1
|
Gupta R, Bhando T, Pathania R. Overexpression of l,d-Transpeptidase A Induces Dispensability of Rod Complex in Escherichia coli. ACS Infect Dis 2024; 10:3928-3938. [PMID: 39412350 DOI: 10.1021/acsinfecdis.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
Antimicrobial resistance (AMR) is a significant global threat, and the presence of resistance-determinant genes is one of the major driving forces behind it. The bacterial rod complex is an essential set of proteins that is crucial for cell survival due to its role in cell wall biogenesis and shape maintenance. Therefore, these proteins offer excellent potential as drug targets; however, compensatory mutations in nontarget genes render this complex nonessential. The MreB protein of this complex is an actin homologue that rotates along the longitudinal axis of the cell to provide rod shape to the bacteria. In this study, using chemical-chemical interaction profiling and FtsZ suppression assay, we identified the MreB targeting activity of IITR07865, a previously discovered small molecule in our lab. Escherichia coli suppressors against IITR07865 revealed mutations in two cell division-associated genes, min C and pal, that have not been previously implicated in rod complex essentiality. IITR07865 resistant mutants were found to inactivate and render the rod complex nonessential, making the rod complex inhibitors ineffective. Further, through transcriptome analysis, we reveal the primary cause of resistance in suppressor strains to be the overexpression of an l, d-transpeptidase A enzyme, which is involved in peptidoglycan and Braun's lipoprotein cross-linking. Our results demonstrate a novel mechanism of resistance development in rod-shaped Gram-negative bacterial pathogen E. coli involved in UTIs where mecillinam, a clinically used antibiotic that targets rod complex, is a drug of choice.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| | - Timsy Bhando
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| |
Collapse
|
2
|
Chen J, Zhong J, Chang Y, Zhou Y, Koo SH, Tan TY, Lei H, Ai Y. Rapid and Accurate Antimicrobial Susceptibility Testing Using Label-Free Electrical Impedance-Based Microfluidic Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303352. [PMID: 37794624 DOI: 10.1002/smll.202303352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/01/2023] [Indexed: 10/06/2023]
Abstract
Antimicrobial resistance has become a serious threat to the global public health. Accurate and rapid antimicrobial susceptibility testing (AST) allows evidence-based prescribing of antibiotics to improve patient care and clinical outcomes. Current culture-based AST assays are inherently limited by the doubling time of bacterial reproduction, which require at least 24 h to have a decisive result. Herein, a label-free electrical impedance-based microfluidic platform designed to expedite and streamline AST procedure for clinical practice is presented. Following a 30-min exposure of bacterial samples to antibiotics, the presented high-throughput, single-bacterium level impedance characterization platform enables a rapid 2-min AST assay. The platform facilitates accurate analysis of individual bacterial viability, as indicated by changes in electrical characteristics, thereby enabling the determination of antimicrobial resistance. Moreover, the potential clinical applicability of this platform is demonstrated by testing different E. coli strains against five antibiotics, yielding 100% categorical agreements compared to standard culture methods.
Collapse
Affiliation(s)
- Jiahong Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Yifu Chang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Seok Hwee Koo
- Department of Laboratory Medicine, Changi General Hospital, Singapore, 529889, Singapore
| | - Thean Yen Tan
- Department of Laboratory Medicine, Changi General Hospital, Singapore, 529889, Singapore
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
3
|
Keller MR, Dörr T. Bacterial metabolism and susceptibility to cell wall-active antibiotics. Adv Microb Physiol 2023; 83:181-219. [PMID: 37507159 PMCID: PMC11024984 DOI: 10.1016/bs.ampbs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Bacterial infections are increasingly resistant to antimicrobial therapy. Intense research focus has thus been placed on identifying the mechanisms that bacteria use to resist killing or growth inhibition by antibiotics and the ways in which bacteria share these traits with one another. This work has led to the advancement of new drugs, combination therapy regimens, and a deeper appreciation for the adaptability seen in microorganisms. However, while the primary mechanisms of action of most antibiotics are well understood, the more subtle contributions of bacterial metabolic state to repairing or preventing damage caused by antimicrobials (thereby promoting survival) are still understudied. Here, we review a modern viewpoint on a classical system: examining bacterial metabolism's connection to antibiotic susceptibility. We dive into the relationship between metabolism and antibiotic efficacy through the lens of growth rate, energy state, resource allocation, and the infection environment, focusing on cell wall-active antibiotics.
