1
|
Chen X, Wang M, Luo L, Liu X, An L, Nie Y, Wu XL. The evolution of autonomy from two cooperative specialists in fluctuating environments. Proc Natl Acad Sci U S A 2024; 121:e2317182121. [PMID: 39172793 PMCID: PMC11363282 DOI: 10.1073/pnas.2317182121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
From microbes to humans, organisms perform numerous tasks for their survival, including food acquisition, migration, and reproduction. A complex biological task can be performed by either an autonomous organism or by cooperation among several specialized organisms. However, it remains unclear how autonomy and cooperation evolutionarily switch. Specifically, it remains unclear whether and how cooperative specialists can repair deleted genes through direct genetic exchange, thereby regaining metabolic autonomy. Here, we address this question by experimentally evolving a mutualistic microbial consortium composed of two specialists that cooperatively degrade naphthalene. We observed that autonomous genotypes capable of performing the entire naphthalene degradation pathway evolved from two cooperative specialists and dominated the community. This evolutionary transition was driven by the horizontal gene transfer (HGT) between the two specialists. However, this evolution was exclusively observed in the fluctuating environment alternately supplied with naphthalene and pyruvate, where mutualism and competition between the two specialists alternated. The naphthalene-supplied environment exerted selective pressure that favors the expansion of autonomous genotypes. The pyruvate-supplied environment promoted the coexistence and cell density of the cooperative specialists, thereby increasing the likelihood of HGT. Using a mathematical model, we quantitatively demonstrate that environmental fluctuations facilitate the evolution of autonomy through HGT when the relative growth rate and carrying capacity of the cooperative specialists allow enhanced coexistence and higher cell density in the competitive environment. Together, our results demonstrate that cooperative specialists can repair deleted genes through a direct genetic exchange under specific conditions, thereby regaining metabolic autonomy.
Collapse
Affiliation(s)
- Xiaoli Chen
- College of Engineering, Peking University, Beijing100871, China
- Institute of Ocean Research, Peking University, Beijing100871, China
| | - Miaoxiao Wang
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
| | - Laipeng Luo
- College of Engineering, Peking University, Beijing100871, China
| | - Xiaonan Liu
- College of Engineering, Peking University, Beijing100871, China
| | - Liyun An
- College of Architecture and Environment, Sichuan University, Chengdu610000, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing100871, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing100871, China
- Institute of Ocean Research, Peking University, Beijing100871, China
- Institute of Ecology, Peking University, Beijing100871, China
| |
Collapse
|
2
|
Maree M, Ushijima Y, Fernandes PB, Higashide M, Morikawa K. SCC mec transformation requires living donor cells in mixed biofilms. Biofilm 2024; 7:100184. [PMID: 38440091 PMCID: PMC10909703 DOI: 10.1016/j.bioflm.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen that has emerged through the horizontal acquisition of the staphylococcal cassette chromosome mec (SCCmec). Previously, we showed that SCCmec from heat-killed donors can be transferred via natural transformation in biofilms at frequencies of 10-8-10-7. Here, we show an improved transformation assay of SCCmec with frequencies up to 10-2 using co-cultured biofilms with living donor cells. The Ccr-attB system played an important role in SCCmec transfer, and the deletion of ccrAB recombinase genes reduced the frequency ∼30-fold. SCCmec could be transferred from either MRSA or methicillin-resistant coagulase-negative staphylococci to some methicillin-sensitive S. aureus recipients. In addition, the transformation of other plasmid or chromosomal genes is enhanced by using living donor cells. This study emphasizes the role of natural transformation as an evolutionary ability of S. aureus and in MRSA emergence.
