1
|
Rachedi R, Risoul V, Scholivet A, Foglino M, Latifi A. Evidence that the PatB (CnfR) factor acts as a direct transcriptional regulator to control heterocyst development and function in the cyanobacterium Nostoc PCC 7120. Mol Microbiol 2023; 119:492-504. [PMID: 36756754 DOI: 10.1111/mmi.15044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Under nitrogen-limiting conditions, the filamentous cyanobacterium Nostoc PCC7120 differentiates nitrogen-fixing heterocysts at semi-regular intervals along filaments generating a periodic pattern of two distinct cell types. Heterocysts are micro-oxic cells that host the oxygen-sensitive nitrogenase allowing two antagonistic activities to take place simultaneously. Although several factors required to control the differentiation process are known, the molecular mechanisms engaged have only been elucidated for a few of them. The patB (cnfR) gene has been shown to be essential for heterocyst formation and nitrogen fixation in this cyanobacterium, but its function remains to be clarified. Here, we show that PatB acts as a direct transcriptional regulator of genes required for nitrogenase production and activity. The DNA-binding activity of PatB does not depend on micro-oxia as it interacts with its target promoters under aerobic conditions both in vitro and in vivo. The absence of the DNA-binding domain of PatB can be rescued in the heterocyst but not in the vegetative cell. Furthermore, the putative ferredoxin domain of PatB is not essential to its interaction with DNA. The patB gene is widely conserved in cyanobacterial genomes and its function can be pleiotropic since it is not limited to nitrogen fixation control.
Collapse
Affiliation(s)
- Raphaël Rachedi
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne LCB, IMM, Marseille, France
| | - Véronique Risoul
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne LCB, IMM, Marseille, France
| | - Anaïs Scholivet
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne LCB, IMM, Marseille, France
| | - Maryline Foglino
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne LCB, IMM, Marseille, France
| | - Amel Latifi
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne LCB, IMM, Marseille, France
| |
Collapse
|
2
|
Cross-Activation of Two Nitrogenase Gene Clusters by CnfR1 or CnfR2 in the Cyanobacterium Anabaena variabilis. Microbiol Spectr 2021; 9:e0106021. [PMID: 34612667 PMCID: PMC8510180 DOI: 10.1128/spectrum.01060-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Anabaena variabilis, the nif1 genes, which are activated by CnfR1, produce a Mo-nitrogenase that is expressed only in heterocysts. Similarly, the nif2 genes, which are activated by CnfR2, make a Mo-nitrogenase that is expressed only in anaerobic vegetative cells. However, CnfR1, when it was expressed in anaerobic vegetative cells under the control of the cnfR2 promoter or from the Co2+-inducible coaT promoter, activated the expression of both nifB1 and nifB2. Activation of nifB2, but not nifB1, by CnfR1 required NtcA. Thus, expression of the nif1 system requires no heterocyst-specific factor other than CnfR1. In contrast, CnfR2, when it was expressed in heterocysts under the control of the cnfR1 promoter or from the coaT promoter, did not activate the expression of nifB1 or nifB2. Thus, activation of the nif2 system in anaerobic vegetative cells by CnfR2 requires additional factors absent in heterocysts. CnfR2 made from the coaT promoter activated nifB2 expression in anaerobic vegetative cells grown with fixed nitrogen; however, oxygen inhibited CnfR2 activation of nifB2 expression. In contrast, activation of nifB1 and nifB2 by CnfR1 was unaffected by oxygen. CnfR1, which does not activate the nifB2 promoter in heterocysts, activated the expression of the entire nif2 gene cluster from a nifB2::nifB1::nifB2 hybrid promoter in heterocysts, producing functional Nif2 nitrogenase in heterocysts. However, activity was poor compared to the normal Nif1 nitrogenase. Expression of the nif2 cluster in anaerobic vegetative cells of Nostoc sp. PCC 7120, a strain lacking the nif2 nitrogenase, resulted in expression of the nif2 genes but weak nitrogenase activity. IMPORTANCE Cyanobacterial nitrogen fixation is important in the global nitrogen cycle, in oceanic productivity, and in many plant and fungal symbioses. While the proteins that mediate nitrogen fixation have been well characterized, the regulation of this complex and expensive process is poorly understood in cyanobacteria. Using a genetic approach, we have characterized unique and overlapping functions for two homologous transcriptional activators CnfR1 and CnfR2 that activate two distinct nitrogenases in a single organism. We found that CnfR1 is promiscuous in its ability to activate both nitrogenase systems, whereas CnfR2 depends on additional cellular factors; thus, it activates only one nitrogenase system.