Collapse
Affiliation(s)
- Megan Renee Keller
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States; Department of Microbiology, Cornell University, Ithaca, NY, United States; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
4
|
Chiarelli TJ, Grieshaber NA, Appa C, Grieshaber SS. Computational Modeling of the Chlamydial Developmental Cycle Reveals a Potential Role for Asymmetric Division. mSystems 2023; 8:e0005323. [PMID: 36927072 PMCID: PMC10134819 DOI: 10.1128/msystems.00053-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that progresses through an essential multicell form developmental cycle. Infection of the host is initiated by the elementary body (EB). Once in the host, the EB cell differentiates into the noninfectious, but replication-competent, reticulate body, or RB. After multiple rounds of replication, RBs undergo secondary differentiation, eventually producing newly infectious EBs. Here, we generated paired cell-type promoter reporter constructs and determined the kinetics of the activities of the euo, hctA, and hctB promoters. The paired constructs revealed that the developmental cycle produces at least three phenotypically distinct cell types, the RB (euoprom+), intermediate body (IB; hctAprom+), and EB (hctBprom+). The kinetic data from the three dual-promoter constructs were used to generate two computational agent-based models to reproduce the chlamydial developmental cycle. Both models simulated EB germination, RB amplification, IB formation, and EB production but differed in the mechanism that generated the IB. The direct conversion and the asymmetric production models predicted different behaviors for the RB population, which were experimentally testable. In agreement with the asymmetric production model, RBs acted as stem cells after the initial amplification stage, producing one IB and self-renewing after every division. We also demonstrated that IBs are a transient cell population, maturing directly into EBs after formation without the need for cell division. The culmination of these results suggests that the developmental cycle can be described by a four-stage model, EB germination, RB amplification/maturation, IB production, and EB formation. IMPORTANCE Chlamydia trachomatis is an obligate intracellular bacterial pathogen responsible for both ocular and sexually transmitted infections. All Chlamydiae are reliant on a complex developmental cycle, consisting of both infectious and noninfectious cell forms. The EB cell form initiates infection, whereas the RB cell replicates. The infectious cycle requires both cell types, as RB replication increases the cell population while EB formation disseminates the infection to new hosts. The mechanisms of RB-to-EB development are largely unknown. Here, we developed unique dual promoter reporters and used live-cell imaging and confocal microscopy to visualize the cycle at the single-cell and kinetic levels. These data were used to develop and test two agent-based models, simulating either direct conversion of RBs to EBs or production of EBs via asymmetric RB division. Our results suggest that RBs mature into a stem cell-like population producing intermediate cell forms through asymmetric division, followed by maturation of the intermediate cell type into the infectious EB. Ultimately, a more complete mechanistic understanding of the developmental cycle will lead to novel therapeutics targeting cell type development to eliminate chlamydial dissemination.
Collapse
Affiliation(s)
| | | | - Cody Appa
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | | |
Collapse
|
5
|
Zhang ZX, Nong FT, Wang YZ, Yan CX, Gu Y, Song P, Sun XM. Strategies for efficient production of recombinant proteins in Escherichia coli: alleviating the host burden and enhancing protein activity. Microb Cell Fact 2022; 21:191. [PMID: 36109777 PMCID: PMC9479345 DOI: 10.1186/s12934-022-01917-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli, one of the most efficient expression hosts for recombinant proteins (RPs), is widely used in chemical, medical, food and other industries. However, conventional expression strains are unable to effectively express proteins with complex structures or toxicity. The key to solving this problem is to alleviate the host burden associated with protein overproduction and to enhance the ability to accurately fold and modify RPs at high expression levels. Here, we summarize the recently developed optimization strategies for the high-level production of RPs from the two aspects of host burden and protein activity. The aim is to maximize the ability of researchers to quickly select an appropriate optimization strategy for improving the production of RPs.