Collapse
Affiliation(s)
- Mais Maree
- Institute of Medicine, University of Tsukuba, Japan
| | | | | | - Masato Higashide
- Kotobiken Medical Laboratories, Inc., Kamiyokoba, Tsukuba, Japan
| | | |
Collapse
|
3
|
Nies F, Wein T, Hanke DM, Springstein BL, Alcorta J, Taubenheim C, Dagan T. Role of natural transformation in the evolution of small cryptic plasmids in Synechocystis sp. PCC 6803. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:656-668. [PMID: 37794696 PMCID: PMC10667661 DOI: 10.1111/1758-2229.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Small cryptic plasmids have no clear effect on the host fitness and their functional repertoire remains obscure. The naturally competent cyanobacterium Synechocystis sp. PCC 6803 harbours several small cryptic plasmids; whether their evolution with this species is supported by horizontal transfer remains understudied. Here, we show that the small cryptic plasmid DNA is transferred in the population exclusively by natural transformation, where the transfer frequency of plasmid-encoded genes is similar to that of chromosome-encoded genes. Establishing a system to follow gene transfer, we compared the transfer frequency of genes encoded in cryptic plasmids pCA2.4 (2378 bp) and pCB2.4 (2345 bp) within and between populations of two Synechocystis sp. PCC 6803 labtypes (termed Kiel and Sevilla). Our results reveal that plasmid gene transfer frequency depends on the recipient labtype. Furthermore, gene transfer via whole plasmid uptake in the Sevilla labtype ranged among the lowest detected transfer rates in our experiments. Our study indicates that horizontal DNA transfer via natural transformation is frequent in the evolution of small cryptic plasmids that reside in naturally competent organisms. Furthermore, we suggest that the contribution of natural transformation to cryptic plasmid persistence in Synechocystis is limited.
Collapse
Affiliation(s)
- Fabian Nies
- Institute of General MicrobiologyKiel UniversityKielGermany
| | - Tanita Wein
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | | | - Benjamin L. Springstein
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences FacultyPontifical Catholic University of ChileSantiagoChile
| | - Claudia Taubenheim
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Department of Internal Medicine IIUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Tal Dagan
- Institute of General MicrobiologyKiel UniversityKielGermany
| |
Collapse
|
4
|
Morawska LP, Kuipers OP. Cell-to-cell non-conjugative plasmid transfer between Bacillus subtilis and lactic acid bacteria. Microb Biotechnol 2023; 16:784-798. [PMID: 36547214 PMCID: PMC10034627 DOI: 10.1111/1751-7915.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Bacillus subtilis is a soil-dwelling bacterium that can interact with a plethora of other microorganisms in its natural habitat. Due to the versatile interactions and its ability to form nanotubes, i.e., recently described membrane structures that trade cytoplasmic content between neighbouring cells, we investigated the potential of HGT from B. subtilis to industrially-relevant members of lactic acid bacteria (LAB). To explore the interspecies HGT events, we developed a co-culturing protocol and provided proof of transfer of a small high copy non-conjugative plasmid from B. subtilis to LABs. Interestingly, the plasmid transfer did not involve conjugation nor activation of the competent state by B. subtilis. Moreover, our study shows for the first time non-conjugative cell-to-cell intraspecies plasmid transfer for non-competent Lactococcus lactis sp. cremoris strains. Our study indicates that cell-to-cell transformation is a ubiquitous form of HGT and can be potentially utilized as an alternative tool for natural (non-GMO) strain improvement.
Collapse
Affiliation(s)
- Luiza P Morawska
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Cheng YY, Zhou Z, Papadopoulos JM, Zuke JD, Falbel TG, Anantharaman K, Burton BM, Venturelli OS. Efficient plasmid transfer via natural competence in a microbial co-culture. Mol Syst Biol 2023; 19:e11406. [PMID: 36714980 PMCID: PMC9996237 DOI: 10.15252/msb.202211406] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
The molecular and ecological factors shaping horizontal gene transfer (HGT) via natural transformation in microbial communities are largely unknown, which is critical for understanding the emergence of antibiotic-resistant pathogens. We investigate key factors shaping HGT in a microbial co-culture by quantifying extracellular DNA release, species growth, and HGT efficiency over time. In the co-culture, plasmid release and HGT efficiency are significantly enhanced than in the respective monocultures. The donor is a key determinant of HGT efficiency as plasmids induce the SOS response, enter a multimerized state, and are released in high concentrations, enabling efficient HGT. However, HGT is reduced in response to high donor lysis rates. HGT is independent of the donor viability state as both live and dead cells transfer the plasmid with high efficiency. In sum, plasmid HGT via natural transformation depends on the interplay of plasmid properties, donor stress responses and lysis rates, and interspecies interactions.
