1
|
Lux J, Sánchez García L, Chaparro Fernández P, Laloli L, Licheri MF, Gallay C, Hermans PWM, Croucher NJ, Veening JW, Dijkman R, Straume D, Hathaway LJ. AmiA and AliA peptide ligands, found in Klebsiella pneumoniae, are imported into pneumococci and alter the transcriptome. Sci Rep 2024; 14:12416. [PMID: 38816440 PMCID: PMC11139975 DOI: 10.1038/s41598-024-63217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Klebsiella pneumoniae releases the peptides AKTIKITQTR and FNEMQPIVDRQ, which bind the pneumococcal proteins AmiA and AliA respectively, two substrate-binding proteins of the ABC transporter Ami-AliA/AliB oligopeptide permease. Exposure to these peptides alters pneumococcal phenotypes such as growth. Using a mutant in which a permease domain of the transporter was disrupted, by growth analysis and epifluorescence microscopy, we confirmed peptide uptake via the Ami permease and intracellular location in the pneumococcus. By RNA-sequencing we found that the peptides modulated expression of genes involved in metabolism, as pathways affected were mostly associated with energy or synthesis and transport of amino acids. Both peptides downregulated expression of genes involved in branched-chain amino acid metabolism and the Ami permease; and upregulated fatty acid biosynthesis genes but differed in their regulation of genes involved in purine and pyrimidine biosynthesis. The transcriptomic changes are consistent with growth suppression by peptide treatment. The peptides inhibited growth of pneumococcal isolates of serotypes 3, 8, 9N, 12F and 19A, currently prevalent in Switzerland, and caused no detectable toxic effect to primary human airway epithelial cells. We conclude that pneumococci take up K. pneumoniae peptides from the environment via binding and transport through the Ami permease. This changes gene expression resulting in altered phenotypes, particularly reduced growth.
Collapse
Affiliation(s)
- Janine Lux
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lucía Sánchez García
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Patricia Chaparro Fernández
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Laura Laloli
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Manon F Licheri
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Clement Gallay
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Peter W M Hermans
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht (UMCU), Utrecht, The Netherlands
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, White City Campus, Imperial College London, Sir Michael Uren Hub, London, UK
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Microscopy Imaging Centre (MIC), Theodor Kocher Institute, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Lucy J Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland.
| |
Collapse
|
2
|
Lux J, Portmann H, Sánchez García L, Erhardt M, Holivololona L, Laloli L, Licheri MF, Gallay C, Hoepner R, Croucher NJ, Straume D, Veening JW, Dijkman R, Heller M, Grandgirard D, Leib SL, Hathaway LJ. Klebsiella pneumoniae peptide hijacks a Streptococcus pneumoniae permease to subvert pneumococcal growth and colonization. Commun Biol 2024; 7:425. [PMID: 38589539 PMCID: PMC11001997 DOI: 10.1038/s42003-024-06113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Treatment of pneumococcal infections is limited by antibiotic resistance and exacerbation of disease by bacterial lysis releasing pneumolysin toxin and other inflammatory factors. We identified a previously uncharacterized peptide in the Klebsiella pneumoniae secretome, which enters Streptococcus pneumoniae via its AmiA-AliA/AliB permease. Subsequent downregulation of genes for amino acid biosynthesis and peptide uptake was associated with reduction of pneumococcal growth in defined medium and human cerebrospinal fluid, irregular cell shape, decreased chain length and decreased genetic transformation. The bacteriostatic effect was specific to S. pneumoniae and Streptococcus pseudopneumoniae with no effect on Streptococcus mitis, Haemophilus influenzae, Staphylococcus aureus or K. pneumoniae. Peptide sequence and length were crucial to growth suppression. The peptide reduced pneumococcal adherence to primary human airway epithelial cell cultures and colonization of rat nasopharynx, without toxicity. We identified a peptide with potential as a therapeutic for pneumococcal diseases suppressing growth of multiple clinical isolates, including antibiotic resistant strains, while avoiding bacterial lysis and dysbiosis.
