1
|
Durica-Mitic S, Göpel Y, Görke B. Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0013-2017. [PMID: 29573258 PMCID: PMC11633585 DOI: 10.1128/microbiolspec.rwr-0013-2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
Survival of bacteria in ever-changing habitats with fluctuating nutrient supplies requires rapid adaptation of their metabolic capabilities. To this end, carbohydrate metabolism is governed by complex regulatory networks including posttranscriptional mechanisms that involve small regulatory RNAs (sRNAs) and RNA-binding proteins. sRNAs limit the response to substrate availability and set the threshold or time required for induction and repression of carbohydrate utilization systems. Carbon catabolite repression (CCR) also involves sRNAs. In Enterobacteriaceae, sRNA Spot 42 cooperates with the transcriptional regulator cyclic AMP (cAMP)-receptor protein (CRP) to repress secondary carbohydrate utilization genes when a preferred sugar is consumed. In pseudomonads, CCR operates entirely at the posttranscriptional level, involving RNA-binding protein Hfq and decoy sRNA CrcZ. Moreover, sRNAs coordinate fluxes through central carbohydrate metabolic pathways with carbohydrate availability. In Gram-negative bacteria, the interplay between RNA-binding protein CsrA and its cognate sRNAs regulates glycolysis and gluconeogenesis in response to signals derived from metabolism. Spot 42 and cAMP-CRP jointly downregulate tricarboxylic acid cycle activity when glycolytic carbon sources are ample. In addition, bacteria use sRNAs to reprogram carbohydrate metabolism in response to anaerobiosis and iron limitation. Finally, sRNAs also provide homeostasis of essential anabolic pathways, as exemplified by the hexosamine pathway providing cell envelope precursors. In this review, we discuss the manifold roles of bacterial sRNAs in regulation of carbon source uptake and utilization, substrate prioritization, and metabolism.
Collapse
Affiliation(s)
- Svetlana Durica-Mitic
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Yvonne Göpel
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
2
|
Rodionova IA, Zhang Z, Mehla J, Goodacre N, Babu M, Emili A, Uetz P, Saier MH. The phosphocarrier protein HPr of the bacterial phosphotransferase system globally regulates energy metabolism by directly interacting with multiple enzymes in Escherichia coli. J Biol Chem 2017. [PMID: 28634232 DOI: 10.1074/jbc.m117.795294] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The histidine-phosphorylatable phosphocarrier protein (HPr) is an essential component of the sugar-transporting phosphotransferase system (PTS) in many bacteria. Recent interactome findings suggested that HPr interacts with several carbohydrate-metabolizing enzymes, but whether HPr plays a regulatory role was unclear. Here, we provide evidence that HPr interacts with a large number of proteins in Escherichia coli We demonstrate HPr-dependent allosteric regulation of the activities of pyruvate kinase (PykF, but not PykA), phosphofructokinase (PfkB, but not PfkA), glucosamine-6-phosphate deaminase (NagB), and adenylate kinase (Adk). HPr is either phosphorylated on a histidyl residue (HPr-P) or non-phosphorylated (HPr). PykF is activated only by non-phosphorylated HPr, which decreases the PykF Khalf for phosphoenolpyruvate by 10-fold (from 3.5 to 0.36 mm), thus influencing glycolysis. PfkB activation by HPr, but not by HPr-P, resulted from a decrease in the Khalf for fructose-6-P, which likely influences both gluconeogenesis and glycolysis. Moreover, NagB activation by HPr was important for the utilization of amino sugars, and allosteric inhibition of Adk activity by HPr-P, but not by HPr, allows HPr to regulate the cellular energy charge coordinately with glycolysis. These observations suggest that HPr serves as a directly interacting global regulator of carbon and energy metabolism and probably of other physiological processes in enteric bacteria.
Collapse
Affiliation(s)
- Irina A Rodionova
- From the Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116
| | - Zhongge Zhang
- From the Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116
| | - Jitender Mehla
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Norman Goodacre
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Andrew Emili
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Milton H Saier
- From the Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116,.