Collapse
|
3
|
Abstract
Species of the floating, freshwater fern Azolla form a well-characterized symbiotic association with the non-culturable cyanobacterium Nostoc azollae, which fixes nitrogen for the plant. However, several cyanobacterial strains have over the years been isolated and cultured from Azolla from all over the world. The genomes of 10 of these strains were sequenced and compared with each other, with other symbiotic cyanobacterial strains, and with similar strains that were not isolated from a symbiotic association. The 10 strains fell into three distinct groups: six strains were nearly identical to the non-symbiotic strain, Nostoc (Anabaena) variabilis ATCC 29413; three were similar to the symbiotic strain, Nostoc punctiforme, and one, Nostoc sp. 2RC, was most similar to non-symbiotic strains of Nostoc linckia. However, Nostoc sp. 2RC was unusual because it has three sets of nitrogenase genes; it has complete gene clusters for two distinct Mo-nitrogenases and an alternative V-nitrogenase. Genes for Mo-nitrogenase, sugar transport, chemotaxis and pili characterized all the symbiotic strains. Several of the strains infected the liverwort Blasia, including N. variabilis ATCC 29413, which did not originate from Azolla but rather from a sewage pond. However, only Nostoc sp. 2RC, which produced highly motile hormogonia, was capable of high-frequency infection of Blasia. Thus, some of these strains, which grow readily in the laboratory, may be useful in establishing novel symbiotic associations with other plants.
Collapse
Affiliation(s)
- Brenda S. Pratte
- Department of Biology, University of Missouri–St. Louis, One University Blvd, St. Louis, MO 63121, USA
| | - Teresa Thiel
- Department of Biology, University of Missouri–St. Louis, One University Blvd, St. Louis, MO 63121, USA
- *Correspondence: Teresa Thiel,
| |
Collapse
|
4
|
Halim MA, Choo QC, Ghazali AHA, Wajidi MFF, Najimudin N. Transcriptional analysis of nitrogen fixation in Paenibacillus durus during growth in nitrogen-enriched medium. Lett Appl Microbiol 2021; 72:610-618. [PMID: 33525052 DOI: 10.1111/lam.13455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/25/2020] [Accepted: 01/21/2021] [Indexed: 11/28/2022]
Abstract
Paenibacillus durus strain ATCC 35681T is a Gram-positive diazotroph that displayed capability of fixing nitrogen even in the presence of nitrate or ammonium. However, the nitrogen fixation activity was detected only at day 1 of growth when cultured in liquid nitrogen-enriched medium. The transcripts of all the nifH homologues were present throughout the 9-day study. When grown in nitrogen-depleted medium, nitrogenase activities occurred from day 1 until day 6 and the nifH transcripts were also present during the course of the study albeit at different levels. In both studies, the absence of nitrogen fixation activity regardless of the presence of the nifH transcripts raised the possibility of a post-transcriptional or post-translational regulation of the system. A putative SigA box sequence was found upstream of the transcription start site of nifB1, the first gene in the major nitrogen fixation cluster. The upstream region of nifB2 showed a promoter recognizable by SigE, a sigma factor normally involved in sporulation.
Collapse
Affiliation(s)
- M A Halim
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Malaysia.,Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Q C Choo
- Department of Biological Sciences, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - A H A Ghazali
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| | - M F F Wajidi
- School of Distance Education, Universiti Sains Malaysia, Gelugor, Malaysia
| | - N Najimudin
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
5
|
Thiel T. Organization and regulation of cyanobacterial nif gene clusters: implications for nitrogenase expression in plant cells. FEMS Microbiol Lett 2020; 366:5470946. [PMID: 31062027 DOI: 10.1093/femsle/fnz077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
For over 50 years scientists have considered the possibility of engineering a plant with nitrogen fixation capability, freeing farmers from their dependence on nitrogen fertilizers. With the development of the tools of synthetic biology, more progress has been made toward this goal in the last 5 years than in the previous five decades. Most of the effort has focused on nitrogenase genes from Klebsiella oxytoca, which has complex gene regulation. There may be advantages in using nitrogenase genes from cyanobacteria, which comprise large polycistronic gene clusters that may be easier to manipulate and eventually express in a plant. The fact that some diatoms have a cyanobacterial nitrogen fixing organelle further supports the idea that a cyanobacterial nitrogenase gene cluster may function in a newly-engineered, cyanobacterial-based plant organelle, a nitroplast. This review describes recent attempts to express the nif genes from Anabaena variabilis ATCC 29413, Leptolyngbya boryana dg5 and Cyanothece sp. ATCC 51142 in heterologous cyanobacteria in the context of the organization of the nitrogenase genes and their regulation by the transcription factor CnfR via its highly conserved binding sites.
