1
|
Osborne MS, Brehm JN, Olivença C, Cochran AM, Serrano M, Henriques AO, Sorg JA. The Impact of YabG Mutations on Clostridioides difficile Spore Germination and Processing of Spore Substrates. Mol Microbiol 2024; 122:534-548. [PMID: 39258427 DOI: 10.1111/mmi.15316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
YabG is a sporulation-specific protease that is conserved among sporulating bacteria. Clostridioides difficile YabG processes the cortex destined proteins preproSleC into proSleC and CspBA to CspB and CspA. YabG also affects synthesis of spore coat/exosporium proteins CotA and CdeM. In prior work that identified CspA as the co-germinant receptor, mutations in yabG were found which altered the co-germinants required to initiate spore germination. To understand how these mutations in the yabG locus contribute to C. difficile spore germination, we introduced these mutations into an isogenic background. Spores derived from C. difficile yabGC207A (a catalytically inactive allele), C. difficile yabGA46D, C. difficile yabGG37E, and C. difficile yabGP153L strains germinated in response to taurocholic acid alone. Recombinantly expressed and purified preproSleC incubated with E. coli lysate expressing wild type YabG resulted in the removal of the presequence from preproSleC. Interestingly, only YabGA46D showed any activity toward purified preproSleC. Mutation of the YabG processing site in preproSleC (R119A) led to YabG shifting its processing to R115 or R112. Finally, changes in yabG expression under the mutant promoters were analyzed using a SNAP-tag and revealed expression differences at early and late stages of sporulation. Overall, our results support and expand upon the hypothesis that YabG is important for germination and spore assembly and, upon mutation of the processing site, can shift where it cleaves substrates.
Collapse
Affiliation(s)
- Morgan S Osborne
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Joshua N Brehm
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Carmen Olivença
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alicia M Cochran
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Osborne MS, Brehm JN, Olivença C, Cochran AM, Serrano M, Henriques AO, Sorg JA. The impact of YabG mutations on C. difficile spore germination and processing of spore substrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598338. [PMID: 38915615 PMCID: PMC11195116 DOI: 10.1101/2024.06.10.598338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
YabG is a sporulation-specific protease that is conserved among sporulating bacteria. C. difficile YabG processes cortex destined proteins preproSleC into proSleC and CspBA to CspB and CspA. YabG also affects synthesis of spore coat/exosporium proteins CotA and CdeM. In prior work that identified CspA as the co-germinant receptor, mutations in yabG were found which altered the co-germinants required to initiate spore germination. To understand how these mutations in the yabG locus contribute to C. difficile spore germination, we introduced these mutations into an isogenic background. Spores derived from C. difficile yabG C207A (catalytically inactive), C. difficile yabG A46D, C. difficile yabG G37E, and C. difficile yabG P153L strains germinated in response to TA alone. Recombinantly expressed and purified preproSleC incubated with E. coli lysate expressing wild type YabG resulted in the removal of the pre sequence from preproSleC. Interestingly, only YabGA46D showed any activity towards purified preproSleC. Mutation of the YabG processing site in preproSleC (R119A) led to YabG shifting its processing to R115 or R112. Finally, changes in yabG expression under the mutant promoters were analyzed using a SNAP-tag and revealed expression differences at early and late stages of sporulation. Overall, our results support and expand upon the hypothesis that YabG is important for germination and spore assembly and, upon mutation of the processing site, can shift where it cleaves substrates.
Collapse
Affiliation(s)
- Morgan S. Osborne
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| | - Joshua N. Brehm
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| | - Carmen Olivença
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alicia M. Cochran
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
3
|
Hu C, Garey KW. Microscopy methods for Clostridioides difficile. Anaerobe 2024; 86:102822. [PMID: 38341023 DOI: 10.1016/j.anaerobe.2024.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Microscopic technologies including light and fluorescent, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cryo-electron microscopy have been widely utilized to visualize Clostridioides difficile at the molecular, cellular, community, and structural biology level. This comprehensive review summarizes the microscopy tools (fluorescent and reporter system) in their use to study different aspects of C. difficile life cycle and virulence (sporulation, germination) or applications (detection of C. difficile or use of antimicrobials). With these developing techniques, microscopy tools will be able to find broader applications and address more challenging questions to study C. difficile and C. difficile infection.
Collapse
Affiliation(s)
- Chenlin Hu
- University of Houston College of Pharmacy, Houston, TX, USA
| | - Kevin W Garey
- University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
4
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
5
|
Sharma SK, Schilke AR, Phan JR, Yip C, Sharma PV, Abel-Santos E, Firestine SM. The design, synthesis, and inhibition of Clostridioides difficile spore germination by acyclic and bicyclic tertiary amide analogs of cholate. Eur J Med Chem 2023; 261:115788. [PMID: 37703709 PMCID: PMC10680100 DOI: 10.1016/j.ejmech.2023.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Clostridioides difficile infection (CDI) is a major identifiable cause of antibiotic-associated diarrhea. In our previous study (J. Med. Chem., 2018, 61, 6759-6778), we have identified N-phenyl-cholan-24-amide as a potent inhibitor of spore germination. The most potent compounds in our previous work are N-arylamides. We were interested in the role that the conformation of the amide plays in activity. Previous research has shown that secondary N-arylamides exist exclusively in the coplanar trans conformation while tertiary N-methyl-N-arylamides exist in a non-planar, cis conformation. The N-methyl-N-phenyl-cholan-24-amide was 17-fold less active compared to the parent compounds suggesting the importance of the orientation of the phenyl ring. To lock the phenyl ring into a trans conformation, cyclic tertiary amides were prepared. Indoline and quinoline cholan-24-amides were both inhibitors of spore germination; however, the indoline analogs were most potent. Isoindoline and isoquinoline amides were inactive. We found that the simple indoline derivative gave an IC50 value of 1 μM, while the 5'-fluoro-substituted compound (5d) possessed an IC50 of 400 nM. To our knowledge, 5d is the most potent known spore germination inhibitor described to date. Taken together, our results indicate that the trans, coplanar conformation of the phenyl ring is required for potent inhibition.