Collapse
Affiliation(s)
- Yu-Yu Cheng
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - James M Papadopoulos
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Jason D Zuke
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Tanya G Falbel
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | - Briana M Burton
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin, Madison, WI, USA.,Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
6
|
Yi X, Wen P, Liang JL, Jia P, Yang TT, Feng SW, Liao B, Shu WS, Li JT. Phytostabilization mitigates antibiotic resistance gene enrichment in a copper mine tailings pond. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130255. [PMID: 36327844 DOI: 10.1016/j.jhazmat.2022.130255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/06/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Mining-impacted environments are distributed globally and have become increasingly recognized as hotspots of antibiotic resistance genes (ARGs). However, there are currently no reports on treatment technologies to deal with such an important environmental problem. To narrow this knowledge gap, we implemented a phytostabilization project in an acidic copper mine tailings pond and employed metagenomics to explore ARG characteristics in the soil samples. Our results showed that phytostabilization decreased the total ARG abundance in 0-10 cm soil layer by 75 %, which was companied by a significant decrease in ARG mobility, and a significant increase in ARG diversity and microbial diversity. Phytostabilization was also found to drastically alter the ARG host composition and to significantly reduce the total abundance of virulence factor genes of ARG hosts. Soil nutrient status, heavy metal toxicity and SO42- concentration were important physicochemical factors to affect the total ARG abundance, while causal mediation analysis showed that their effects were largely mediated by the changes in ARG mobility and microbial diversity. The increase in ARG diversity associated with phytostabilization was mainly mediated by a small subgroup of ARG hosts, most of which could not be classified at the genus level and deserve further research in the future.
Collapse
Affiliation(s)
- Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ping Wen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Tao-Tao Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
7
|
Huang M, Liu M, Huang L, Wang M, Jia R, Zhu D, Chen S, Zhao X, Zhang S, Gao Q, Zhang L, Cheng A. The activation and limitation of the bacterial natural transformation system: The function in genome evolution and stability. Microbiol Res 2021; 252:126856. [PMID: 34454311 DOI: 10.1016/j.micres.2021.126856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/26/2022]
Abstract
Bacteria can take up exogenous naked DNA and integrate it into their genomes, which has been regarded as a main contributor to bacterial evolution. The competent status of bacteria is influenced by environmental cues and by the immune systems of bacteria. Here, we review recent advances in understanding the working mechanisms underlying activation of the natural transformation system and limitations thereof. Environmental stresses including the presence of antimicrobials can activate the natural transformation system. However, bacterial enzymes (nucleases), non-coding RNAs, specific DNA sequences, the restriction-modification (R-M) systems, CRISPR-Cas systems and prokaryotic Argonaute proteins (Agos) are have been found to be involved in the limitation of the natural transformation system. Together, this review represents an opportunity to gain insight into bacterial genome stability and evolution.
Collapse
Affiliation(s)
- Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
8
|
Kin discrimination promotes horizontal gene transfer between unrelated strains in Bacillus subtilis. Nat Commun 2021; 12:3457. [PMID: 34103505 PMCID: PMC8187645 DOI: 10.1038/s41467-021-23685-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/07/2021] [Indexed: 11/08/2022] Open
Abstract
Bacillus subtilis is a soil bacterium that is competent for natural transformation. Genetically distinct B. subtilis swarms form a boundary upon encounter, resulting in killing of one of the strains. This process is mediated by a fast-evolving kin discrimination (KD) system consisting of cellular attack and defence mechanisms. Here, we show that these swarm antagonisms promote transformation-mediated horizontal gene transfer between strains of low relatedness. Gene transfer between interacting non-kin strains is largely unidirectional, from killed cells of the donor strain to surviving cells of the recipient strain. It is associated with activation of a stress response mediated by sigma factor SigW in the donor cells, and induction of competence in the recipient strain. More closely related strains, which in theory would experience more efficient recombination due to increased sequence homology, do not upregulate transformation upon encounter. This result indicates that social interactions can override mechanistic barriers to horizontal gene transfer. We hypothesize that KD-mediated competence in response to the encounter of distinct neighbouring strains could maximize the probability of efficient incorporation of novel alleles and genes that have proved to function in a genomically and ecologically similar context.