Collapse
Affiliation(s)
- Teresa Thiel
- Department of Biology, University of Missouri-St. Louis, One University Blvd., St. Louis, MO 63121, USA
| |
Collapse
|
6
|
Rosana ARR, Whitford DS, Migur A, Steglich C, Kujat-Choy SL, Hess WR, Owttrim GW. RNA helicase-regulated processing of the Synechocystis rimO-crhR operon results in differential cistron expression and accumulation of two sRNAs. J Biol Chem 2020; 295:6372-6386. [PMID: 32209657 DOI: 10.1074/jbc.ra120.013148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/19/2020] [Indexed: 12/21/2022] Open
Abstract
The arrangement of functionally-related genes in operons is a fundamental element of how genetic information is organized in prokaryotes. This organization ensures coordinated gene expression by co-transcription. Often, however, alternative genetic responses to specific stress conditions demand the discoordination of operon expression. During cold temperature stress, accumulation of the gene encoding the sole Asp-Glu-Ala-Asp (DEAD)-box RNA helicase in Synechocystis sp. PCC 6803, crhR (slr0083), increases 15-fold. Here, we show that crhR is expressed from a dicistronic operon with the methylthiotransferase rimO/miaB (slr0082) gene, followed by rapid processing of the operon transcript into two monocistronic mRNAs. This cleavage event is required for and results in destabilization of the rimO transcript. Results from secondary structure modeling and analysis of RNase E cleavage of the rimO-crhR transcript in vitro suggested that CrhR plays a role in enhancing the rate of the processing in an auto-regulatory manner. Moreover, two putative small RNAs are generated from additional processing, degradation, or both of the rimO transcript. These results suggest a role for the bacterial RNA helicase CrhR in RNase E-dependent mRNA processing in Synechocystis and expand the known range of organisms possessing small RNAs derived from processing of mRNA transcripts.
Collapse
Affiliation(s)
- Albert Remus R Rosana
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Denise S Whitford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Anzhela Migur
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Claudia Steglich
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Sonya L Kujat-Choy
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Wolfgang R Hess
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany.,Freiburg Institute for Advanced Studies, University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany
| | - George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
7
|
Till P, Toepel J, Bühler B, Mach RL, Mach-Aigner AR. Regulatory systems for gene expression control in cyanobacteria. Appl Microbiol Biotechnol 2020; 104:1977-1991. [PMID: 31965222 PMCID: PMC7007895 DOI: 10.1007/s00253-019-10344-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 11/24/2022]
Abstract
As photosynthetic microbes, cyanobacteria are attractive hosts for the production of high-value molecules from CO2 and light. Strategies for genetic engineering and tightly controlled gene expression are essential for the biotechnological application of these organisms. Numerous heterologous or native promoter systems were used for constitutive and inducible expression, yet many of them suffer either from leakiness or from a low expression output. Anyway, in recent years, existing systems have been improved and new promoters have been discovered or engineered for cyanobacteria. Moreover, alternative tools and strategies for expression control such as riboswitches, riboregulators or genetic circuits have been developed. In this mini-review, we provide a broad overview on the different tools and approaches for the regulation of gene expression in cyanobacteria and explain their advantages and disadvantages.
Collapse
Affiliation(s)
- Petra Till
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
| |
Collapse
|
8
|
Flores E, Picossi S, Valladares A, Herrero A. Transcriptional regulation of development in heterocyst-forming cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:673-684. [DOI: 10.1016/j.bbagrm.2018.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/02/2023]
|
9
|
Demtröder L, Narberhaus F, Masepohl B. Coordinated regulation of nitrogen fixation and molybdate transport by molybdenum. Mol Microbiol 2018; 111:17-30. [PMID: 30325563 DOI: 10.1111/mmi.14152] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 12/01/2022]
Abstract
Biological nitrogen fixation, the reduction of chemically inert dinitrogen to bioavailable ammonia, is a central process in the global nitrogen cycle highly relevant for life on earth. N2 reduction to NH3 is catalyzed by nitrogenases exclusively synthesized by diazotrophic prokaryotes. All diazotrophs have a molybdenum nitrogenase containing the unique iron-molybdenum cofactor FeMoco. In addition, some diazotrophs encode one or two alternative Mo-free nitrogenases that are less efficient at reducing N2 than Mo-nitrogenase. To permit biogenesis of Mo-nitrogenase and other molybdoenzymes when Mo is scarce, bacteria synthesize the high-affinity molybdate transporter ModABC. Generally, Mo supports expression of Mo-nitrogenase genes, while it represses production of Mo-free nitrogenases and ModABC. Since all three nitrogenases and ModABC can reach very high levels at suitable Mo concentrations, tight Mo-mediated control saves considerable resources and energy. This review outlines the similarities and differences in Mo-responsive regulation of nitrogen fixation and molybdate transport in diverse diazotrophs.
