structure reveals the basis of heme binding to the CR2 domain via iron-tyrosyl coordination and shares conserved structural features with CR domains present in Corynebacterium glutamicum. The structure and small angle X-ray scattering experiments are consistent with the sensor adopting a V-shaped structure that exhibits only small fluctuations in inter-domain positioning. We demonstrate heme transfer from the sensor to the CR domains located within the HtaA or HtaB proteins in the heme-uptake system as measured by a ∼ 60% increase in sensor fluorescence and native mass spectrometry.
Collapse
Affiliation(s)
- Brendan J Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Andrew K Goring
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Yueying Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Poojita Dasika
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Anqi Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Emmitt Grossbard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Wang M, Wang Y, Wang M, Liu M, Cheng A. Heme acquisition and tolerance in Gram-positive model bacteria: An orchestrated balance. Heliyon 2023; 9:e18233. [PMID: 37501967 PMCID: PMC10368836 DOI: 10.1016/j.heliyon.2023.e18233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
As a nutrient, heme is important for various cellular processes of organism. Bacteria can obtain heme via heme biosynthesis or/and uptake of exogenous heme from the host. On the other side, absorption of excess heme is cytotoxic to bacteria. Thus, bacteria have developed systems to relieve heme toxicity and contribute to the maintenance of heme homeostasis. In the past decades, the mechanisms underlying heme acquisition and tolerance have been well studied in Gram-positive model bacteria, such as Staphylococcus, Streptococcus and other Gram-positive bacteria. Here, we review the elaborate mechanisms by which these bacteria acquire heme and resist heme toxicity. Since both the heme utilization system and the heme tolerance system contribute to bacterial virulence, this review is not only helpful for a comprehensive understanding of the heme homeostasis mechanism in Gram-positive bacteria but also provides a theoretical basis for the development of antimicrobial agents.
Collapse
Affiliation(s)
- Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Institute of Livestock Research, Mianyang 621023, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Analysis of the HbpA Protein from Corynebacterium diphtheriae Clinical Isolates and Identification of a Putative Hemoglobin-Binding Site on HbpA. J Bacteriol 2022; 204:e0034922. [PMID: 36346227 PMCID: PMC9765017 DOI: 10.1128/jb.00349-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Corynebacterium diphtheriae hemoglobin-binding protein HbpA is critical for the acquisition of iron from the hemoglobin-haptoglobin complex (Hb-Hp). Previous studies using C. diphtheriae strain 1737 showed that large aggregates formed by HbpA are associated with iron transport activity and enhanced binding to Hb-Hp; however, specific regions within HbpA required for Hb-Hp binding or iron uptake have not been identified. In this study, we characterized two clinical isolates from Austria, designated 07-18 and 09-15, which express HbpA proteins that share only 53% and 44% sequence identity, respectively, to the strain 1737 HbpA protein. The HbpA proteins expressed by the Austrian strains had functional and structural properties similar to those of the HbpA protein in strain 1737 despite the limited sequence similarity. These shared characteristics between the HbpA proteins included similar cellular localization, aggregate formation, and Hb and Hb-Hp binding. Additionally, the Austrian strains were able to acquire iron from Hb and Hb-Hp, and deletion of the hbpA gene from these two clinical isolates reduced their ability to use Hb-Hp as an iron source. A sequence comparison between the HbpA proteins from 1737 and the Austrian strains assisted in the identification of a putative Hb-binding site that shared similar characteristics with the Hb-binding regions in Staphylococcus aureus NEAT domains. Amino acid substitutions within this conserved Hb-binding region significantly reduced Hb and Hb-Hp binding and diminished the hemin-iron uptake function of HbpA. These findings represent important advances in our understanding of the interaction of HbpA with human hemoproteins. IMPORTANCE Hemoglobin (Hb) is the primary source of iron in humans, and the acquisition of hemin-iron from Hb is critical for many bacterial pathogens to infect and survive in the human host. In this study, we have examined the C. diphtheriae Hb-binding protein HbpA in two clinical isolates and show that these proteins, despite limited sequence similarity, are functionally equivalent to the previously described HbpA protein in strain 1737. A sequence comparison between these three strains led to the identification of a conserved Hb-binding site, which will further our understanding of how this novel protein functions in hemin-iron transport and, more generally, will expand our knowledge on how Hb interacts with proteins.
Collapse
|