| |
Collapse
|
3
|
Activation of Escherichia coli antiterminator BglG requires its phosphorylation. Proc Natl Acad Sci U S A 2012; 109:15906-11. [PMID: 22984181 DOI: 10.1073/pnas.1210443109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional antiterminator proteins of the BglG family control the expression of enzyme II (EII) carbohydrate transporters of the bacterial phosphotransferase system (PTS). In the PTS, phosphoryl groups are transferred from phosphoenolpyruvate (PEP) via the phosphotransferases enzyme I (EI) and HPr to the EIIs, which phosphorylate their substrates during transport. Activity of the antiterminators is negatively controlled by reversible phosphorylation catalyzed by the cognate EIIs in response to substrate availability and positively controlled by the PTS. For the Escherichia coli BglG antiterminator, two different mechanisms for activation by the PTS were proposed. According to the first model, BglG is activated by HPr-catalyzed phosphorylation at a site distinct from the EII-dependent phosphorylation site. According to the second model, BglG is not activated by phosphorylation, but solely through interaction with EI and HPr, which are localized at the cell pole. Subsequently BglG is released from the cell pole to the cytoplasm as an active dimer. Here we addressed this discrepancy and found that activation of BglG requires phosphorylatable HPr or the HPr homolog FruB in vivo. Further, we uniquely demonstrate that purified BglG protein becomes phosphorylated by FruB as well as by HPr in vitro. Histidine residue 208 in BglG is essential for this phosphorylation. These data suggest that BglG is in fact activated by phosphorylation and that there is no principal difference between the PTS-exerted mechanisms controlling the activities of BglG family proteins in Gram-positive and Gram-negative bacteria.
Collapse
|
4
|
Landmann JJ, Busse RA, Latz JH, Singh KD, Stülke J, Görke B. Crh, the paralogue of the phosphocarrier protein HPr, controls the methylglyoxal bypass of glycolysis in Bacillus subtilis. Mol Microbiol 2011; 82:770-87. [PMID: 21992469 DOI: 10.1111/j.1365-2958.2011.07857.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The histidine protein HPr has a key role in regulation of carbohydrate utilization in low-GC Gram-positive bacteria. Bacilli possess the paralogue Crh. Like HPr, Crh becomes phosphorylated by kinase HPrK/P in response to high fructose-1,6-bisphosphate concentrations. However, Crh can only partially substitute for the regulatory functions of HPr leaving its role mysterious. Using protein co-purification, we identified enzyme methylglyoxal synthase MgsA as interaction partner of Crh in Bacillus subtilis. MgsA converts dihydroxyacetone-phosphate to methylglyoxal and thereby initiates a glycolytic bypass that prevents the deleterious accumulation of phospho-sugars under carbon overflow conditions. However, methylgyloxal is toxic and its production requires control. We show here that exclusively the non-phosphorylated form of Crh interacts with MgsA in vivo and inhibits MgsA activity in vitro. Accordingly, Crh inhibits methylglyoxal formation in vivo under nutritional famine conditions that favour a low HPr kinase activity. Thus, Crh senses the metabolic state of the cell, as reflected by its phosphorylation state, and accordingly controls flux through the harmful methylglyoxal pathway. Interestingly, HPr is unable to bind and regulate MgsA, making this a bona fide function of Crh. Four residues that differ in the interaction surfaces of HPr and Crh may account for this difference.
Collapse
Affiliation(s)
- Jens J Landmann
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Insight into bacterial phosphotransferase system-mediated signaling by interspecies transplantation of a transcriptional regulator. J Bacteriol 2011; 193:2013-26. [PMID: 21335451 DOI: 10.1128/jb.01459-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial sugar:phosphotransferase system (PTS) delivers phosphoryl groups via proteins EI and HPr to the EII sugar transporters. The antitermination protein LicT controls β-glucoside utilization in Bacillus subtilis and belongs to a family of bacterial transcriptional regulators that are antagonistically controlled by PTS-catalyzed phosphorylations at two homologous PTS regulation domains (PRDs). LicT is inhibited by phosphorylation of PRD1, which is mediated by the β-glucoside transporter EII(Bgl). Phosphorylation of PRD2 is catalyzed by HPr and stimulates LicT activity. Here, we report that LicT, when artificially expressed in the nonrelated bacterium Escherichia coli, is likewise phosphorylated at both PRDs, but the phosphoryl group donors differ. Surprisingly, E. coli HPr phosphorylates PRD1 rather than PRD2, while the stimulatory phosphorylation of PRD2 is carried out by the HPr homolog NPr. This demonstrates that subtle differences in the interaction surface of HPr can switch its affinities toward the PRDs. NPr transfers phosphoryl groups from EI(Ntr) to EIIA(Ntr). Together these proteins form the paralogous PTS(Ntr), which controls the activity of K(+) transporters in response to unknown signals. This is achieved by binding of dephosphorylated EIIA(Ntr) to other proteins. We generated LicT mutants that were controlled either negatively by HPr or positively by NPr and were suitable bio-bricks, in order to monitor or to couple gene expression to the phosphorylation states of these two proteins. With the aid of these tools, we identified the stringent starvation protein SspA as a regulator of EIIA(Ntr) phosphorylation, indicating that PTS(Ntr) represents a stress-related system in E. coli.