Collapse
Affiliation(s)
- Lisa Demtröder
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | | | - Bernd Masepohl
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Avilan L, Roumezi B, Risoul V, Bernard CS, Kpebe A, Belhadjhassine M, Rousset M, Brugna M, Latifi A. Phototrophic hydrogen production from a clostridial [FeFe] hydrogenase expressed in the heterocysts of the cyanobacterium Nostoc PCC 7120. Appl Microbiol Biotechnol 2018; 102:5775-5783. [DOI: 10.1007/s00253-018-8989-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/11/2018] [Accepted: 04/05/2018] [Indexed: 12/28/2022]
|
11
|
Role of the nifB1 and nifB2 Promoters in Cell-Type-Specific Expression of Two Mo Nitrogenases in the Cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 2017; 199:JB.00674-16. [PMID: 27920300 DOI: 10.1128/jb.00674-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Anabaena variabilis ATCC 29413 has one Mo nitrogenase that is made under oxic growth conditions in specialized cells called heterocysts and a second Mo nitrogenase that is made only under anoxic conditions in vegetative cells. The two large nif gene clusters responsible for these two nitrogenases are under the control of the promoter of the first gene in the operon, nifB1 or nifB2 Despite differences in the expression patterns of nifB1 and nifB2, related to oxygen and cell type, the regions upstream of their transcription start sites (tss) show striking homology, including three highly conserved sequences (CS). CS1, CS2, and the region just upstream from the tss were required for optimal expression from the nifB1 promoter, but CS3 and the 5' untranslated region (UTR) were not. Hybrid fusions of the nifB1 and nifB2 upstream regions revealed that the region including CS1, CS2, and CS3 of nifB2 could substitute for the similar region of nifB1; however, the converse was not true. Expression from the nifB2 promoter region required the CS1, CS2, and CS3 regions of nifB2 and also required the nifB2 5' UTR. A hybrid promoter that was mostly nifB2 but that had the region from about position -40 to the tss of nifB1 was expressed in heterocysts and in anoxic vegetative cells. Thus, addition of the nifB1 promoter region (from about position -40 to the tss of nifB1) in the nifB hybrid promoter supported expression in heterocysts but did not prevent the mostly nifB2 promoter from also functioning in anoxic vegetative cells. IMPORTANCE In the filamentous cyanobacterium Anabaena variabilis, two Mo nitrogenase gene clusters, nif1 and nif2, function under different environmental conditions in different cell types. Little is known about the regulation of transcription from the promoter upstream of the first gene of the cluster, which drives transcription of each of these two large operons. The similarity in the sequences upstream of the primary promoters for the two nif gene clusters belies the differences in their expression patterns. Analysis of these nif promoters in strains with mutations in the conserved sequences and in strains with hybrid promoters, comprising parts from nif1 and nif2, provides strong evidence that each promoter has key elements required for cell-type-specific expression of the nif1 and nif2 gene clusters.
