1
|
Herrera A, Packer MM, Rosas-Lemus M, Minasov G, Chen J, Brumell JH, Satchell KJF. Vibrio MARTX toxin processing and degradation of cellular Rab GTPases by the cytotoxic effector Makes Caterpillars Floppy. Proc Natl Acad Sci U S A 2024; 121:e2316143121. [PMID: 38861595 PMCID: PMC11194500 DOI: 10.1073/pnas.2316143121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Vibrio vulnificus causes life-threatening wound and gastrointestinal infections, mediated primarily by the production of a Multifunctional-Autoprocessing Repeats-In-Toxin (MARTX) toxin. The most commonly present MARTX effector domain, the Makes Caterpillars Floppy-like (MCF) toxin, is a cysteine protease stimulated by host adenosine diphosphate (ADP) ribosylation factors (ARFs) to autoprocess. Here, we show processed MCF then binds and cleaves host Ras-related proteins in brain (Rab) guanosine triphosphatases within their C-terminal tails resulting in Rab degradation. We demonstrate MCF binds Rabs at the same interface occupied by ARFs. Moreover, we show MCF preferentially binds to ARF1 prior to autoprocessing and is active to cleave Rabs only subsequent to autoprocessing. We then use structure prediction algorithms to demonstrate that structural composition, rather than sequence, determines Rab target specificity. We further determine a crystal structure of aMCF as a swapped dimer, revealing an alternative conformation we suggest represents the open, activated state of MCF with reorganized active site residues. The cleavage of Rabs results in Rab1B dispersal within cells and loss of Rab1B density in the intestinal tissue of infected mice. Collectively, our work describes an extracellular bacterial mechanism whereby MCF is activated by ARFs and subsequently induces the degradation of another small host guanosine triphosphatase (GTPase), Rabs, to drive organelle damage, cell death, and promote pathogenesis of these rapidly fatal infections.
Collapse
Affiliation(s)
- Alfa Herrera
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Megan M. Packer
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Monica Rosas-Lemus
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - George Minasov
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Jiexi Chen
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - John H. Brumell
- Cell Biology Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ONM5S 1A8, Canada
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
2
|
Xu Y, Cheng S, Zeng H, Zhou P, Ma Y, Li L, Liu X, Shao F, Ding J. ARF GTPases activate Salmonella effector SopF to ADP-ribosylate host V-ATPase and inhibit endomembrane damage-induced autophagy. Nat Struct Mol Biol 2022; 29:67-77. [PMID: 35046574 DOI: 10.1038/s41594-021-00710-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
Selective autophagy helps eukaryotes to cope with endogenous dangers or foreign invaders; its initiation often involves membrane damage. By studying a Salmonella effector SopF, we recently identified the vacuolar ATPase (V-ATPase)-ATG16L1 axis that initiates bacteria-induced autophagy. Here we show that SopF is an ADP-ribosyltransferase specifically modifying Gln124 of ATP6V0C in V-ATPase. We identify GTP-bound ADP-ribosylation factor (ARF) GTPases as a cofactor required for SopF functioning. Crystal structures of SopF-ARF1 complexes not only reveal structural basis of SopF ADP-ribosyltransferase activity but also a unique effector-binding mode adopted by ARF GTPases. Further, the N terminus of ARF1, although dispensable for high-affinity binding to SopF, is critical for activating SopF to modify ATP6V0C. Moreover, lysosome or Golgi damage-induced autophagic LC3 activation is inhibited by SopF or Q124A mutation of ATP6V0C, thus also mediated by the V-ATPase-ATG16L1 axis. In this process, the V-ATPase functions to sense membrane damages, which can be uncoupled from its proton-pumping activity.
Collapse
Affiliation(s)
- Yue Xu
- National Institute of Biological Sciences, Beijing, China.,Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Huan Zeng
- National Institute of Biological Sciences, Beijing, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ping Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Jingjin Ding
- National Institute of Biological Sciences, Beijing, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Morot A, El Fekih S, Bidault A, Le Ferrand A, Jouault A, Kavousi J, Bazire A, Pichereau V, Dufour A, Paillard C, Delavat F. Virulence of Vibrio harveyi ORM4 towards the European abalone Haliotis tuberculata involves both quorum sensing and a type III secretion system. Environ Microbiol 2021; 23:5273-5288. [PMID: 33989448 DOI: 10.1111/1462-2920.15592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 02/05/2023]
Abstract
Environmental Vibrio strains represent a major threat in aquaculture, but the understanding of their virulence mechanisms heavily relies on the transposition of knowledge from human-pathogen vibrios. Here, the genetic bases of the virulence of Vibrio harveyi ORM4 towards the European abalone Haliotis tuberculata were characterized. We demonstrated that luxO, encoding a major regulator of the quorum sensing system, is crucial for the virulence of this strain, and that its deletion leads to a decrease in swimming motility, biofilm formation, and exopolysaccharide production. Furthermore, the biofilm formation by V. harveyi ORM4 was increased by abalone serum, which required LuxO. The absence of LuxO in V. harveyi ORM4 yielded opposite phenotypes compared with other Vibrio species including V. campbellii (still frequently named V. harveyi). In addition, we report a full type III secretion system (T3SS) gene cluster in the V. harveyi ORM4 genome. LuxO was shown to negatively regulate the promoter activity of exsA, encoding the major regulator of the T3SS genes, and the deletion of exsA abolished the virulence of V. harveyi ORM4. These results unveil virulence mechanisms set up by this environmentally important bacterial pathogen and pave the way for a better molecular understanding of the regulation of its pathogenicity.
Collapse
Affiliation(s)
- Amandine Morot
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, Lorient, France
| | | | | | | | - Albane Jouault
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, Lorient, France
| | - Javid Kavousi
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
| | - Alexis Bazire
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, Lorient, France
| | | | - Alain Dufour
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, Lorient, France
| | | | - François Delavat
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
- UMR CNRS 6286 UFIP, University of Nantes, Nantes, France
| |
Collapse
|