1
|
Truong C, Bernard S, Le Pape P, Morin G, Baya C, Merrot P, Gorlas A, Guyot F. Production of carbon-containing pyrite spherules induced by hyperthermophilic Thermococcales: a biosignature? Front Microbiol 2023; 14:1145781. [PMID: 37303784 PMCID: PMC10248028 DOI: 10.3389/fmicb.2023.1145781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Thermococcales, a major order of hyperthermophilic archaea inhabiting iron- and sulfur-rich anaerobic parts of hydrothermal deep-sea vents, are known to induce the formation of iron phosphates, greigite (Fe3S4) and abundant quantities of pyrite (FeS2), including pyrite spherules. In the present study, we report the characterization of the sulfide and phosphate minerals produced in the presence of Thermococcales using X-ray diffraction, synchrotron-based X ray absorption spectroscopy and scanning and transmission electron microscopies. Mixed valence Fe(II)-Fe(III) phosphates are interpreted as resulting from the activity of Thermococcales controlling phosphorus-iron-sulfur dynamics. The pyrite spherules (absent in abiotic control) consist of an assemblage of ultra-small nanocrystals of a few ten nanometers in size, showing coherently diffracting domain sizes of few nanometers. The production of these spherules occurs via a sulfur redox swing from S0 to S-2 and then to S-1, involving a comproportionation of (-II) and (0) oxidation states of sulfur, as supported by S-XANES data. Importantly, these pyrite spherules sequester biogenic organic compounds in small but detectable quantities, possibly making them good biosignatures to be searched for in extreme environments.
Collapse
Affiliation(s)
- Chloé Truong
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
| | - Sylvain Bernard
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
| | - Pierre Le Pape
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
| | - Guillaume Morin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
| | - Camille Baya
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
| | - Pauline Merrot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
| | - Aurore Gorlas
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Liang J, Huang H, Wang Y, Li L, Yi J, Wang S. A Cytoplasmic NAD(P)H-Dependent Polysulfide Reductase with Thiosulfate Reductase Activity from the Hyperthermophilic Bacterium Thermotoga maritima. Microbiol Spectr 2022; 10:e0043622. [PMID: 35762779 PMCID: PMC9431562 DOI: 10.1128/spectrum.00436-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022] Open
Abstract
Thermotoga maritima is an anaerobic hyperthermophilic bacterium that efficiently produces H2 by fermenting carbohydrates. High concentration of H2 inhibits the growth of T. maritima, and S0 could eliminate the inhibition and stimulate the growth through its reduction. The mechanism of T. maritima sulfur reduction, however, has not been fully understood. Herein, based on its similarity with archaeal NAD(P)H-dependent sulfur reductases (NSR), the ORF THEMA_RS02810 was identified and expressed in Escherichia coli, and the recombinant protein was characterized. The purified flavoprotein possessed NAD(P)H-dependent S0 reductase activity (1.3 U/mg for NADH and 0.8 U/mg for NADPH), polysulfide reductase activity (0.32 U/mg for NADH and 0.35 U/mg for NADPH), and thiosulfate reductase activity (2.3 U/mg for NADH and 2.5 U/mg for NADPH), which increased 3~4-folds by coenzyme A stimulation. Quantitative RT-PCR analysis showed that nsr was upregulated together with the mbx, yeeE, and rnf genes when the strain grew in S0- or thiosulfate-containing medium. The mechanism for sulfur reduction in T. maritima was discussed, which may affect the redox balance and energy metabolism of T. maritima. Genome search revealed that NSR homolog is widely distributed in thermophilic bacteria and archaea, implying its important role in the sulfur cycle of geothermal environments. IMPORTANCE The reduction of S0 and thiosulfate is essential in the sulfur cycle of geothermal environments, in which thermophiles play an important role. Despite previous research on some sulfur reductases of thermophilic archaea, the mechanism of sulfur reduction in thermophilic bacteria is still not clearly understood. Herein, we confirmed the presence of a cytoplasmic NAD(P)H-dependent polysulfide reductase (NSR) from the hyperthermophile T. maritima, with S0, polysulfide, and thiosulfate reduction activities, in contrast to other sulfur reductases. When grown in S0- or thiosulfate-containing medium, its expression was upregulated. And the putative membrane-bound MBX and Rnf may also play a role in the metabolism, which might influence the redox balance and energy metabolism of T. maritima. This is distinct from the mechanism of sulfur reduction in mesophiles such as Wolinella succinogenes. NSR homologs are widely distributed among heterotrophic thermophiles, suggesting that they may be vital in the sulfur cycle in geothermal environments.