Collapse
|
6
|
Rajput A, Tsunemoto H, Sastry AV, Szubin R, Rychel K, Chauhan SM, Pogliano J, Palsson BO. Advanced transcriptomic analysis reveals the role of efflux pumps and media composition in antibiotic responses of Pseudomonas aeruginosa. Nucleic Acids Res 2022; 50:9675-9688. [PMID: 36095122 PMCID: PMC9508857 DOI: 10.1093/nar/gkac743] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/06/2022] [Accepted: 09/06/2022] [Indexed: 11/14/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and major cause of hospital-acquired infections. The virulence of P. aeruginosa is largely determined by its transcriptional regulatory network (TRN). We used 411 transcription profiles of P. aeruginosa from diverse growth conditions to construct a quantitative TRN by identifying independently modulated sets of genes (called iModulons) and their condition-specific activity levels. The current study focused on the use of iModulons to analyze the biofilm production and antibiotic resistance of P. aeruginosa. Our analysis revealed: (i) 116 iModulons, 81 of which show strong association with known regulators; (ii) novel roles of regulators in modulating antibiotics efflux pumps; (iii) substrate-efflux pump associations; (iv) differential iModulon activity in response to beta-lactam antibiotics in bacteriological and physiological media; (v) differential activation of 'Cell Division' iModulon resulting from exposure to different beta-lactam antibiotics and (vi) a role of the PprB iModulon in the stress-induced transition from planktonic to biofilm lifestyle. In light of these results, the construction of an iModulon-based TRN provides a transcriptional regulatory basis for key aspects of P. aeruginosa infection, such as antibiotic stress responses and biofilm formation. Taken together, our results offer a novel mechanistic understanding of P. aeruginosa virulence.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Siddharth M Chauhan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
7
|
Palmer AC, Chait R, Kishony R. Nonoptimal Gene Expression Creates Latent Potential for Antibiotic Resistance. Mol Biol Evol 2019; 35:2669-2684. [PMID: 30169679 PMCID: PMC6231494 DOI: 10.1093/molbev/msy163] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacteria regulate genes to survive antibiotic stress, but regulation can be far from perfect. When regulation is not optimal, mutations that change gene expression can contribute to antibiotic resistance. It is not systematically understood to what extent natural gene regulation is or is not optimal for distinct antibiotics, and how changes in expression of specific genes quantitatively affect antibiotic resistance. Here we discover a simple quantitative relation between fitness, gene expression, and antibiotic potency, which rationalizes our observation that a multitude of genes and even innate antibiotic defense mechanisms have expression that is critically nonoptimal under antibiotic treatment. First, we developed a pooled-strain drug-diffusion assay and screened Escherichia coli overexpression and knockout libraries, finding that resistance to a range of 31 antibiotics could result from changing expression of a large and functionally diverse set of genes, in a primarily but not exclusively drug-specific manner. Second, by synthetically controlling the expression of single-drug and multidrug resistance genes, we observed that their fitness–expression functions changed dramatically under antibiotic treatment in accordance with a log-sensitivity relation. Thus, because many genes are nonoptimally expressed under antibiotic treatment, many regulatory mutations can contribute to resistance by altering expression and by activating latent defenses.
Collapse
Affiliation(s)
- Adam C Palmer
- Department of Systems Biology, Harvard Medical School, Boston, MA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA
| | - Remy Chait
- Department of Systems Biology, Harvard Medical School, Boston, MA.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roy Kishony
- Department of Systems Biology, Harvard Medical School, Boston, MA.,Departments of Biology and Computer Science, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Kumar A, Parveen S, Sharma I, Pathak H, Deshmukh MV, Sharp JA, Kumar S. Structural and mechanistic insights into EchAMP: A antimicrobial protein from the Echidna milk. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1260-1274. [PMID: 30951703 DOI: 10.1016/j.bbamem.2019.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Antibiotic resistance is a problem that necessitates the identification of new antimicrobial molecules. Milk is known to have molecules with antimicrobial properties (AMPs). Echidna Antimicrobial Protein (EchAMP) is one such lactation specific AMP exclusively found in the milk of Echidna, an egg-laying mammal geographically restricted to Australia and New Guinea. Previous studies established that EchAMP exhibits substantial bacteriostatic activity against multiple bacterial genera. However, the subsequent structural and functional studies were hindered due to the unavailability of pure protein. RESULTS In this study, we expressed EchAMP protein using a heterologous expression system and successfully purified it to >95% homogeneity. The purified recombinant protein exhibits bacteriolytic activity against both Gram-positive and Gram-negative bacteria as confirmed by live-dead staining and scanning electron microscopy. Structurally, this AMP belongs to the family of intrinsically disordered proteins (IDPs) as deciphered by the circular-dichroism, tryptophan fluorescence, and NMR spectroscopy. Nonetheless, EchAMP has the propensity to acquire structure with amphipathic molecules, or membrane mimics like SDS, lipopolysaccharides, and liposomes as again observed through multiple spectroscopic techniques. CONCLUSIONS Recombinant EchAMP exhibits broad-spectrum bacteriolytic activity by compromising the bacterial cell membrane integrity. Hence, we propose that this intrinsically disordered antimicrobial protein interact with the bacterial cell membrane and undergoes conformational changes to form channels in the membrane resulting in cell lysis. GENERAL SIGNIFICANCE EchAMP, the evolutionarily conserved, lactation specific AMP from an oviparous mammal may find application as a broad-spectrum antimicrobial against pathogens that affect mammary gland or otherwise cause routine infections in humans and livestock.