Collapse
|
12
|
Tsujimoto R, Kamiya N, Fujita Y. Identification of acis-acting element in nitrogen fixation genes recognized by CnfR in the nonheterocystous nitrogen-fixing cyanobacteriumLeptolyngbya boryana. Mol Microbiol 2016; 101:411-24. [DOI: 10.1111/mmi.13402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Ryoma Tsujimoto
- Graduate School of Bioagricultural Sciences; Nagoya University, Furo-cho; Chikusa-ku Nagoya 464-8601 Japan
| | - Narumi Kamiya
- School of Agricultural Sciences; Nagoya University, Furo-cho; Chikusa-ku Nagoya 464-8601 Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences; Nagoya University, Furo-cho; Chikusa-ku Nagoya 464-8601 Japan
| |
Collapse
|
13
|
Hilton JA, Meeks JC, Zehr JP. Surveying DNA Elements within Functional Genes of Heterocyst-Forming Cyanobacteria. PLoS One 2016; 11:e0156034. [PMID: 27206019 PMCID: PMC4874684 DOI: 10.1371/journal.pone.0156034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 04/14/2016] [Indexed: 01/13/2023] Open
Abstract
Some cyanobacteria are capable of differentiating a variety of cell types in response to environmental factors. For instance, in low nitrogen conditions, some cyanobacteria form heterocysts, which are specialized for N2 fixation. Many heterocyst-forming cyanobacteria have DNA elements interrupting key N2 fixation genes, elements that are excised during heterocyst differentiation. While the mechanism for the excision of the element has been well-studied, many questions remain regarding the introduction of the elements into the cyanobacterial lineage and whether they have been retained ever since or have been lost and reintroduced. To examine the evolutionary relationships and possible function of DNA sequences that interrupt genes of heterocyst-forming cyanobacteria, we identified and compared 101 interruption element sequences within genes from 38 heterocyst-forming cyanobacterial genomes. The interruption element lengths ranged from about 1 kb (the minimum able to encode the recombinase responsible for element excision), up to nearly 1 Mb. The recombinase gene sequences served as genetic markers that were common across the interruption elements and were used to track element evolution. Elements were found that interrupted 22 different orthologs, only five of which had been previously observed to be interrupted by an element. Most of the newly identified interrupted orthologs encode proteins that have been shown to have heterocyst-specific activity. However, the presence of interruption elements within genes with no known role in N2 fixation, as well as in three non-heterocyst-forming cyanobacteria, indicates that the processes that trigger the excision of elements may not be limited to heterocyst development or that the elements move randomly within genomes. This comprehensive analysis provides the framework to study the history and behavior of these unique sequences, and offers new insight regarding the frequency and persistence of interruption elements in heterocyst-forming cyanobacteria.
Collapse
Affiliation(s)
- Jason A. Hilton
- University of California Department of Ocean Sciences, Santa Cruz, California, United States of America
- * E-mail:
| | - John C. Meeks
- University of California Department of Microbiology and Molecular Genetics, Davis, California, United States of America
| | - Jonathan P. Zehr
- University of California Department of Ocean Sciences, Santa Cruz, California, United States of America
| |
Collapse
|
14
|
Pratte BS, Thiel T. Homologous regulators, CnfR1 and CnfR2, activate expression of two distinct nitrogenase gene clusters in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Mol Microbiol 2016; 100:1096-109. [PMID: 26950042 DOI: 10.1111/mmi.13370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2016] [Indexed: 02/06/2023]
Abstract
The cyanobacterium Anabaena variabilis has two Mo-nitrogenases that function under different environmental conditions in different cell types. The heterocyst-specific nitrogenase encoded by the large nif1 gene cluster and the similar nif2 gene cluster that functions under anaerobic conditions in vegetative cells are under the control of the promoter for the first gene of each cluster, nifB1 or nifB2 respectively. Associated with each of these clusters is a putative regulatory gene called cnfR (patB) whose product has a C-terminal HTH domain and an N-terminal ferredoxin-like domain. CnfR1 activates nifB1 expression in heterocysts, while CnfR2 activates nifB2 expression. A cnfR1 mutant was unable to make nitrogenase under aerobic conditions in heterocysts while the cnfR2 mutant was unable to make nitrogenase under anaerobic conditions. Mutations in cnfR1 and cnfR2 reduced transcripts for the nif1 and nif2 genes respectively. The closely related cyanobacterium, Anabaena sp. PCC 7120 has the nif1 system but lacks nif2. Expression of nifB2:lacZ from A. variabilis in anaerobic vegetative cells of Anabaena sp. PCC 7120 depended on the presence of cnfR2. This suggests that CnfR2 is necessary and sufficient for activation of the nifB2 promoter and that the CnfR1/CnfR2 family of proteins are the primary activators of nitrogenase gene expression in cyanobacteria.