Collapse
Affiliation(s)
- Jiyu Liang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Haiyan Huang
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Yubo Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Lexin Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Jihong Yi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Shuning Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| |
Collapse
|
3
|
Ohira T, Minowa K, Sugiyama K, Yamashita S, Sakaguchi Y, Miyauchi K, Noguchi R, Kaneko A, Orita I, Fukui T, Tomita K, Suzuki T. Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature 2022; 605:372-379. [PMID: 35477761 PMCID: PMC9095486 DOI: 10.1038/s41586-022-04677-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/22/2022] [Indexed: 12/30/2022]
Abstract
Post-transcriptional modifications have critical roles in tRNA stability and function1–4. In thermophiles, tRNAs are heavily modified to maintain their thermal stability under extreme growth temperatures5,6. Here we identified 2′-phosphouridine (Up) at position 47 of tRNAs from thermophilic archaea. Up47 confers thermal stability and nuclease resistance to tRNAs. Atomic structures of native archaeal tRNA showed a unique metastable core structure stabilized by Up47. The 2′-phosphate of Up47 protrudes from the tRNA core and prevents backbone rotation during thermal denaturation. In addition, we identified the arkI gene, which encodes an archaeal RNA kinase responsible for Up47 formation. Structural studies showed that ArkI has a non-canonical kinase motif surrounded by a positively charged patch for tRNA binding. A knockout strain of arkI grew slowly at high temperatures and exhibited a synthetic growth defect when a second tRNA-modifying enzyme was depleted. We also identified an archaeal homologue of KptA as an eraser that efficiently dephosphorylates Up47 in vitro and in vivo. Taken together, our findings show that Up47 is a reversible RNA modification mediated by ArkI and KptA that fine-tunes the structural rigidity of tRNAs under extreme environmental conditions. Reversible internal RNA phosphrylation contributes to thermal stability and nuclease resistance of tRNA, and cellular thermotolerance of hyperthermophiles.
Collapse
Affiliation(s)
- Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Keiichi Minowa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kei Sugiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Seisuke Yamashita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryo Noguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Akira Kaneko
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Shabdar S, Anaclet B, Castineiras AG, Desir N, Choe N, Crane EJ, Sazinsky MH. Structural and Kinetic Characterization of Hyperthermophilic NADH-Dependent Persulfide Reductase from Archaeoglobus fulgidus. ARCHAEA (VANCOUVER, B.C.) 2021; 2021:8817136. [PMID: 33776585 PMCID: PMC7969121 DOI: 10.1155/2021/8817136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 11/18/2022]
Abstract
NADH-dependent persulfide reductase (Npsr) has been proposed to facilitate dissimilatory sulfur respiration by reducing persulfide or sulfane sulfur-containing substrates to H2S. The presence of this gene in the sulfate and thiosulfate-reducing Archaeoglobus fulgidus DSM 4304 and other hyperthermophilic Archaeoglobales appears anomalous, as A. fulgidus is unable to respire S0 and grow in the presence of elemental sulfur. To assess the role of Npsr in the sulfur metabolism of A. fulgidus DSM 4304, the Npsr from A. fulgidus was characterized. AfNpsr is specific for persulfide and polysulfide as substrates in the oxidative half-reaction, exhibiting k cat/K m on the order of 104 M-1 s-1, which is similar to the kinetic parameters observed for hyperthermophilic CoA persulfide reductases. In contrast to the bacterial Npsr, AfNpsr exhibits low disulfide reductase activity with DTNB; however, similar to the bacterial enzymes, it does not show detectable activity with CoA-disulfide, oxidized glutathione, or cystine. The 3.1 Å X-ray structure of AfNpsr reveals access to the tightly bound catalytic CoA, and the active site Cys 42 is restricted by a flexible loop (residues 60-66) that is not seen in the bacterial homologs from Shewanella loihica PV-4 and Bacillus anthracis. Unlike the bacterial enzymes, AfNpsr exhibits NADH oxidase activity and also shows no detectable activity with NADPH. Models suggest steric and electrostatic repulsions of the NADPH 2'-phosphate account for the strong preference for NADH. The presence of Npsr in the nonsulfur-reducing A. fulgidus suggests that the enzyme may offer some protection against S0 or serve in another metabolic role that has yet to be identified.