Collapse
|
6
|
Sankar TS, Neelakanta G, Sangal V, Plum G, Achtman M, Schnetz K. Fate of the H-NS-repressed bgl operon in evolution of Escherichia coli. PLoS Genet 2009; 5:e1000405. [PMID: 19266030 PMCID: PMC2646131 DOI: 10.1371/journal.pgen.1000405] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 02/05/2009] [Indexed: 11/18/2022] Open
Abstract
In the enterobacterial species Escherichia coli and Salmonella enterica, expression of horizontally acquired genes with a higher than average AT content is repressed by the nucleoid-associated protein H-NS. A classical example of an H-NS–repressed locus is the bgl (aryl-β,D-glucoside) operon of E. coli. This locus is “cryptic,” as no laboratory growth conditions are known to relieve repression of bgl by H-NS in E. coli K12. However, repression can be relieved by spontaneous mutations. Here, we investigated the phylogeny of the bgl operon. Typing of bgl in a representative collection of E. coli demonstrated that it evolved clonally and that it is present in strains of the phylogenetic groups A, B1, and B2, while it is presumably replaced by a cluster of ORFans in the phylogenetic group D. Interestingly, the bgl operon is mutated in 20% of the strains of phylogenetic groups A and B1, suggesting erosion of bgl in these groups. However, bgl is functional in almost all B2 isolates and, in approximately 50% of them, it is weakly expressed at laboratory growth conditions. Homologs of bgl genes exist in Klebsiella, Enterobacter, and Erwinia species and also in low GC-content Gram-positive bacteria, while absent in E. albertii and Salmonella sp. This suggests horizontal transfer of bgl genes to an ancestral Enterobacterium. Conservation and weak expression of bgl in isolates of phylogenetic group B2 may indicate a functional role of bgl in extraintestinal pathogenic E. coli. Horizontal gene transfer, an important mechanism in bacterial adaptation and evolution, requires mechanisms to avoid uncontrolled and possibly disadvantageous expression of the transferred genes. Recently, it was shown that the protein H-NS selectively silences genes gained by horizontal transfer in enteric bacteria. Regulated expression of these genes can then evolve and be integrated into the regulatory network of the new host. Our analysis of the catabolic bgl (aryl-β,D-glucoside) operon, which is silenced by H-NS in E. coli, provides a snapshot on the evolution of such a locus. Genes of the bgl operon were presumably gained by horizontal transfer from Gram-positive bacteria to ancestral enteric bacteria. In E. coli, the bgl operon co-evolved with the diversification of the species into four phylogenetic groups. In one phylogenetic group the bgl operon is functional. However, in two other phylogenetic groups, bgl accumulates disrupting mutations, and it is absent in the fourth group. This indicates that the H-NS–silenced bgl operon evolved differently in E. coli and is presumably positively selected in one phylogenetic group, while it is neutrally or negatively selected in the other groups.
Collapse
Affiliation(s)
| | | | - Vartul Sangal
- Department of Molecular Biology, Max-Planck Institute for Infection Biology, Berlin, Germany
- Department of Microbiology and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Georg Plum
- Institute for Medical Microbiology, Immunology, and Hygiene, University of Cologne, Cologne, Germany
| | - Mark Achtman
- Department of Microbiology and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
7
|
Screen for leukotoxin mutants in Aggregatibacter actinomycetemcomitans: genes of the phosphotransferase system are required for leukotoxin biosynthesis. Infect Immun 2008; 76:3561-8. [PMID: 18541661 DOI: 10.1128/iai.01687-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans is a pathogen that causes localized aggressive periodontitis and extraoral infections including infective endocarditis. Recently, we reported that A. actinomycetemcomitans is beta-hemolytic on certain growth media due to the production of leukotoxin (LtxA). Based on this observation and our ability to generate random transposon insertions in A. actinomycetemcomitans, we developed and carried out a rapid screen for LtxA mutants. Using PCR, we mapped several of the mutations to genes that are known or predicted to be required for LtxA production, including ltxA, ltxB, ltxD, and tdeA. In addition, we identified an insertion in a gene previously not recognized to be involved in LtxA biosynthesis, ptsH. ptsH encodes the protein HPr, a phosphocarrier protein that is part of the sugar phosphotransferase system. HPr results in the phosphorylation of other proteins and ultimately in the activation of adenylate cyclase and cyclic AMP (cAMP) production. The ptsH mutant showed only partial hemolysis on blood agar and did not produce LtxA. The phenotype was complemented by supplying wild-type ptsH in trans, and real-time PCR analysis showed that the ptsH mutant produced approximately 10-fold less ltxA mRNA than the wild-type strain. The levels of cAMP in the ptsH mutant were significantly lower than in the wild-type strain, and LtxA production could be restored by adding exogenous cAMP to the culture.
Collapse
|