Collapse
Affiliation(s)
- Brenda S Pratte
- Department of Biology, University of Missouri - St. Louis, Research 223, St. Louis, MO, 63121, USA
| | - Teresa Thiel
- Department of Biology, University of Missouri - St. Louis, Research 223, St. Louis, MO, 63121, USA
| |
Collapse
|
15
|
Role of RNA secondary structure and processing in stability of the nifH1 transcript in the cyanobacterium Anabaena variabilis. J Bacteriol 2015; 197:1408-22. [PMID: 25666132 DOI: 10.1128/jb.02609-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In the cyanobacterium Anabaena variabilis ATCC 29413, aerobic nitrogen fixation occurs in micro-oxic cells called heterocysts. Synthesis of nitrogenase in heterocysts requires expression of the large nif1 gene cluster, which is primarily under the control of the promoter for the first gene, nifB1. Strong expression of nifH1 requires the nifB1 promoter but is also controlled by RNA processing, which leads to increased nifH1 transcript stability. The processing of the primary nifH1 transcript occurs at the base of a predicted stem-loop structure that is conserved in many heterocystous cyanobacteria. Mutations that changed the predicted secondary structure or changed the sequence of the stem-loop had detrimental effects on the amount of nifH1 transcript, with mutations that altered or destabilized the structure having the strongest effect. Just upstream from the transcriptional processing site for nifH1 was the promoter for a small antisense RNA, sava4870.1. This RNA was more strongly expressed in cells grown in the presence of fixed nitrogen and was downregulated in cells 24 h after nitrogen step down. A mutant strain lacking the promoter for sava4870.1 showed delayed nitrogen fixation; however, that phenotype might have resulted from an effect of the mutation on the processing of the nifH1 transcript. The nifH1 transcript was the most abundant and most stable nif1 transcript, while nifD1 and nifK1, just downstream of nifH1, were present in much smaller amounts and were less stable. The nifD1 and nifK1 transcripts were also processed at sites just upstream of nifD1 and nifK1. IMPORTANCE In the filamentous cyanobacterium Anabaena variabilis, the nif1 cluster, encoding the primary Mo nitrogenase, functions under aerobic growth conditions in specialized cells called heterocysts that develop in response to starvation for fixed nitrogen. The large cluster comprising more than a dozen nif1 genes is transcribed primarily from the promoter for the first gene, nifB1; however, this does not explain the large amount of transcript for the structural genes nifH1, nifD1, and nifK1, which are also under the control of the distant nifB1 promoter. Here, we demonstrate the importance of a predicted stem-loop structure upstream of nifH1 that controls the abundance of nifH1 transcript through transcript processing and stabilization and show that nifD1 and nifK1 transcripts are also controlled by transcript processing.
Collapse
|
16
|
Thiel T, Pratte BS. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413. Life (Basel) 2014; 4:944-67. [PMID: 25513762 PMCID: PMC4284476 DOI: 10.3390/life4040944] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 11/16/2022] Open
Abstract
The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters.
Collapse
Affiliation(s)
- Teresa Thiel
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA.
| | - Brenda S Pratte
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA.
| |
Collapse
|
17
|
Regulation of nitrogenase gene expression by transcript stability in the cyanobacterium Anabaena variabilis. J Bacteriol 2014; 196:3609-21. [PMID: 25092030 DOI: 10.1128/jb.02045-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogenase gene cluster in cyanobacteria has been thought to comprise multiple operons; however, in Anabaena variabilis, the promoter for the first gene in the cluster, nifB1, appeared to be the primary promoter for the entire nif cluster. The structural genes nifHDK1 were the most abundant transcripts; however, their abundance was not controlled by an independent nifH1 promoter, but rather, by RNA processing, which produced a very stable nifH1 transcript and a moderately stable nifD1 transcript. There was also no separate promoter for nifEN1. In addition to the nifB1 promoter, there were weak promoters inside the nifU1 gene and inside the nifE1 gene, and both promoters were heterocyst specific. In an xisA mutant, which effectively separated promoters upstream of an 11-kb excision element in nifD1 from the downstream genes, the internal nifE1 promoter was functional. Transcription of the nif1 genes downstream of the 11-kb element, including the most distant genes, hesAB1 and fdxH1, was reduced in the xisA mutant, indicating that the nifB1 promoter contributed to their expression. However, with the exception of nifK1 and nifE1, which had no expression, the downstream genes showed low to moderate levels of transcription in the xisA mutant. The hesA1 gene also had a promoter, but the fdxH gene had a processing site just upstream of the gene. The processing of transcripts at sites upstream of nifH1 and fdxH1 correlated with increased stability of these transcripts, resulting in greater amounts than transcripts that were not close to processing sites.