Collapse
Affiliation(s)
- Sherwin Shabdar
- Department of Biology, Pomona College, 175 West 6th Street, Claremont, CA 91711, USA
| | - Bukuru Anaclet
- Department of Chemistry, Pomona College, 645 N. College Ave., Claremont, CA, USA 91711
| | | | - Neyissa Desir
- Department of Chemistry, Pomona College, 645 N. College Ave., Claremont, CA, USA 91711
| | - Nicholas Choe
- Department of Biology, Pomona College, 175 West 6th Street, Claremont, CA 91711, USA
| | - Edward J. Crane
- Department of Biology, Pomona College, 175 West 6th Street, Claremont, CA 91711, USA
| | - Matthew H. Sazinsky
- Department of Chemistry, Pomona College, 645 N. College Ave., Claremont, CA, USA 91711
| |
Collapse
|
5
|
Pedone E, Fiorentino G, Bartolucci S, Limauro D. Enzymatic Antioxidant Signatures in Hyperthermophilic Archaea. Antioxidants (Basel) 2020; 9:antiox9080703. [PMID: 32756530 PMCID: PMC7465337 DOI: 10.3390/antiox9080703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
To fight reactive oxygen species (ROS) produced by both the metabolism and strongly oxidative habitats, hyperthermophilic archaea are equipped with an array of antioxidant enzymes whose role is to protect the biological macromolecules from oxidative damage. The most common ROS, such as superoxide radical (O2-.) and hydrogen peroxide (H2O2), are scavenged by superoxide dismutase, peroxiredoxins, and catalase. These enzymes, together with thioredoxin, protein disulfide oxidoreductase, and thioredoxin reductase, which are involved in redox homeostasis, represent the core of the antioxidant system. In this review, we offer a panorama of progression of knowledge on the antioxidative system in aerobic or microaerobic (hyper)thermophilic archaea and possible industrial applications of these enzymes.
Collapse
Affiliation(s)
- Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy;
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
| | - Danila Limauro
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
- Correspondence:
| |
Collapse
|
6
|
An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research. Folia Microbiol (Praha) 2019; 65:67-78. [PMID: 31286382 DOI: 10.1007/s12223-019-00730-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Almost 25 years have passed since the discovery of a planktonic, heterotrophic, hyperthermophilic archaeon named Thermococcus kodakarensis KOD1, previously known as Pyrococcus sp. KOD1, by Imanaka and coworkers. T. kodakarensis is one of the most studied archaeon in terms of metabolic pathways, available genomic resources, established genetic engineering techniques, reporter constructs, in vitro transcription/translation machinery, and gene expression/gene knockout systems. In addition to all these, ease of growth using various carbon sources makes it a facile archaeal model organism. Here, in this review, an attempt is made to reflect what we have learnt from this hyperthermophilic archaeon.
Collapse
|
7
|
Koga Y, Konishi K, Kobayashi A, Kanaya S, Takano K. Anaerobic glycerol-3-phosphate dehydrogenase complex from hyperthermophilic archaeon Thermococcus kodakarensis KOD1. J Biosci Bioeng 2018; 127:679-685. [PMID: 30583977 DOI: 10.1016/j.jbiosc.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 11/30/2022]
Abstract
Glycerol-3-phosphate (G3P) is a key intermediate of glycerol metabolism and is oxidized to dihydroxyacetone phosphate aerobically or anaerobically by appropriate G3P dehydrogenases. A hyperthermophilic archaeon Thermococcus kodakarensis KOD1 has a novel operon consisting of three genes encoding an anaerobic G3P dehydrogenase (G3PDH), an NADH oxidase (NOX), and a molybdopterin oxidoreductase (MOX). Typically, the G3PDH gene (glpA) is included in an operon with genes encoding essential subunits of the G3PDH complex, glpB and glpC. The three genes from T. kodakarensis were cloned and expressed in Escherichia coli, and their recombinant proteins, Tk-G3PDH, Tk-NOX and Tk-MOX, were characterized. The optimal temperature of Tk-G3PDH for activity was 80°C, indicating high thermal stability. Tk-G3PDH has flavin adenine dinucleotide as a prosthetic group and catalyzes oxidation of G3P with kcat/Km 1.93 × 103 M-1s-1 at 80°C, compared with 9.83 × 105 M-1s-1 for the E. coli G3PDH complex at 37°C. Interestingly, Tk-G3PDH can catalyze this reaction even as a monomer, whereas GlpA must form a complex with GlpB and GlpC. Tk-G3PDH also forms a putative heteropentamer with Tk-NOX and Tk-MOX (G3PDH:NOX:MOX = 2:2:1). This complex may form an electron transfer pathway to a final electron acceptor in the cell membrane, as is the case for the typical G3PDH complex GlpABC.