Collapse
Affiliation(s)
- Alok Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Sadiya Parveen
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Isha Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Himani Pathak
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Mandar V Deshmukh
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Julie A Sharp
- Instit for Frontier Materials, Deakin University, Geelong, VIC 3220, Australia
| | - Satish Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India.
| |
Collapse
|
9
|
Sutaria DS, Moya B, Green KB, Kim TH, Tao X, Jiao Y, Louie A, Drusano GL, Bulitta JB. First Penicillin-Binding Protein Occupancy Patterns of β-Lactams and β-Lactamase Inhibitors in Klebsiella pneumoniae. Antimicrob Agents Chemother 2018; 62:e00282-18. [PMID: 29712652 PMCID: PMC5971569 DOI: 10.1128/aac.00282-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 02/28/2018] [Indexed: 01/22/2023] Open
Abstract
Penicillin-binding proteins (PBPs) are the high-affinity target sites of all β-lactam antibiotics in bacteria. It is well known that each β-lactam covalently binds to and thereby inactivates different PBPs with various affinities. Despite β-lactams serving as the cornerstone of our therapeutic armamentarium against Klebsiella pneumoniae, PBP binding data are missing for this pathogen. We aimed to generate the first PBP binding data on 13 chemically diverse and clinically relevant β-lactams and β-lactamase inhibitors in K. pneumoniae PBP binding was determined using isolated membrane fractions from K. pneumoniae strains ATCC 43816 and ATCC 13883. Binding reactions were conducted using β-lactam concentrations from 0.0075 to 256 mg/liter (or 128 mg/liter). After β-lactam exposure, unbound PBPs were labeled by Bocillin FL. Binding affinities (50% inhibitory concentrations [IC50]) were reported as the β-lactam concentrations that half-maximally inhibited Bocillin FL binding. PBP occupancy patterns by β-lactams were consistent across both strains. Carbapenems bound to all PBPs, with PBP2 and PBP4 as the highest-affinity targets (IC50, <0.0075 mg/liter). Preferential PBP2 binding was observed by mecillinam (amdinocillin; IC50, <0.0075 mg/liter) and avibactam (IC50, 2 mg/liter). Aztreonam showed high affinity for PBP3 (IC50, 0.06 to 0.12 mg/liter). Ceftazidime bound PBP3 at low concentrations (IC50, 0.06 to 0.25 mg/liter) and PBP1a/b at higher concentrations (4 mg/liter), whereas cefepime bound PBPs 1 to 4 at more even concentrations (IC50, 0.015 to 2 mg/liter). These PBP binding data on a comprehensive set of 13 clinically relevant β-lactams and β-lactamase inhibitors in K. pneumoniae enable, for the first time, the rational design and optimization of double β-lactam and β-lactam-β-lactamase inhibitor combinations.
Collapse
Affiliation(s)
- Dhruvitkumar S Sutaria
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Bartolome Moya
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Kari B Green
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Tae Hwan Kim
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Xun Tao
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yuanyuan Jiao
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - George L Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Jürgen B Bulitta
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
10
|
Dik DA, Marous DR, Fisher JF, Mobashery S. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit Rev Biochem Mol Biol 2017. [PMID: 28644060 DOI: 10.1080/10409238.2017.1337705] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lytic transglycosylases (LTs) are bacterial enzymes that catalyze the non-hydrolytic cleavage of the peptidoglycan structures of the bacterial cell wall. They are not catalysts of glycan synthesis as might be surmised from their name. Notwithstanding the seemingly mundane reaction catalyzed by the LTs, their lytic reactions serve bacteria for a series of astonishingly diverse purposes. These purposes include cell-wall synthesis, remodeling, and degradation; for the detection of cell-wall-acting antibiotics; for the expression of the mechanism of cell-wall-acting antibiotics; for the insertion of secretion systems and flagellar assemblies into the cell wall; as a virulence mechanism during infection by certain Gram-negative bacteria; and in the sporulation and germination of Gram-positive spores. Significant advances in the mechanistic understanding of each of these processes have coincided with the successive discovery of new LTs structures. In this review, we provide a systematic perspective on what is known on the structure-function correlations for the LTs, while simultaneously identifying numerous opportunities for the future study of these enigmatic enzymes.
