1
|
Vigil T, Spangler LC. Understanding Biomineralization Mechanisms to Produce Size-Controlled, Tailored Nanocrystals for Optoelectronic and Catalytic Applications: A Review. ACS APPLIED NANO MATERIALS 2024; 7:18626-18654. [PMID: 39206356 PMCID: PMC11348323 DOI: 10.1021/acsanm.3c04277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 09/04/2024]
Abstract
Biomineralization, the use of biological systems to produce inorganic materials, has recently become an attractive approach for the sustainable manufacturing of functional nanomaterials. Relying on proteins or other biomolecules, biomineralization occurs under ambient temperatures and pressures, which presents an easily scalable, economical, and environmentally friendly method for nanoparticle synthesis. Biomineralized nanocrystals are quickly approaching a quality applicable for catalytic and optoelectronic applications, replacing materials synthesized using expensive traditional routes. Here, we review the current state of development for producing functional nanocrystals using biomineralization and distill the wide variety of biosynthetic pathways into two main approaches: templating and catalysis. Throughout, we compare and contrast biomineralization and traditional syntheses, highlighting optimizations from traditional syntheses that can be implemented to improve biomineralized nanocrystal properties such as size and morphology, making them competitive with chemically synthesized state-of-the-art functional nanomaterials.
Collapse
Affiliation(s)
- Toriana
N. Vigil
- University
of Virginia, Charlottesville, Virginia 22903, United States
| | - Leah C. Spangler
- Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
2
|
Bickley CD, Wan J, Komeili A. Intrinsic and extrinsic determinants of conditional localization of Mms6 to magnetosome organelles in Magnetospirillum magneticum AMB-1. J Bacteriol 2024; 206:e0000824. [PMID: 38819153 PMCID: PMC11332177 DOI: 10.1128/jb.00008-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024] Open
Abstract
Magnetotactic bacteria are a diverse group of microbes that use magnetic particles housed within intracellular lipid-bounded magnetosome organelles to guide navigation along geomagnetic fields. The development of magnetosomes and their magnetic crystals in Magnetospirillum magneticum AMB-1 requires the coordinated action of numerous proteins. Most proteins are thought to localize to magnetosomes during the initial stages of organelle biogenesis, regardless of environmental conditions. However, the magnetite-shaping protein Mms6 is only found in magnetosomes that contain magnetic particles, suggesting that it might conditionally localize after the formation of magnetosome membranes. The mechanisms for this unusual mode of localization to magnetosomes are unclear. Here, using pulse-chase labeling, we show that Mms6 translated under non-biomineralization conditions translocates to pre-formed magnetosomes when cells are shifted to biomineralizing conditions. Genes essential for magnetite production, namely mamE, mamM, and mamO, are necessary for Mms6 localization, whereas mamN inhibits Mms6 localization. MamD localization was also investigated and found to be controlled by similar cellular factors. The membrane localization of Mms6 is dependent on a glycine-leucine repeat region, while the N-terminal domain of Mms6 is necessary for retention in the cytosol and impacts conditional localization to magnetosomes. The N-terminal domain is also sufficient to impart conditional magnetosome localization to MmsF, altering its native constitutive magnetosome localization. Our work illuminates an alternative mode of protein localization to magnetosomes in which Mms6 and MamD are excluded from magnetosomes by MamN until biomineralization initiates, whereupon they translocate into magnetosome membranes to control the development of growing magnetite crystals.IMPORTANCEMagnetotactic bacteria (MTB) are a diverse group of bacteria that form magnetic nanoparticles surrounded by membranous organelles. MTB are widespread and serve as a model for bacterial organelle formation and biomineralization. Magnetosomes require a specific cohort of proteins to enable magnetite formation, but how those proteins are localized to magnetosome membranes is unclear. Here, we investigate protein localization using pulse-chase microscopy and find a system of protein coordination dependent on biomineralization-permissible conditions. In addition, our findings highlight a protein domain that alters the localization behavior of magnetosome proteins. Utilization of this protein domain may provide a synthetic route for conditional functionalization of magnetosomes for biotechnological applications.