Collapse
Affiliation(s)
- Yuichi Koga
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kanako Konishi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Kobayashi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
8
|
Jelen B, Giovannelli D, Falkowski PG, Vetriani C. Elemental sulfur reduction in the deep‐sea vent thermophile,
Thermovibrio ammonificans. Environ Microbiol 2018; 20:2301-2316. [DOI: 10.1111/1462-2920.14280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Benjamin Jelen
- Environmental Biophysics and Molecular Ecology Program Rutgers University, New Brunswick New Brunswick NJ 08901 USA
| | - Donato Giovannelli
- Department of Marine and Coastal Sciences Rutgers University New Brunswick NJ 08901 USA
- Institute of Marine Science National Research Council Ancona 60125 Italy
- Earth‐Life Science Institute Tokyo Institute of Technology Tokyo 152‐8550 Japan
| | - Paul G. Falkowski
- Environmental Biophysics and Molecular Ecology Program Rutgers University, New Brunswick New Brunswick NJ 08901 USA
- Department of Marine and Coastal Sciences Rutgers University New Brunswick NJ 08901 USA
- Department of Earth and Planetary Sciences Rutgers University New Brunswick NJ 08854 USA
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences Rutgers University New Brunswick NJ 08901 USA
- Department of Biochemistry and Microbiology Rutgers University New Brunswick NJ 08901 USA
| |
Collapse
|
9
|
Sulfur vesicles from Thermococcales: A possible role in sulfur detoxifying mechanisms. Biochimie 2015; 118:356-64. [PMID: 26234734 PMCID: PMC4640147 DOI: 10.1016/j.biochi.2015.07.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/28/2015] [Indexed: 11/21/2022]
Abstract
The euryarchaeon Thermococcus prieurii inhabits deep-sea hydrothermal vents, one of the most extreme environments on Earth, which is reduced and enriched with heavy metals. Transmission electron microscopy and cryo-electron microscopy imaging of T. prieurii revealed the production of a plethora of diverse membrane vesicles (MVs) (from 50 nm to 400 nm), as is the case for other Thermococcales. T. prieurii also produces particularly long nanopods/nanotubes, some of them containing more than 35 vesicles encased in a S-layer coat. Notably, cryo-electron microscopy of T. prieurii cells revealed the presence of numerous intracellular dark vesicles that bud from the host cells via interaction with the cytoplasmic membrane. These dark vesicles are exclusively found in conjunction with T. prieurii cells and never observed in the purified membrane vesicles preparations. Energy-Dispersive-X-Ray analyses revealed that these dark vesicles are filled with sulfur. Furthermore, the presence of these sulfur vesicles (SVs) is exclusively observed when elemental sulfur was added into the growth medium. In this report, we suggest that these atypical vesicles sequester the excess sulfur not used for growth, thus preventing the accumulation of toxic levels of sulfur in the host's cytoplasm. These SVs transport elemental sulfur out of the cell where they are rapidly degraded. Intriguingly, closely related archaeal species, Thermococcus nautili and Thermococcus kodakaraensis, show some differences about the production of sulfur vesicles. Whereas T. kodakaraensis produces less sulfur vesicles than T. prieurii, T. nautili does not produce such sulfur vesicles, suggesting that Thermococcales species exhibit significant differences in their sulfur metabolic pathways.