Collapse
Affiliation(s)
- David A Dik
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Daniel R Marous
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Jed F Fisher
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Shahriar Mobashery
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| |
Collapse
|
11
|
Hugonnet JE, Mengin-Lecreulx D, Monton A, den Blaauwen T, Carbonnelle E, Veckerlé C, Brun YV, van Nieuwenhze M, Bouchier C, Tu K, Rice LB, Arthur M. Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and β-lactam resistance in Escherichia coli. eLife 2016; 5. [PMID: 27767957 PMCID: PMC5089857 DOI: 10.7554/elife.19469] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/20/2016] [Indexed: 12/04/2022] Open
Abstract
The target of β-lactam antibiotics is the D,D-transpeptidase activity of penicillin-binding proteins (PBPs) for synthesis of 4→3 cross-links in the peptidoglycan of bacterial cell walls. Unusual 3→3 cross-links formed by L,D-transpeptidases were first detected in Escherichia coli more than four decades ago, however no phenotype has previously been associated with their synthesis. Here we show that production of the L,D-transpeptidase YcbB in combination with elevated synthesis of the (p)ppGpp alarmone by RelA lead to full bypass of the D,D-transpeptidase activity of PBPs and to broad-spectrum β-lactam resistance. Production of YcbB was therefore sufficient to switch the role of (p)ppGpp from antibiotic tolerance to high-level β-lactam resistance. This observation identifies a new mode of peptidoglycan polymerization in E. coli that relies on an unexpectedly small number of enzyme activities comprising the glycosyltransferase activity of class A PBP1b and the D,D-carboxypeptidase activity of DacA in addition to the L,D-transpeptidase activity of YcbB. DOI:http://dx.doi.org/10.7554/eLife.19469.001
Collapse
Affiliation(s)
- Jean-Emmanuel Hugonnet
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alejandro Monton
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Etienne Carbonnelle
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Carole Veckerlé
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | - Kuyek Tu
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Louis B Rice
- Rhode Island Hospital, Brown University, Providence, United States
| | - Michel Arthur
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
12
|
Opposing effects of target overexpression reveal drug mechanisms. Nat Commun 2014; 5:4296. [PMID: 24980690 DOI: 10.1038/ncomms5296] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 06/03/2014] [Indexed: 12/15/2022] Open
Abstract
Overexpression of a drug's molecular target often increases drug resistance, offering a pathway for adaptive evolution and a tool for target identification. It is unclear though why this phenomenon applies to some drugs but not others. Here we gradually overexpressed antibiotic targets in Escherichia coli and found that drug resistance can increase, remain unchanged, decrease or even change non-monotonically. Even a single target can produce opposing responses to its different inhibitors. We explain these contradicting effects with quantitative models of enzyme inhibition that account for fitness costs and the biochemical activity or inactivity of drug-enzyme complexes. Thus, target overexpression confers resistance or sensitivity as a predictable property of drug mechanism, explaining its variable presence in nature as a resistance mechanism. Though overexpression screens may fail at identifying unknown targets, overexpressing known or putative targets provides a systematic approach to distinguish between simple inhibition and complex mechanisms of drug action.
Collapse
|
13
|
A dynamically assembled cell wall synthesis machinery buffers cell growth. Proc Natl Acad Sci U S A 2014; 111:4554-9. [PMID: 24550500 DOI: 10.1073/pnas.1313826111] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Assembly of protein complexes is a key mechanism for achieving spatial and temporal coordination in processes involving many enzymes. Growth of rod-shaped bacteria is a well-studied example requiring such coordination; expansion of the cell wall is thought to involve coordination of the activity of synthetic enzymes with the cytoskeleton via a stable complex. Here, we use single-molecule tracking to demonstrate that the bacterial actin homolog MreB and the essential cell wall enzyme PBP2 move on timescales orders of magnitude apart, with drastically different characteristic motions. Our observations suggest that PBP2 interacts with the rest of the synthesis machinery through a dynamic cycle of transient association. Consistent with this model, growth is robust to large fluctuations in PBP2 abundance. In contrast to stable complex formation, dynamic association of PBP2 is less dependent on the function of other components of the synthesis machinery, and buffers spatially distributed growth against fluctuations in pathway component concentrations and the presence of defective components. Dynamic association could generally represent an efficient strategy for spatiotemporal coordination of protein activities, especially when excess concentrations of system components are inhibitory to the overall process or deleterious to the cell.
Collapse
|
14
|
Desmarais SM, De Pedro MA, Cava F, Huang KC. Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell wall structure and assembly. Mol Microbiol 2013; 89:1-13. [PMID: 23679048 DOI: 10.1111/mmi.12266] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 02/02/2023]
Abstract
The peptidoglycan (PG) cell wall is a unique macromolecule responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. A quantitative understanding of the relationships between PG architecture, morphogenesis, immune system activation and pathogenesis can provide molecular-scale insights into the function of proteins involved in cell wall synthesis and cell growth. High-performance liquid chromatography (HPLC) has played an important role in our understanding of the structural and chemical complexity of the cell wall by providing an analytical method to quantify differences in chemical composition. Here, we present a primer on the basic chemical features of wall structure that can be revealed through HPLC, along with a description of the applications of HPLC PG analyses for interpreting the effects of genetic and chemical perturbations to a variety of bacterial species in different environments. We describe the physical consequences of different PG compositions on cell shape, and review complementary experimental and computational methodologies for PG analysis. Finally, we present a partial list of future targets of development for HPLC and related techniques.