Collapse
|
9
|
Huang L, Liu M, Zhu D, Xie L, Huang M, Xiang C, Biville F, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Wang M, Cheng A. Natural Transformation of Riemerella columbina and Its Determinants. Front Microbiol 2021; 12:634895. [PMID: 33746928 PMCID: PMC7965970 DOI: 10.3389/fmicb.2021.634895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
In a previous study, it was shown that Riemerella anatipestifer, a member of Flavobacteriaceae, is naturally competent. However, whether natural competence is universal in Flavobacteriaceae remains unknown. In this study, it was shown for the first time that Riemerella columbina was naturally competent in the laboratory condition; however, Flavobacterium johnsoniae was not naturally competent under the same conditions. The competence of R. columbina was maintained throughout the growth phases, and the transformation frequency was highest during the logarithmic phase. A competition assay revealed that R. columbina preferentially took up its own genomic DNA over heterologous DNA. The natural transformation frequency of R. columbina was significantly increased in GCB medium without peptone or phosphate. Furthermore, natural transformation of R. columbina was inhibited by 0.5 mM EDTA, but could be restored by the addition of CaCl2, MgCl2, ZnCl2, and MnCl2, suggesting that these divalent cations promote the natural transformation of R. columbina. Overall, this study revealed that natural competence is not universal in Flavobacteriaceae members and triggering of competence differs from species to species.
Collapse
Affiliation(s)
- Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Li Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Chen Xiang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Francis Biville
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
10
|
High temperatures promote cell-to-cell plasmid transformation in Escherichia coli. Biochem Biophys Res Commun 2019; 515:196-200. [PMID: 31138439 DOI: 10.1016/j.bbrc.2019.05.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 01/09/2023]
Abstract
Bacteria continuously change their genetic characteristics to adapt to the changing environment by means of horizontal gene transfer. Although three conventional mechanisms of horizontal gene transfer are well known (transformation, transduction, and conjugation), new variations of these mechanisms have also been described. We previously reported that DNase-sensitive cell-to-cell transfer of non-conjugative plasmids, termed as "cell-to-cell transformation," occurs between the cells of two Escherichia coli strains in a co-culture. In this study, to further investigate the mechanism of cell-to-cell transformation, we constructed a new experimental system for cell-to-cell transformation. By using this system, we found that high temperatures of approximately 41ºC-45 °C significantly promote cell-to-cell plasmid transformation. This transfer was much more frequent in solid-air biofilms than in liquid culture, suggesting an importance of biofilm environment. Plasmid transfer frequency reached over 10-7/cell under the optimal strain-plasmid combination and conditions tested. DNase sensitivity test and plasmid isolation from the transformants confirmed the horizontal transfer of full-length plasmids via transformation. Comparative natural transformation experiments, which used similar strains and plasmids under equivalent culture conditions, revealed that cell-to-cell transformation occurs approximately 103 times more frequently than natural transformation, indicating the uniqueness and effectiveness of the cell-to-cell transformation mechanism. As temperatures of approximately 41ºC-45 °C are common in the avian intestines and under some other environmental situations, the phenomenon demonstrated here can occur efficiently in such locations. To the best of our knowledge, this is the first study to demonstrate the enhancing effect of high temperatures on cell-to-cell plasmid transformation in E. coli.
Collapse
|
11
|
Sun D. Pull in and Push Out: Mechanisms of Horizontal Gene Transfer in Bacteria. Front Microbiol 2018; 9:2154. [PMID: 30237794 PMCID: PMC6135910 DOI: 10.3389/fmicb.2018.02154] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
Horizontal gene transfer (HGT) plays an important role in bacterial evolution. It is well accepted that DNA is pulled/pushed into recipient cells by conserved membrane-associated DNA transport systems, which allow the entry of only single-stranded DNA (ssDNA). However, recent studies have uncovered a new type of natural bacterial transformation in which double-stranded DNA (dsDNA) is taken up into the cytoplasm, thus complementing the existing methods of DNA transfer among bacteria. Regulated by the stationary-phase regulators RpoS and cAMP receptor protein (CRP), Escherichia coli establishes competence for natural transformation with dsDNA, which occurs in agar plates. To pass across the outer membrane, a putative channel, which may compete for the substrate with the porin OmpA, may mediate the transfer of exogenous dsDNA into the cell. To pass across the inner membrane, dsDNA may be bound to the periplasmic protein YdcS, which delivers it into the inner membrane channel formed by YdcV. The discovery of cell-to-cell contact-dependent plasmid transformation implies the presence of additional mechanism(s) of transformation. This review will summarize the current knowledge about mechanisms of HGT with an emphasis on recent progresses regarding non-canonical mechanisms of natural transformation. Fully understanding the mechanisms of HGT will provide a foundation for monitoring and controlling multidrug resistance.
Collapse
Affiliation(s)
- Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|