Collapse
|
10
|
Jia B, Liu J, Van Duyet L, Sun Y, Xuan YH, Cheong GW. Proteome profiling of heat, oxidative, and salt stress responses in Thermococcus kodakarensis KOD1. Front Microbiol 2015; 6:605. [PMID: 26150806 PMCID: PMC4473059 DOI: 10.3389/fmicb.2015.00605] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/02/2015] [Indexed: 01/18/2023] Open
Abstract
The thermophilic species, Thermococcus kodakarensis KOD1, a model microorganism for studying hyperthermophiles, has adapted to optimal growth under conditions of high temperature and salinity. However, the environmental conditions for the strain are not always stable, and this strain might face different stresses. In the present study, we compared the proteome response of T. kodakarensis to heat, oxidative, and salt stresses using two-dimensional electrophoresis, and protein spots were identified through MALDI-TOF/MS. Fifty-nine, forty-two, and twenty-nine spots were induced under heat, oxidative, and salt stresses, respectively. Among the up-regulated proteins, four proteins (a hypothetical protein, pyridoxal biosynthesis lyase, peroxiredoxin, and protein disulphide oxidoreductase) were associated with all three stresses. Gene ontology analysis showed that these proteins were primarily involved metabolic and cellular processes. The KEGG pathway analysis suggested that the main metabolic pathways involving these enzymes were related to carbohydrate metabolism, secondary metabolite synthesis, and amino acid biosynthesis. These data might enhance our understanding of the functions and molecular mechanisms of thermophilic Archaea for survival and adaptation in extreme environments.
Collapse
Affiliation(s)
- Baolei Jia
- Department of Life Science, Chung-Ang University, Seoul South Korea ; Division of Applied Life Sciences and Research Institute of Natural Science, Gyeongsang National University Jinju, South Korea
| | - Jinliang Liu
- College of Plant Sciences, Jilin University Changchun, China
| | - Le Van Duyet
- Division of Applied Life Sciences and Research Institute of Natural Science, Gyeongsang National University Jinju, South Korea
| | - Ying Sun
- College of Plant Sciences, Jilin University Changchun, China
| | - Yuan H Xuan
- College of Plant Protection, Shenyang Agricultural University Shenyang, China
| | - Gang-Won Cheong
- Division of Applied Life Sciences and Research Institute of Natural Science, Gyeongsang National University Jinju, South Korea
| |
Collapse
|
11
|
Activation of SsoPK4, an Archaeal eIF2α Kinase Homolog, by Oxidized CoA. Proteomes 2015; 3:89-116. [PMID: 28248264 PMCID: PMC5217372 DOI: 10.3390/proteomes3020089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 01/08/2023] Open
Abstract
The eukaryotic protein kinase (ePK) paradigm provides integral components for signal transduction cascades throughout nature. However, while so-called typical ePKs permeate the Eucarya and Bacteria, atypical ePKs dominate the kinomes of the Archaea. Intriguingly, the catalytic domains of the handful of deduced typical ePKs from the archaeon Sulfolobus solfataricus P2 exhibit significant resemblance to the protein kinases that phosphorylate translation initiation factor 2α (eIF2α) in response to cellular stresses. We cloned and expressed one of these archaeal eIF2α protein kinases, SsoPK4. SsoPK4 exhibited protein-serine/threonine kinase activity toward several proteins, including the S. solfataricus homolog of eIF2α, aIF2α. The activity of SsoPK4 was inhibited in vitro by 3ʹ,5ʹ-cyclic AMP (Ki of ~23 µM) and was activated by oxidized Coenzyme A, an indicator of oxidative stress in the Archaea. Activation enhanced the apparent affinity for protein substrates, Km, but had little effect on Vmax. Autophosphorylation activated SsoPK4 and rendered it insensitive to oxidized Coenzyme A.