Collapse
|
15
|
Peng Z, Li L, Yang L, Zhang B, Chen G, Bi Y. Overexpression of peanut diacylglycerol acyltransferase 2 in Escherichia coli. PLoS One 2013; 8:e61363. [PMID: 23593473 PMCID: PMC3623910 DOI: 10.1371/journal.pone.0061363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/07/2013] [Indexed: 01/11/2023] Open
Abstract
Diacylglycerol acyltransferase (DGAT) is the rate-limiting enzyme in triacylglycerol biosynthesis in eukaryotic organisms. Triacylglycerols are important energy-storage oils in plants such as peanuts, soybeans and rape. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the peanut cultivar ‘Luhua 14’ using a homologous gene sequence method and rapid amplification of cDNA ends. To understand the role of AhDGAT2 in triacylglycerol biosynthesis, two AhDGAT2 nucleotide sequences that differed by three amino acids were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli Rosetta (DE3). Following IPTG induction, the isozymes (AhDGAT2a and AhDGAT2b) were expressed as 64.5 kDa GST fusion proteins. Both AhDGAT2a and AhDGAT2b occurred in the host cell cytoplasm and inclusion bodies, with larger amounts in the inclusion bodies. Overexpression of AhDGATs depressed the host cell growth rates relative to non-transformed cells, but cells harboring empty-vector, AhDGAT2a–GST, or AhDGAT2b–GST exhibited no obvious growth rate differences. Interestingly, induction of AhDGAT2a–GST and AhDGAT2b–GST proteins increased the sizes of the host cells by 2.4–2.5 times that of the controls (post-IPTG induction). The total fatty acid (FA) levels of the AhDGAT2a–GST and AhDGAT2a–GST transformants, as well as levels of C12:0, C14:0, C16:0, C16:1, C18:1n9c and C18:3n3 FAs, increased markedly, whereas C15:0 and C21:0 levels were lower than in non-transformed cells or those containing empty-vectors. In addition, the levels of some FAs differed between the two transformant strains, indicating that the two isozymes might have different functions in peanuts. This is the first time that a full-length recombinant peanut DGAT2 has been produced in a bacterial expression system and the first analysis of its effects on the content and composition of fatty acids in E. coli. Our results indicate that AhDGAT2 is a strong candidate gene for efficient FA production in E. coli.
Collapse
Affiliation(s)
- Zhenying Peng
- High-Tech Research Center, Shandong Academy of Agricultural Science, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Lan Li
- College of Life Science, Shandong Normal University, Jinan, China
| | - Lianqun Yang
- High-Tech Research Center, Shandong Academy of Agricultural Science, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Bin Zhang
- High-Tech Research Center, Shandong Academy of Agricultural Science, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Gao Chen
- High-Tech Research Center, Shandong Academy of Agricultural Science, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Yuping Bi
- High-Tech Research Center, Shandong Academy of Agricultural Science, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
- * E-mail:
| |
Collapse
|
16
|
Chao MC, Kieser KJ, Minami S, Mavrici D, Aldridge BB, Fortune SM, Alber T, Rubin EJ. Protein complexes and proteolytic activation of the cell wall hydrolase RipA regulate septal resolution in mycobacteria. PLoS Pathog 2013; 9:e1003197. [PMID: 23468634 PMCID: PMC3585148 DOI: 10.1371/journal.ppat.1003197] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 01/03/2013] [Indexed: 01/08/2023] Open
Abstract
Peptidoglycan hydrolases are a double-edged sword. They are required for normal cell division, but when dysregulated can become autolysins lethal to bacteria. How bacteria ensure that peptidoglycan hydrolases function only in the correct spatial and temporal context remains largely unknown. Here, we demonstrate that dysregulation converts the essential mycobacterial peptidoglycan hydrolase RipA to an autolysin that compromises cellular structural integrity. We find that mycobacteria control RipA activity through two interconnected levels of regulation in vivo—protein interactions coordinate PG hydrolysis, while proteolysis is necessary for RipA enzymatic activity. Dysregulation of RipA protein complexes by treatment with a peptidoglycan synthase inhibitor leads to excessive RipA activity and impairment of correct morphology. Furthermore, expression of a RipA dominant negative mutant or of differentially processed RipA homologues reveals that RipA is produced as a zymogen, requiring proteolytic processing for activity. The amount of RipA processing differs between fast-growing and slow-growing mycobacteria and correlates with the requirement for peptidoglycan hydrolase activity in these species. Together, the complex picture of RipA regulation is a part of a growing paradigm for careful control of cell wall hydrolysis by bacteria during growth, and may represent a novel target for chemotherapy development. Peptidoglycan (PG) is a major component of the bacterial cell wall, which forms a flexible, but strong mesh around the cell to oppose osmotic pressure and prevent lysis. PG is also dynamically modified, continually being disassembled and polymerized as the cell elongates and divides. It remains poorly understood how cells can titrate enough hydrolysis of the PG to allow bacterial growth without leading to excessive digestion and disruption of cellular integrity. In our work, we have identified two methods by which a critical PG hydrolase, RipA, is carefully controlled in Mycobacterium tuberculosis—protein interactions help prevent lethal RipA dysregulation, while proteolytic cleavage is used as a second step to activate the enzyme in order to separate daughter cells. Our work elaborates multiple post-transcriptional mechanisms for preventing PG hydrolases from becoming lethal autolysins. These different levels of regulation may serve as a more general paradigm for PG remodeling in other bacterial species.