Collapse
|
18
|
Transcriptional regulators ChlR and CnfR are essential for diazotrophic growth in nonheterocystous cyanobacteria. Proc Natl Acad Sci U S A 2014; 111:6762-7. [PMID: 24753612 DOI: 10.1073/pnas.1323570111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leptolyngbya boryana (Plectonema boryanum) is a diazotrophic cyanobacterium lacking heterocysts. How nitrogen fixation is regulated in filamentous nonheterocystous cyanobacteria remains unclear. Here we describe a large 50-kb nitrogen fixation (nif) gene cluster in L. boryana containing 50 genes. This gene cluster contains 14 nif genes (nifBSUHDKVZT and nifPENXW), two genes encoding transcriptional regulators showing high similarity to ChlR (chlorophyll regulator) and PatB, three genes encoding ferredoxin, three genes encoding cytochrome oxidase subunits, and 28 genes encoding nif-related proteins and proteins with putative or unknown functions. Eleven mutants lacking one gene or a subset of genes were isolated. Five of them did not grow under diazotrophic conditions, including two mutants lacking the transcriptional regulators. Although the chlR homolog-lacking mutant showed a normal level of nitrogenase activity, various intermediates of chlorophyll biosynthesis were accumulated under micro-oxic conditions. The phenotype suggested that ChlR activates the expression of the genes responsible for anaerobic chlorophyll biosynthesis to support energy supply for nitrogen fixation. In another mutant lacking the patB homolog, no transcripts of any nif genes were detected under nitrogen fixation conditions, which was consistent with no activity. Constitutive expression of patB in a shuttle vector resulted in low but significant nitrogenase activity even under nitrate-replete conditions, suggesting that the PatB homolog is the master regulator of nitrogen fixation. We propose to rename the patB homolog as cnfR, after cyanobacterial nitrogen fixation regulator.
Collapse
|
19
|
Thiel T, Pratte BS, Zhong J, Goodwin L, Copeland A, Lucas S, Han C, Pitluck S, Land ML, Kyrpides NC, Woyke T. Complete genome sequence of Anabaena variabilis ATCC 29413. Stand Genomic Sci 2014; 9:562-73. [PMID: 25197444 PMCID: PMC4148955 DOI: 10.4056/sigs.3899418] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Anabaena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40(°) C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence.
Collapse
Affiliation(s)
- Teresa Thiel
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO
| | - Brenda S Pratte
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO
| | - Jinshun Zhong
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO
| | | | - Alex Copeland
- DOE Joint Genome Institute, Walnut Creek, CA ; Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Susan Lucas
- Lawrence Livermore National Laboratory, Livermore, CA
| | - Cliff Han
- Los Alamos National Laboratory, Los Alamos, NM
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, CA ; Lawrence Berkeley National Laboratory, Berkeley, CA
| | | | - Nikos C Kyrpides
- DOE Joint Genome Institute, Walnut Creek, CA ; Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA ; Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
20
|
Exploring the size limit of protein diffusion through the periplasm in cyanobacterium Anabaena sp. PCC 7120 using the 13 kDa iLOV fluorescent protein. Res Microbiol 2013; 164:710-7. [DOI: 10.1016/j.resmic.2013.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/24/2013] [Indexed: 01/16/2023]
|
21
|
Pratte BS, Sheridan R, James JA, Thiel T. Regulation of V-nitrogenase genes inAnabaena variabilisby RNA processing and by dual repressors. Mol Microbiol 2013; 88:413-24. [DOI: 10.1111/mmi.12197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Brenda S. Pratte
- University of Missouri - St. Louis; Dept. of Biology; Research 223; St. Louis; MO; 63121; USA
| | - Ryan Sheridan
- University of Missouri - St. Louis; Dept. of Biology; Research 223; St. Louis; MO; 63121; USA
| | - Jessie A. James
- University of Missouri - St. Louis; Dept. of Biology; Research 223; St. Louis; MO; 63121; USA
| | - Teresa Thiel
- University of Missouri - St. Louis; Dept. of Biology; Research 223; St. Louis; MO; 63121; USA
| |
Collapse
|
22
|
Carrieri D, Wawrousek K, Eckert C, Yu J, Maness PC. The role of the bidirectional hydrogenase in cyanobacteria. BIORESOURCE TECHNOLOGY 2011; 102:8368-8377. [PMID: 21514820 DOI: 10.1016/j.biortech.2011.03.103] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 05/30/2023]
Abstract
Cyanobacteria have tremendous potential to produce clean, renewable fuel in the form of hydrogen gas derived from solar energy and water. Of the two cyanobacterial enzymes capable of evolving hydrogen gas (nitrogenase and the bidirectional hydrogenase), the hox-encoded bidirectional Ni-Fe hydrogenase has a high theoretical potential. The physiological role of this hydrogenase is a highly debated topic and is poorly understood relative to that of the nitrogenase. Here the structure, assembly, and expression of this enzyme, as well as its probable roles in metabolism, are discussed and analyzed to gain perspective on its physiological role. It is concluded that the bidirectional hydrogenase in cyanobacteria primarily functions as a redox regulator for maintaining a proper oxidation/reduction state in the cell. Recommendations for future research to test this hypothesis are discussed.