Collapse
|
12
|
Proteomic Insights into Sulfur Metabolism in the Hydrogen-Producing Hyperthermophilic Archaeon Thermococcus onnurineus NA1. Int J Mol Sci 2015; 16:9167-95. [PMID: 25915030 PMCID: PMC4463584 DOI: 10.3390/ijms16059167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/14/2015] [Indexed: 11/17/2022] Open
Abstract
The hyperthermophilic archaeon Thermococcus onnurineus NA1 has been shown to produce H₂ when using CO, formate, or starch as a growth substrate. This strain can also utilize elemental sulfur as a terminal electron acceptor for heterotrophic growth. To gain insight into sulfur metabolism, the proteome of T. onnurineus NA1 cells grown under sulfur culture conditions was quantified and compared with those grown under H₂-evolving substrate culture conditions. Using label-free nano-UPLC-MSE-based comparative proteomic analysis, approximately 38.4% of the total identified proteome (589 proteins) was found to be significantly up-regulated (≥1.5-fold) under sulfur culture conditions. Many of these proteins were functionally associated with carbon fixation, Fe-S cluster biogenesis, ATP synthesis, sulfur reduction, protein glycosylation, protein translocation, and formate oxidation. Based on the abundances of the identified proteins in this and other genomic studies, the pathways associated with reductive sulfur metabolism, H₂-metabolism, and oxidative stress defense were proposed. The results also revealed markedly lower expression levels of enzymes involved in the sulfur assimilation pathway, as well as cysteine desulfurase, under sulfur culture condition. The present results provide the first global atlas of proteome changes triggered by sulfur, and may facilitate an understanding of how hyperthermophilic archaea adapt to sulfur-rich, extreme environments.
Collapse
|
13
|
Genetic examination and mass balance analysis of pyruvate/amino acid oxidation pathways in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 2014; 196:3831-9. [PMID: 25157082 DOI: 10.1128/jb.02021-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study investigated the simultaneous oxidation of pyruvate and amino acids during H2-evolving growth of the hyperthermophilic archaeon Thermococcus kodakarensis. The comparison of mass balance between a cytosolic hydrogenase (HYH)-deficient strain (the ΔhyhBGSL strain) and the parent strain indicated that NADPH generated via H2 uptake by HYH was consumed by reductive amination of 2-oxoglutarate catalyzed by glutamate dehydrogenase. Further examinations were done to elucidate functions of three enzymes potentially involved in pyruvate oxidation: pyruvate formate-lyase (PFL), pyruvate:ferredoxin oxidoreductase (POR), and 2-oxoisovalerate:ferredoxin oxidoreductase (VOR) under the HYH-deficient background in T. kodakarensis. No significant change was observed by deletion of pflDA, suggesting that PFL had no critical role in pyruvate oxidation. The growth properties and mass balances of ΔporDAB and ΔvorDAB strains indicated that POR and VOR specifically functioned in oxidation of pyruvate and branched-chain amino acids, respectively, and the lack of POR or VOR was compensated for by promoting the oxidation of another substrate driven by the remaining oxidoreductase. The H2 yields from the consumed pyruvate and amino acids were increased from 31% by the parent strain to 67% and 82% by the deletion of hyhBGSL and double deletion of hyhBGSL and vorDAB, respectively. Significant discrepancies in the mass balances were observed in excess formation of acetate and NH3, suggesting the presence of unknown metabolisms in T. kodakarensis grown in the rich medium containing pyruvate.
Collapse
|
14
|
Characterization and gene deletion analysis of four homologues of group 3 pyridine nucleotide disulfide oxidoreductases from Thermococcus kodakarensis. Extremophiles 2014; 18:603-16. [DOI: 10.1007/s00792-014-0643-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
|
15
|
Yan Z, Nam YW, Fushinobu S, Wakagi T. Sulfolobus tokodaii ST2133 is characterized as a thioredoxin reductase-like ferredoxin:NADP+ oxidoreductase. Extremophiles 2013; 18:99-110. [DOI: 10.1007/s00792-013-0601-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
|
16
|
Herwald S, Liu AY, Zhu BE, Sea KW, Lopez KM, Sazinsky MH, Crane EJ. Structure and substrate specificity of the pyrococcal coenzyme A disulfide reductases/polysulfide reductases (CoADR/Psr): implications for S(0)-based respiration and a sulfur-dependent antioxidant system in Pyrococcus. Biochemistry 2013; 52:2764-73. [PMID: 23530771 DOI: 10.1021/bi3014399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FAD and NAD(P)H-dependent coenzyme A disulfide reductases/polysulfide reductases (CoADR/Psr) have been proposed to be important for the reduction of sulfur and disulfides in the sulfur-reducing anaerobic hyperthermophiles Pyrococcus horikoshii and Pyrococcus furiosus; however, the form(s) of sulfur that the enzyme actually reduces are not clear. Here we determined the structure for the FAD- and coenzyme A-containing holoenzyme from P. horikoshii to 2.7 Å resolution and characterized its substrate specificity. The enzyme is relatively promiscuous and reduces a range of disulfide, persulfide, and polysulfide compounds. These results indicate that the likely in vivo substrates are NAD(P)H and di-, poly-, and persulfide derivatives of coenzyme A, although polysulfide itself is also efficiently reduced. The role of the enzyme in the reduction of elemental sulfur (S(8)) in situ is not, however, ruled out by these results, and the possible roles of this substrate are discussed. During aerobic persulfide reduction, rapid recycling of the persulfide substrate was observed, which is proposed to occur via sulfide oxidation by O(2) and/or H(2)O(2). As expected, this reaction disappears under anaerobic conditions and may explain observations by others that CoADR is not essential for S(0) respiration in Pyrococcus or Thermococcus but appears to participate in oxidative defense in the presence of S(0). When compared to the homologous Npsr enzyme from Shewanella loihica PV-4 and homologous enzymes known to reduce CoA disulfide, the phCoADR structure shows a relatively restricted substrate channel leading into the sulfur-reducing side of the FAD isoalloxazine ring, suggesting how this enzyme class may select for specific disulfide substrates.