Collapse
Affiliation(s)
- Michael C. Chao
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Karen J. Kieser
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Shoko Minami
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Daniela Mavrici
- Department of Molecular and Cell Biology, QB3 Institute, University of California-Berkeley, Berkeley, California, United States of America
| | - Bree B. Aldridge
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Tom Alber
- Department of Molecular and Cell Biology, QB3 Institute, University of California-Berkeley, Berkeley, California, United States of America
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Singh SK, SaiSree L, Amrutha RN, Reddy M. Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of Escherichia coli K12. Mol Microbiol 2012; 86:1036-51. [PMID: 23062283 DOI: 10.1111/mmi.12058] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2012] [Indexed: 11/29/2022]
Abstract
Bacterial peptidoglycan (PG or murein) is a single, large, covalently cross-linked macromolecule and forms a mesh-like sacculus that completely encases the cytoplasmic membrane. Hence, growth of a bacterial cell is intimately coupled to expansion of murein sacculus and requires cleavage of pre-existing cross-links for incorporation of new murein material. Although, conceptualized nearly five decades ago, the mechanism of such essential murein cleavage activity has not been studied so far. Here, we identify three new murein hydrolytic enzymes in Escherichia coli, two (Spr and YdhO) belonging to the NlpC/P60 peptidase superfamily and the third (YebA) to the lysostaphin family of proteins that cleave peptide cross-bridges between glycan chains. We show that these hydrolases are redundantly essential for bacterial growth and viability as a conditional mutant lacking all the three enzymes is unable to incorporate new murein and undergoes rapid lysis upon shift to restrictive conditions. Our results indicate the step of cross-link cleavage as essential for enlargement of the murein sacculus, rendering it a novel target for development of antibacterial therapeutic agents.
Collapse
|
18
|
Strating H, Vandenende C, Clarke AJ. Changes in peptidoglycan structure and metabolism during differentiation of Proteus mirabilis into swarmer cells. Can J Microbiol 2012; 58:1183-94. [PMID: 23051614 DOI: 10.1139/w2012-102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The O-acetylation of peptidoglycan in Gram-negative bacteria occurs specifically at the C-6 hydroxyl group of muramoyl residues. The level of peptidoglycan O-acetylation was found to decrease from 51% to 29% upon differentiation of Proteus mirabilis vegetative cells to swarmers. This decrease was accompanied by a change in the muropeptide composition of the peptidoglycan. In particular, the content of anhydromuropeptides increased, while the amount of Lys-Lys-muropeptides arising from bound lipoprotein decreased. These changes together with a shift in proportion of larger muropeptides suggested a decrease in average chain length of the muropeptides from swarmer cells. Zymography using SDS-PAGE gels containing either O-acetylated or chemically de-O-acetylated peptidoglycan was used to monitor the activity of specific autolysins during the differentiation of vegetative to swarming cells of P. mirabilis. A 43 kDa autolysin with increased specificity for O-acetylated peptidoglycan was detected in vegetative cells, but its activity appeared to decrease as the cells began to differentiate, while the levels of 3 other autolysins with apparent specificity for non-O-acetylated peptidoglycan increased. These changes are discussed in relation to the autolysin profile of the bacteria and the changes in peptidoglycan composition with cell differentiation.