Collapse
Affiliation(s)
- Carson D. Bickley
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Juan Wan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
3
|
Tomoe R, Fujimoto K, Tanaka T, Arakaki A, Kisailus D, Yoshino T. Lipid membrane modulated control of magnetic nanoparticles within bacterial systems. J Biosci Bioeng 2023; 136:253-260. [PMID: 37422334 DOI: 10.1016/j.jbiosc.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Bacterial magnetosomes synthesized by the magnetotactic bacterium Magnetospirillum magneticum are suitable for biomedical and biotechnological applications because of their high level of chemical purity of mineral with well-defined morphological features and a biocompatible lipid bilayer coating. However, utilizations of native magnetosomes are not sufficient for maximum effectiveness in many applications as the appropriate particle size differs. In this study, a method to control magnetosome particle size is developed for integration into targeted technological applications. The size and morphology of magnetosome crystals are highly regulated by the complex interactions of magnetosome synthesis-related genes; however, these interactions have not been fully elucidated. In contrast, previous studies have shown a positive correlation between vesicle and crystal sizes. Therefore, control of the magnetosome vesicle size is tuned by modifying the membrane lipid composition. Exogenous phospholipid synthesis pathways have been genetically introduced into M. magneticum. The experimental results show that these phospholipids altered the properties of the magnetosome membrane vesicles, which yielded larger magnetite crystal sizes. The genetic engineering approach presented in this study is shown to be useful for controlling magnetite crystal size without involving complex interactions of magnetosome synthesis-related genes.
Collapse
Affiliation(s)
- Ryoto Tomoe
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazushi Fujimoto
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Atsushi Arakaki
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
4
|
Wan J, Monteil CL, Taoka A, Ernie G, Park K, Amor M, Taylor-Cornejo E, Lefevre CT, Komeili A. McaA and McaB control the dynamic positioning of a bacterial magnetic organelle. Nat Commun 2022; 13:5652. [PMID: 36163114 PMCID: PMC9512821 DOI: 10.1038/s41467-022-32914-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Magnetotactic bacteria are a diverse group of microorganisms that use intracellular chains of ferrimagnetic nanocrystals, produced within magnetosome organelles, to align and navigate along the geomagnetic field. Several conserved genes for magnetosome formation have been described, but the mechanisms leading to distinct species-specific magnetosome chain configurations remain unclear. Here, we show that the fragmented nature of magnetosome chains in Magnetospirillum magneticum AMB-1 is controlled by genes mcaA and mcaB. McaA recognizes the positive curvature of the inner cell membrane, while McaB localizes to magnetosomes. Along with the MamK actin-like cytoskeleton, McaA and McaB create space for addition of new magnetosomes in between pre-existing magnetosomes. Phylogenetic analyses suggest that McaA and McaB homologs are widespread among magnetotactic bacteria and may represent an ancient strategy for magnetosome positioning.
Collapse
Affiliation(s)
- Juan Wan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Caroline L Monteil
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, 13108, Saint-Paul-lez-Durance, France
| | - Azuma Taoka
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Gabriel Ernie
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Kieop Park
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Matthieu Amor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, 13108, Saint-Paul-lez-Durance, France
| | - Elias Taylor-Cornejo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Biology, Randolph-Macon College, Ashland, VA, 23005, USA
| | - Christopher T Lefevre
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, 13108, Saint-Paul-lez-Durance, France
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
5
|
Biogeochemical fingerprinting of magnetotactic bacterial magnetite. Proc Natl Acad Sci U S A 2022; 119:e2203758119. [PMID: 35901209 PMCID: PMC9351444 DOI: 10.1073/pnas.2203758119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Biominerals are important archives of the presence of life and environmental processes in the geological record. However, ascribing a clear biogenic nature to minerals with nanometer-sized dimensions has proven challenging. Identifying hallmark features of biologically controlled mineralization is particularly important for the case of magnetite crystals, resembling those produced by magnetotactic bacteria (MTB), which have been used as evidence of early prokaryotic life on Earth and in meteorites. We show here that magnetite produced by MTB displays a clear coupled C-N signal that is absent in abiogenic and/or biomimetic (protein-mediated) nanometer-sized magnetite. We attribute the presence of this signal to intracrystalline organic components associated with proteins involved in magnetosome formation by MTB. These results demonstrate that we can assign a biogenic origin to nanometer-sized magnetite crystals, and potentially other biominerals of similar dimensions, using unique geochemical signatures directly measured at the nanoscale. This finding is significant for searching for the earliest presence of life in the Earth's geological record and prokaryotic life on other planets.