Collapse
Affiliation(s)
- Sanna Herwald
- Department of Chemistry, Pomona College, 175 W. Sixth Street, Claremont, CA 91711, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Nisar MA, Rashid N, Bashir Q, Gardner QTAA, Shafiq MH, Akhtar M. TK1299, a highly thermostable NAD(P)H oxidase from Thermococcus kodakaraensis exhibiting higher enzymatic activity with NADPH. J Biosci Bioeng 2013; 116:39-44. [PMID: 23453203 DOI: 10.1016/j.jbiosc.2013.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Seven nicotinamide adenine dinucleotide oxidase homologs have been found in the genome of Thermococcus kodakaraensis. The gene encoding one of them, TK1299, consisted of 1326 nucleotides, corresponding to a polypeptide of 442 amino acids. To examine the molecular properties of TK1299, the structural gene was cloned, expressed in Escherichia coli and the gene product was characterized. Molecular weight of the recombinant protein was 49,375 Da when determined by matrix-assisted laser desorption/ionization time-of-flight and 300 kDa when analyzed by gel filtration chromatography indicating that it existed in a hexameric form. The enzyme was highly thermostable even in boiling water where it exhibited more than 95% of the enzyme activity after incubation of 150 min. TK1299 catalyzed the oxidation of NADH as well as NADPH and predominantly converted O₂ to H₂O (more than 75%). K(m) value of the enzyme towards NADH and NADPH was almost same (24 ± 2 μM) where as specific activity was higher with NADPH compared to NADH. To our knowledge this is the most thermostable and unique NAD(P)H oxidase displaying higher enzyme activity with NADPH.
Collapse
Affiliation(s)
- Muhammad Atif Nisar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Punjab, Pakistan
| | | | | | | | | | | |
Collapse
|
18
|
Atomi H, Imanaka T, Fukui T. Overview of the genetic tools in the Archaea. Front Microbiol 2012; 3:337. [PMID: 23060865 PMCID: PMC3462420 DOI: 10.3389/fmicb.2012.00337] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 09/01/2012] [Indexed: 01/17/2023] Open
Abstract
This section provides an overview of the genetic systems developed in the Archaea. Genetic manipulation is possible in many members of the halophiles, methanogens, Sulfolobus, and Thermococcales. We describe the selection/counterselection principles utilized in each of these groups, which consist of antibiotics and their resistance markers, and auxotrophic host strains and complementary markers. The latter strategy utilizes techniques similar to those developed in yeast. However, Archaea are resistant to many of the antibiotics routinely used for selection in the Bacteria, and a number of strategies specific to the Archaea have been developed. In addition, examples utilizing the genetic systems developed for each group will be briefly described.
Collapse
Affiliation(s)
- Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku Kyoto, Japan ; JST, CREST, Sanbancho, Chiyoda-ku Tokyo, Japan
| | | | | |
Collapse
|
19
|
Hileman TH, Santangelo TJ. Genetics Techniques for Thermococcus kodakarensis. Front Microbiol 2012; 3:195. [PMID: 22701112 PMCID: PMC3370424 DOI: 10.3389/fmicb.2012.00195] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/13/2012] [Indexed: 11/13/2022] Open
Abstract
Thermococcus kodakarensis (T. kodakarensis) has emerged as a premier model system for studies of archaeal biochemistry, genetics, and hyperthermophily. This prominence is derived largely from the natural competence of T. kodakarensis and the comprehensive, rapid, and facile techniques available for manipulation of the T. kodakarensis genome. These genetic capacities are complemented by robust planktonic growth, simple selections, and screens, defined in vitro transcription and translation systems, replicative expression plasmids, in vivo reporter constructs, and an ever-expanding knowledge of the regulatory mechanisms underlying T. kodakarensis metabolism. Here we review the existing techniques for genetic and biochemical manipulation of T. kodakarensis. We also introduce a universal platform to generate the first comprehensive deletion and epitope/affinity tagged archaeal strain libraries.