Collapse
Affiliation(s)
- Shiv K Sharma
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Angel R Schilke
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Jacqueline R Phan
- Department of Chemistry and Biochemistry, University of Nevada -Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV, 89154, USA
| | - Christopher Yip
- Department of Chemistry and Biochemistry, University of Nevada -Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV, 89154, USA
| | - Prateek V Sharma
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Ernesto Abel-Santos
- Department of Chemistry and Biochemistry, University of Nevada -Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV, 89154, USA
| | - Steven M Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Marini E, Olivença C, Ramalhete S, Aguirre AM, Ingle P, Melo MN, Antunes W, Minton NP, Hernandez G, Cordeiro TN, Sorg JA, Serrano M, Henriques AO. A sporulation signature protease is required for assembly of the spore surface layers, germination and host colonization in Clostridioides difficile. PLoS Pathog 2023; 19:e1011741. [PMID: 37956166 PMCID: PMC10681294 DOI: 10.1371/journal.ppat.1011741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/27/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
A genomic signature for endosporulation includes a gene coding for a protease, YabG, which in the model organism Bacillus subtilis is involved in assembly of the spore coat. We show that in the human pathogen Clostridioidesm difficile, YabG is critical for the assembly of the coat and exosporium layers of spores. YabG is produced during sporulation under the control of the mother cell-specific regulators σE and σK and associates with the spore surface layers. YabG shows an N-terminal SH3-like domain and a C-terminal domain that resembles single domain response regulators, such as CheY, yet is atypical in that the conserved phosphoryl-acceptor residue is absent. Instead, the CheY-like domain carries residues required for activity, including Cys207 and His161, the homologues of which form a catalytic diad in the B. subtilis protein, and also Asp162. The substitution of any of these residues by Ala, eliminates an auto-proteolytic activity as well as interdomain processing of CspBA, a reaction that releases the CspB protease, required for proper spore germination. An in-frame deletion of yabG or an allele coding for an inactive protein, yabGC207A, both cause misassemby of the coat and exosporium and the formation of spores that are more permeable to lysozyme and impaired in germination and host colonization. Furthermore, we show that YabG is required for the expression of at least two σK-dependent genes, cotA, coding for a coat protein, and cdeM, coding for a key determinant of exosporium assembly. Thus, YabG also impinges upon the genetic program of the mother cell possibly by eliminating a transcriptional repressor. Although this activity has not been described for the B. subtilis protein and most of the YabG substrates vary among sporeformers, the general role of the protease in the assembly of the spore surface is likely to be conserved across evolutionary distance.
Collapse
Affiliation(s)
- Eleonora Marini
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Carmen Olivença
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Sara Ramalhete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Andrea Martinez Aguirre
- Texas A&M University, Department of Biology, College Station, Texas, United States of America
| | - Patrick Ingle
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Wilson Antunes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Joseph A Sorg
- Texas A&M University, Department of Biology, College Station, Texas, United States of America
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| |
Collapse
|
7
|
Flores MJ, Duricy K, Choudhary S, Laue M, Popham DL. A Family of Spore Lipoproteins Stabilizes the Germination Apparatus by Altering Inner Spore Membrane Fluidity in Bacillus subtilis Spores. J Bacteriol 2023; 205:e0014223. [PMID: 37338384 PMCID: PMC10601750 DOI: 10.1128/jb.00142-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
Dormant bacterial spores undergo the process of germination to return to a vegetative state. In most species, germination involves the sensing of nutrient germinants, the release of various cations and a calcium-dipicolinic acid (DPA) complex, spore cortex degradation, and full rehydration of the spore core. These steps are mediated by membrane-associated proteins, and all these proteins have exposure on the outer surface of the membrane, a hydrated environment where they are potentially subject to damage during dormancy. A family of lipoproteins, including YlaJ, which is expressed from the sleB operon in some species, are present in all sequenced Bacillus and Clostridium genomes that contain sleB. B. subtilis possesses four proteins in this family, and prior studies have demonstrated two of these are required for efficient spore germination and these proteins contain a multimerization domain. Genetic studies of strains lacking all combinations of these four genes now reveal all four play roles in ensuring efficient germination, and affect multiple steps in this process. Electron microscopy does not reveal significant changes in spore morphology in strains lacking lipoproteins. Generalized polarization measurements of a membrane dye probe indicate the lipoproteins decrease spore membrane fluidity. These data suggest a model in which the lipoproteins form a macromolecular structure on the outer surface of the inner spore membrane, where they act to stabilize the membrane and potentially interact with other germination proteins, and thus stabilize the function of multiple components of the germination machinery. IMPORTANCE Bacterial spores exhibit extreme longevity and resistance to many killing agents, and are thus problematic agents of several diseases and of food spoilage. However, to cause disease or spoilage, germination of the spore and return to the vegetative state is necessary. The proteins responsible for initiation and progression of germination are thus potential targets for spore-killing processes. A family of membrane-bound lipoproteins that are conserved across most spore-forming species was studied in the model organism Bacillus subtilis. The results indicate that these proteins reduce the membrane fluidity and increase the stability of other membrane associated proteins that are required for germination. Further understanding of such protein interactions on the spore membrane surface will enhance our understanding of the germination process and its potential as a decontamination method target.
Collapse
Affiliation(s)
- Matthew J. Flores
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Kate Duricy
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Shreya Choudhary
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|