1
|
Liu X, Lertsethtakarn P, Mariscal VT, Yildiz F, Ottemann KM. Counterclockwise rotation of the flagellum promotes biofilm initiation in Helicobacter pylori. mBio 2024; 15:e0044024. [PMID: 38700325 PMCID: PMC11237671 DOI: 10.1128/mbio.00440-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Motility promotes biofilm initiation during the early steps of this process: microbial surface association and attachment. Motility is controlled in part by chemotaxis signaling, so it seems reasonable that chemotaxis may also affect biofilm formation. There is a gap, however, in our understanding of the interactions between chemotaxis and biofilm formation, partly because most studies analyzed the phenotype of only a single chemotaxis signaling mutant, e.g., cheA. Here, we addressed the role of chemotaxis in biofilm formation using a full set of chemotaxis signaling mutants in Helicobacter pylori, a class I carcinogen that infects more than half the world's population and forms biofilms. Using mutants that lack each chemotaxis signaling protein, we found that chemotaxis signaling affected the biofilm initiation stage, but not mature biofilm formation. Surprisingly, some chemotaxis mutants elevated biofilm initiation, while others inhibited it in a manner that was not tied to chemotaxis ability or ligand input. Instead, the biofilm phenotype correlated with flagellar rotational bias. Specifically, mutants with a counterclockwise bias promoted biofilm initiation, e.g., ∆cheA, ∆cheW, or ∆cheV1; in contrast, those with a clockwise bias inhibited it, e.g., ∆cheZ, ∆chePep, or ∆cheV3. We tested this correlation using a counterclockwise bias-locked flagellum, which induced biofilm formation independent of the chemotaxis system. These CCW flagella, however, were not sufficient to induce biofilm formation, suggesting there are downstream players. Overall, our work highlights the new finding that flagellar rotational direction promotes biofilm initiation, with the chemotaxis signaling system operating as one mechanism to control flagellar rotation. IMPORTANCE Chemotaxis signaling systems have been reported to contribute to biofilm formation in many bacteria; however, how they regulate biofilm formation remains largely unknown. Chemotaxis systems are composed of many distinct kinds of proteins, but most previous work analyzed the biofilm effect of loss of only a few. Here, we explored chemotaxis' role during biofilm formation in the human-associated pathogenic bacterium Helicobacter pylori. We found that chemotaxis proteins are involved in biofilm initiation in a manner that correlated with how they affected flagellar rotation. Biofilm initiation was high in mutants with counterclockwise (CCW) flagellar bias and low in those with clockwise bias. We supported the idea that a major driver of biofilm formation is flagellar rotational direction using a CCW-locked flagellar mutant, which stays CCW independent of chemotaxis input and showed elevated biofilm initiation. Our data suggest that CCW-rotating flagella, independent of chemotaxis inputs, are a biofilm-promoting signal.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Paphavee Lertsethtakarn
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Vanessa T. Mariscal
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Fitnat Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| |
Collapse
|
2
|
Gupta N, Kumar A, Verma VK. Strategies adopted by gastric pathogen Helicobacter pylori for a mature biofilm formation: Antimicrobial peptides as a visionary treatment. Microbiol Res 2023; 273:127417. [PMID: 37267815 DOI: 10.1016/j.micres.2023.127417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Enormous efforts in recent past two decades to eradicate the pathogen that has been prevalent in half of the world's population have been problematic. The biofilm formed by Helicobacter pylori provides resistance towards innate immune cells, various combinatorial antibiotics, and human antimicrobial peptides, despite the fact that these all are potent enough to eradicate it in vitro. Biofilm provides the opportunity to secrete various virulence factors that strengthen the interaction between host and pathogen helping in evading the innate immune system and ultimately leading to persistence. To our knowledge, this review is the first of its kind to explain briefly the journey of H. pylori starting with the chemotaxis, the mechanism for selecting the site for colonization, the stress faced by the pathogen, and various adaptations to evade these stress conditions by forming biofilm and the morphological changes acquired by the pathogen in mature biofilm. Furthermore, we have explained the human GI tract antimicrobial peptides and the reason behind the failure of these AMPs, and how encapsulation of Pexiganan-A(MSI-78A) in a chitosan microsphere increases the efficiency of eradication.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| | - Atul Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Vijay Kumar Verma
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| |
Collapse
|
3
|