Collapse
Affiliation(s)
- Hendrik Strating
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | |
Collapse
|
19
|
Bonis M, Williams A, Guadagnini S, Werts C, Boneca IG. The effect of bulgecin A on peptidoglycan metabolism and physiology of Helicobacter pylori. Microb Drug Resist 2012; 18:230-9. [PMID: 22432710 DOI: 10.1089/mdr.2011.0231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Helicobacter pylori, a human-specific bacterial pathogen responsible for severe gastric diseases, constitutes a major public health issue. In the last decade, rates of H. pylori resistance to antibiotics were increasing drastically, requiring alternative therapeutic strategies to deal with eradication failures. Therefore, we evaluated the potential of bulgecin A, a glycosidic inhibitor of the lytic transglycosylase (LTG) Slt70 of Escherichia coli, as a new therapeutic approach against the H. pylori infection. In this study, we show that bulgecin A is able to specifically inactivate the H. pylori LTG Slt, but not its ortholog MltD. Moreover, bulgecin A synergized with amoxicillin, an inhibitor of penicillin binding proteins, inducing strong morphological alterations, cellular damages, and cell death. Similarly, the simultaneous inactivation of the peptidoglycan (PG) peptidase HdpA and Slt led to inhibition of H. pylori growth, highlighting the strong potential of targeting the PG biosynthetic pathway at different biochemical steps to enhance our therapeutic approaches against bacteria. Hence, we propose that bulgecin A constitutes an attractive compound for the development of new therapeutic strategies against H. pylori combined with other inhibitors of PG biosynthetic enzymes.
Collapse
Affiliation(s)
- Mathilde Bonis
- Institut Pasteur , Group Biology and Genetics of the Bacterial Cell Wall, Paris, France
| | | | | | | | | |
Collapse
|
20
|
Production and purification of the penicillin-binding protein 3 from Pseudomonas aeruginosa. Protein Expr Purif 2010; 73:177-83. [DOI: 10.1016/j.pep.2010.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/30/2010] [Accepted: 05/10/2010] [Indexed: 11/17/2022]
|
21
|
Philippe N, Pelosi L, Lenski RE, Schneider D. Evolution of penicillin-binding protein 2 concentration and cell shape during a long-term experiment with Escherichia coli. J Bacteriol 2009; 191:909-21. [PMID: 19047356 PMCID: PMC2632098 DOI: 10.1128/jb.01419-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 11/17/2008] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycan is the major component of the bacterial cell wall and is involved in osmotic protection and in determining cell shape. Cell shape potentially influences many processes, including nutrient uptake as well as cell survival and growth. Peptidoglycan is a dynamic structure that changes during the growth cycle. Penicillin-binding proteins (PBPs) catalyze the final stages of peptidoglycan synthesis. Although PBPs are biochemically and physiologically well characterized, their broader effects, especially their effects on organismal fitness, are not well understood. In a long-term experiment, 12 populations of Escherichia coli having a common ancestor were allowed to evolve for more than 40,000 generations in a defined environment. We previously identified mutations in the pbpA operon in one-half of these populations; this operon encodes PBP2 and RodA proteins that are involved in cell wall elongation. In this study, we characterized the effects of two of these mutations on competitive fitness and other phenotypes. By constructing and performing competition experiments with strains that are isogenic except for the pbpA alleles, we showed that both mutations that evolved were beneficial in the environment used for the long-term experiment and that these mutations caused parallel phenotypic changes. In particular, they reduced the cellular concentration of PBP2, thereby generating spherical cells with an increased volume. In contrast to their fitness-enhancing effect in the environment where they evolved, both mutations decreased cellular resistance to osmotic stress. Moreover, one mutation reduced fitness during prolonged stationary phase. Therefore, alteration of the PBP2 concentration contributed to physiological trade-offs and ecological specialization during experimental evolution.
Collapse
Affiliation(s)
- Nadège Philippe
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier Grenoble 1, BP 170, F-38042 Grenoble cedex 9, France
| | | | | | | |
Collapse
|
22
|
Interaction of penicillin-binding protein 2 with soluble lytic transglycosylase B1 in Pseudomonas aeruginosa. J Bacteriol 2008; 190:6922-6. [PMID: 18708507 DOI: 10.1128/jb.00934-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble lytic transglycosylase B1 from Pseudomonas aeruginosa was coupled to Sepharose and used to immobilize interaction partners from membrane protein extracts. Penicillin-binding protein 2 (PBP2) was identified as a binding partner, suggesting that the two proteins function together in the biosynthesis of peptidoglycan. By use of an engineered truncated derivative, the N-terminal module of PBP2 was found to confer the binding properties.
Collapse
|