Collapse
Affiliation(s)
- Janine Lux
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Hannah Portmann
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Lucía Sánchez García
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Maria Erhardt
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Lalaina Holivololona
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Laura Laloli
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Manon F Licheri
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Clement Gallay
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Robert Hoepner
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Sir Michael Uren Hub, White City Campus, Imperial College London, London, UK
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Ronald Dijkman
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Lucy J Hathaway
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Brennan AA, Harrington A, Guo M, Renshaw CP, Tillett RL, Miura P, Tal-Gan Y. Investigating the Streptococcus sinensis competence regulon through a combination of transcriptome analysis and phenotypic evaluation. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36282148 DOI: 10.1099/mic.0.001256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Streptococcus sinensis is a recently identified member of the Mitis group of streptococci. This species has been associated with infective endocarditis; however its mechanisms of pathogenesis and virulence are not fully understood. This study aimed to investigate the influence of the competence-stimulating peptide (CSP) and the competence regulon quorum-sensing circuitry (ComABCDE) on subsequent gene transcription and expression, as well as resultant phenotypes. In this study we confirmed the native CSP identity, ascertained when endogenous CSP was produced and completed a transcriptome-wide analysis of all genes following CSP exposure. RNA sequencing analysis revealed the upregulation of genes known to be associated with competence, biofilm formation and virulence. As such, a variety of phenotypic assays were utilized to assess the correlation between increased mRNA expression and potential phenotype response, ultimately gaining insight into the effects of CSP on both gene expression and developed phenotypes. The results indicated that the addition of exogenous CSP aided in competence development and successful transformation, yielding an average transformation efficiency comparable to that of other Mitis group streptococci. Additional studies are needed to further delineate the effects of CSP exposure on biofilm formation and virulence. Overall, this study provides novel information regarding S. sinensis and provides a substantial foundation on which this species and its role in disease pathogenesis can be further investigated.
Collapse
Affiliation(s)
- Alec A Brennan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Anthony Harrington
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Mingzhe Guo
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Clay P Renshaw
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Richard L Tillett
- Nevada Center for Bioinformatics, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Pedro Miura
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, USA
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, USA
| |
Collapse
|
4
|
Neville SL, Eijkelkamp BA, Lothian A, Paton JC, Roberts BR, Rosch JW, McDevitt CA. Cadmium stress dictates central carbon flux and alters membrane composition in Streptococcus pneumoniae. Commun Biol 2020; 3:694. [PMID: 33214631 PMCID: PMC7678824 DOI: 10.1038/s42003-020-01417-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Metal ion homeostasis is essential for all forms of life. However, the breadth of intracellular impacts that arise upon dysregulation of metal ion homeostasis remain to be elucidated. Here, we used cadmium, a non-physiological metal ion, to investigate how the bacterial pathogen, Streptococcus pneumoniae, resists metal ion stress and dyshomeostasis. By combining transcriptomics, metabolomics and metalloproteomics, we reveal that cadmium stress dysregulates numerous essential cellular pathways including central carbon metabolism, lipid membrane biogenesis and homeostasis, and capsule production at the transcriptional and/or functional level. Despite the breadth of cellular pathways susceptible to metal intoxication, we show that S. pneumoniae is able to maintain viability by utilizing cellular pathways that are predominately metal-independent, such as the pentose phosphate pathway to maintain energy production. Collectively, this work provides insight into the cellular processes impacted by cadmium and how resistance to metal ion toxicity is achieved in S. pneumoniae. Neville et al. investigate how Streptococcus pneumoniae mitigates metal ion stress. Despite cadmium induced dysregulation of central carbon metabolism and lipid membrane homeostasis, they find that S. pneumoniae can remain viable by selectively utilizing predominately metal-independent cellular pathways. This study provides insights into how bacteria overcome metal ion toxicity.
Collapse
Affiliation(s)
- Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Amber Lothian
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Blaine R Roberts
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
The circadian clock and darkness control natural competence in cyanobacteria. Nat Commun 2020; 11:1688. [PMID: 32245943 PMCID: PMC7125226 DOI: 10.1038/s41467-020-15384-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/05/2020] [Indexed: 11/15/2022] Open
Abstract
The cyanobacterium Synechococcus elongatus is a model organism for the study of circadian rhythms. It is naturally competent for transformation—that is, it takes up DNA from the environment, but the underlying mechanisms are unclear. Here, we use a genome-wide screen to identify genes required for natural transformation in S. elongatus, including genes encoding a conserved Type IV pilus, genes known to be associated with competence in other bacteria, and others. Pilus biogenesis occurs daily in the morning, while natural transformation is maximal when the onset of darkness coincides with the dusk circadian peak. Thus, the competence state in cyanobacteria is regulated by the circadian clock and can adapt to seasonal changes of day length. The cyanobacterium Synechococcus elongatus is a model organism for the study of circadian rhythms, and is naturally competent for transformation. Here, Taton et al. identify genes required for natural transformation in this organism, and show that the coincidence of circadian dusk and darkness regulates the competence state in different day lengths.
Collapse
|