Collapse
Affiliation(s)
- Travis H Hileman
- Department of Microbiology, Center for RNA Biology, Ohio State University Columbus, OH, USA
| | | |
Collapse
|
20
|
Wu X, Kobori H, Orita I, Zhang C, Imanaka T, Xing XH, Fukui T. Application of a novel thermostable NAD(P)H oxidase from hyperthermophilic archaeon for the regeneration of both NAD⁺ and NADP⁺. Biotechnol Bioeng 2011; 109:53-62. [PMID: 21830202 DOI: 10.1002/bit.23294] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/25/2011] [Accepted: 08/03/2011] [Indexed: 11/07/2022]
Abstract
A novel thermostable NAD(P)H oxidase from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkNOX) catalyzes oxidation of NADH and NADPH with oxygen from atmospheric air as an electron acceptor. Although the optimal temperature of TkNOX is >90°C, it also shows activity at 30°C. This enzyme was used for the regeneration of both NADP(+) and NAD(+) in alcohol dehydrogenase (ADH)-catalyzed enantioselective oxidation of racemic 1-phenylethanol. NADP(+) regeneration at 30°C was performed by TkNOX coupled with (R)-specific ADH from Lactobacillus kefir, resulting in successful acquisition of optically pure (S)-1-phenylethanol. The use of TkNOX with moderately thermostable (S)-specific ADH from Rhodococcus erythropolis enabled us to operate the enantioselective bioconversion accompanying NAD(+) regeneration at high temperatures. Optically pure (R)-1-phenylethanol was successfully obtained by this system after a shorter reaction time at 45-60°C than that at 30°C, demonstrating an advantage of the combination of thermostable enzymes. The ability of TkNOX to oxidize both NADH and NADPH with remarkable thermostability renders this enzyme a versatile tool for regeneration of the oxidized nicotinamide cofactors without the need for extra substrates other than dissolved oxygen from air.
Collapse
Affiliation(s)
- Xi Wu
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Santangelo TJ, Cuboňová L, Reeve JN. Deletion of alternative pathways for reductant recycling in Thermococcus kodakarensis increases hydrogen production. Mol Microbiol 2011; 81:897-911. [PMID: 21749486 DOI: 10.1111/j.1365-2958.2011.07734.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hydrogen (H₂) production by Thermococcus kodakarensis compares very favourably with the levels reported for the most productive algal, fungal and bacterial systems. T. kodakarensis can also consume H₂ and is predicted to use several alternative pathways to recycle reduced cofactors, some of which may compete with H₂ production for reductant disposal. To explore the reductant flux and possible competition for H₂ production in vivo, T. kodakarensis TS517 was mutated to precisely delete each of the alternative pathways of reductant disposal, H₂ production and consumption. The results obtained establish that H₂ is generated predominantly by the membrane-bound hydrogenase complex (Mbh), confirm the essential role of the SurR (TK1086p) regulator in vivo, delineate the roles of sulfur (S°) regulon proteins and demonstrate that preventing H₂ consumption results in a substantial net increase in H₂ production. Constitutive expression of TK1086 (surR) from a replicative plasmid restored the ability of T. kodakarensis TS1101 (ΔTK1086) to grow in the absence of S° and stimulated H₂ production, revealing a second mechanism to increase H₂ production. Transformation of T. kodakarensis TS1101 with plasmids that express SurR variants constructed to direct the constitutive synthesis of the Mbh complex and prevent expression of the S° regulon was only possible in the absence of S° and, under these conditions, the transformants exhibited wild-type growth and H₂ production. With S° present, they grew slower but synthesized more H₂ per unit biomass than T. kodakarensis TS517.
Collapse
Affiliation(s)
- Thomas J Santangelo
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|