Collapse
Affiliation(s)
- Damian Carrieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | | | | | | | | |
Collapse
|
23
|
Flaherty BL, Van Nieuwerburgh F, Head SR, Golden JW. Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation. BMC Genomics 2011; 12:332. [PMID: 21711558 PMCID: PMC3141674 DOI: 10.1186/1471-2164-12-332] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/28/2011] [Indexed: 11/13/2022] Open
Abstract
Background Cyanobacteria are potential sources of renewable chemicals and biofuels and serve as model organisms for bacterial photosynthesis, nitrogen fixation, and responses to environmental changes. Anabaena (Nostoc) sp. strain PCC 7120 (hereafter Anabaena) is a multicellular filamentous cyanobacterium that can "fix" atmospheric nitrogen into ammonia when grown in the absence of a source of combined nitrogen. Because the nitrogenase enzyme is oxygen sensitive, Anabaena forms specialized cells called heterocysts that create a microoxic environment for nitrogen fixation. We have employed directional RNA-seq to map the Anabaena transcriptome during vegetative cell growth and in response to combined-nitrogen deprivation, which induces filaments to undergo heterocyst development. Our data provide an unprecedented view of transcriptional changes in Anabaena filaments during the induction of heterocyst development and transition to diazotrophic growth. Results Using the Illumina short read platform and a directional RNA-seq protocol, we obtained deep sequencing data for RNA extracted from filaments at 0, 6, 12, and 21 hours after the removal of combined nitrogen. The RNA-seq data provided information on transcript abundance and boundaries for the entire transcriptome. From these data, we detected novel antisense transcripts within the UTRs (untranslated regions) and coding regions of key genes involved in heterocyst development, suggesting that antisense RNAs may be important regulators of the nitrogen response. In addition, many 5' UTRs were longer than anticipated, sometimes extending into upstream open reading frames (ORFs), and operons often showed complex structure and regulation. Finally, many genes that had not been previously identified as being involved in heterocyst development showed regulation, providing new candidates for future studies in this model organism. Conclusions Directional RNA-seq data were obtained that provide comprehensive mapping of transcript boundaries and abundance for all transcribed RNAs in Anabaena filaments during the response to nitrogen deprivation. We have identified genes and noncoding RNAs that are transcriptionally regulated during heterocyst development. These data provide detailed information on the Anabaena transcriptome as filaments undergo heterocyst development and begin nitrogen fixation.
Collapse
Affiliation(s)
- Britt L Flaherty
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | |
Collapse
|
24
|
Mella-Herrera RA, Neunuebel MR, Kumar K, Saha SK, Golden JW. The sigE gene is required for normal expression of heterocyst-specific genes in Anabaena sp. strain PCC 7120. J Bacteriol 2011; 193:1823-32. [PMID: 21317330 PMCID: PMC3133031 DOI: 10.1128/jb.01472-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/31/2011] [Indexed: 11/20/2022] Open
Abstract
The filamentous cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 produces specialized cells for nitrogen fixation called heterocysts. Previous work showed that the group 2 sigma factor sigE (alr4249; previously called sigF) is upregulated in differentiating heterocysts 16 h after nitrogen step-down. We now show that the sigE gene is required for normal heterocyst development and normal expression levels of several heterocyst-specific genes. Mobility shift assays showed that the transcription factor NtcA binds to sites in the upstream region of sigE and that this binding is enhanced by 2-oxoglutarate (2-OG). Deletions of the region containing the NtcA binding sites in P(sigE)-gfp reporter plasmids showed that the sites contribute to normal developmental regulation but are not essential for upregulation in heterocysts. Northern RNA blot analysis of nifH mRNA revealed delayed and reduced transcript levels during heterocyst differentiation in a sigE mutant background. Quantitative reverse transcription-PCR (qRT-PCR) analyses of the sigE mutant showed lower levels of transcripts for nifH, fdxH, and hglE2 but normal levels for hupL. We developed a P(nifHD)-gfp reporter construct that showed strong heterocyst-specific expression. Time-lapse microscopy of the P(nifHD)-gfp reporter in a sigE mutant background showed delayed development and undetectable green fluorescent protein (GFP) fluorescence. Overexpression of sigE caused accelerated heterocyst development, an increased heterocyst frequency, and premature expression of GFP fluorescence from the P(nifHD)-gfp reporter.
Collapse
Affiliation(s)
- Rodrigo A. Mella-Herrera
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
- Division of Biological Sciences, University of California—San Diego, La Jolla, California 92093-0116
| | - M. Ramona Neunuebel
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Krithika Kumar
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Sushanta K. Saha
- Division of Biological Sciences, University of California—San Diego, La Jolla, California 92093-0116
| | - James W. Golden
- Division of Biological Sciences, University of California—San Diego, La Jolla, California 92093-0116
| |
Collapse
|