Sagoo J, Abedrabbo S, Liu X, Ottemann KM. Discovery of Type IV filament membrane alignment complex homologs in H. pylori that promote soft-agar migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.537399. [PMID: 37163056 PMCID: PMC10168365 DOI: 10.1101/2023.04.27.537399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The stomach pathogen Helicobacter pylori utilizes two scaffold proteins, CheW and CheV1, to build critical chemotaxis arrays. Chemotaxis helps bacteria establish and maintain infection. Mutants lacking either of these chemotaxis proteins have different soft agar phenotypes: deletion of cheW creates non-chemotactic strains, while deletion of cheV1 results in 50% loss of chemotaxis. In this work, we characterized the cheV1 deletion mutant phenotype in detail. cheV1 deletion mutants had poor soft-agar migration initially, but regained migration ability over time. This improved bacterial migration was stable, suggesting a genetic suppressor phenotype, termed Che+. Whole-genome sequencing analysis of four distinct cheV1 Che+ strains revealed single nucleotide polymorphisms (SNPs) in a common gene, HPG27_252 (HP0273). These SNPs were predicted to truncate the encoded protein. To confirm the role of HPG27_252 in the cheV1 phenotype, we created a targeted deletion of HPG27_252 and found that loss of HPG27_252 enhanced soft-agar migration. HPG27_252 and CheV1 appear to interact directly, based on bacterial two-hybrid analysis. HPG27_252 is predicted to encode a 179 amino acid, 21 kDa protein annotated as a hypothetical protein. Computational analysis revealed this protein to be a remote homolog of the PilO Type IV filament membrane alignment complex protein. Although H. pylori is not known to possess Type IV filaments, our analysis showed it retains an operon of genes for homologs of PilO, PilN, and PilM, but does not possess other Type IV pili genes. Our data suggest the PilO homolog plays a role in regulating H. pylori chemotaxis and motility, suggesting new ideas about evolutionary steps for controlling migration through semi-solid media.
Collapse
|
4
|
Wang S, Jiang L, Xie S, Alain K, Wang Z, Wang J, Liu D, Shao Z. Disproportionation of Inorganic Sulfur Compounds by Mesophilic Chemolithoautotrophic Campylobacterota. mSystems 2023; 8:e0095422. [PMID: 36541763 PMCID: PMC9948710 DOI: 10.1128/msystems.00954-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
The disproportionation of inorganic sulfur compounds could be widespread in natural habitats, and microorganisms could produce energy to support primary productivity through this catabolism. However, the microorganisms that carry this process out and the catabolic pathways at work remain relatively unstudied. Here, we investigated the bacterial diversity involved in sulfur disproportionation in hydrothermal plumes from Carlsberg Ridge in the northwestern Indian Ocean by enrichment cultures. A bacterial community analysis revealed that bacteria of the genera Sulfurimonas and Sulfurovum, belonging to the phylum Campylobacterota and previously having been characterized as chemolithoautotrophic sulfur oxidizers, were the most dominant members in six enrichment cultures. Subsequent bacterial isolation and physiological studies confirmed that five Sulfurimonas and Sulfurovum isolates could disproportionate thiosulfate and elemental sulfur. The ability to disproportionate sulfur was also demonstrated in several strains of Sulfurimonas and Sulfurovum that were isolated from hydrothermal vents or other natural environments. Dialysis membrane experiments showed that S0 disproportionation did not require the direct contact of cells with bulk sulfur. A comparative genomic analysis showed that Campylobacterota strains did not contain some genes of the Dsr and rDSR pathways (aprAB, dsrAB, dsrC, dsrMKJOP, and qmoABC) that are involved in sulfur disproportionation in some other taxa, suggesting the existence of an unrevealed catabolic pathway for sulfur disproportionation. These findings provide evidence for the catabolic versatility of these Campylobacterota genera, which are widely distributed in chemosynthetic environments, and expand our knowledge of the microbial taxa involved in this reaction of the biogeochemical sulfur cycle in hydrothermal vent environments. IMPORTANCE The phylum Campylobacterota, notably represented by the genera Sulfurimonas and Sulfurovum, is ubiquitous and predominant in deep-sea hydrothermal systems. It is well-known to be the major chemolithoautotrophic sulfur-oxidizing group in these habitats. Herein, we show that the mesophilic predominant chemolithoautotrophs of the genera Sulfurimonas and Sulfurovum could grow via sulfur disproportionation to gain energy. This is the first report of the chemolithoautotrophic disproportionation of thiosulfate and elemental sulfur within the genera Sulfurimonas and Sulfurovum, and this comes in addition to their already known role in the chemolithoautotrophic oxidation of sulfur compounds. Sulfur disproportionation via chemolithoautotrophic Campylobacterota may represent a previously unrecognized primary production process in hydrothermal vent ecosystems.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Fujian Key Laboratory of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Fujian Key Laboratory of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
| | - Shaobin Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Fujian Key Laboratory of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
| | - Karine Alain
- CNRS, Univ Brest, Ifremer, Unité Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Plouzané, France
| | - Zhaodi Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Fujian Key Laboratory of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
| | - Jun Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Fujian Key Laboratory of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
| | - Delin Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Fujian Key Laboratory of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Fujian Key Laboratory of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
| |
Collapse
|