Collapse
|
6
|
Arai K, Murata S, Wang T, Yoshimura W, Oda-Tokuhisa M, Matsunaga T, Kisailus D, Arakaki A. Adsorption of Biomineralization Protein Mms6 on Magnetite (Fe 3O 4) Nanoparticles. Int J Mol Sci 2022; 23:ijms23105554. [PMID: 35628364 PMCID: PMC9143127 DOI: 10.3390/ijms23105554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/15/2023] Open
Abstract
Biomineralization is an elaborate process that controls the deposition of inorganic materials in living organisms with the aid of associated proteins. Magnetotactic bacteria mineralize magnetite (Fe3O4) nanoparticles with finely tuned morphologies in their cells. Mms6, a magnetosome membrane specific (Mms) protein isolated from the surfaces of bacterial magnetite nanoparticles, plays an important role in regulating the magnetite crystal morphology. Although the binding ability of Mms6 to magnetite nanoparticles has been speculated, the interactions between Mms6 and magnetite crystals have not been elucidated thus far. Here, we show a direct adsorption ability of Mms6 on magnetite nanoparticles in vitro. An adsorption isotherm indicates that Mms6 has a high adsorption affinity (Kd = 9.52 µM) to magnetite nanoparticles. In addition, Mms6 also demonstrated adsorption on other inorganic nanoparticles such as titanium oxide, zinc oxide, and hydroxyapatite. Therefore, Mms6 can potentially be utilized for the bioconjugation of functional proteins to inorganic material surfaces to modulate inorganic nanoparticles for biomedical and medicinal applications.
Collapse
Affiliation(s)
- Kosuke Arai
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Tokyo 184-8588, Japan; (K.A.); (S.M.); (W.Y.); (M.O.-T.); (T.M.)
| | - Satoshi Murata
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Tokyo 184-8588, Japan; (K.A.); (S.M.); (W.Y.); (M.O.-T.); (T.M.)
| | - Taifeng Wang
- Department of Materials Science and Engineering, University of California at Irvine, Irvine, CA 92697, USA; (T.W.); (D.K.)
| | - Wataru Yoshimura
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Tokyo 184-8588, Japan; (K.A.); (S.M.); (W.Y.); (M.O.-T.); (T.M.)
| | - Mayumi Oda-Tokuhisa
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Tokyo 184-8588, Japan; (K.A.); (S.M.); (W.Y.); (M.O.-T.); (T.M.)
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Tokyo 184-8588, Japan; (K.A.); (S.M.); (W.Y.); (M.O.-T.); (T.M.)
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - David Kisailus
- Department of Materials Science and Engineering, University of California at Irvine, Irvine, CA 92697, USA; (T.W.); (D.K.)
| | - Atsushi Arakaki
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Tokyo 184-8588, Japan; (K.A.); (S.M.); (W.Y.); (M.O.-T.); (T.M.)
- Correspondence:
| |
Collapse
|
7
|
A protease-mediated switch regulates the growth of magnetosome organelles in Magnetospirillum magneticum. Proc Natl Acad Sci U S A 2022; 119:2111745119. [PMID: 35110403 PMCID: PMC8833152 DOI: 10.1073/pnas.2111745119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Biomineralization, the process by which elaborate three-dimensional structures are built out of organic and inorganic molecules, is central to health and survival of many organisms. In some magnetotactic bacteria, the growth of magnetosome membranes is closely correlated to the progression of mineral formation. However, the molecular mechanisms of such regulation are not clear. We show that the serine protease MamE links magnetosome membrane growth to the controlled production of magnetite nanoparticles through the processing of mineral-associated MamD protein. Our results indicate that membrane growth directly controls mineral growth and shed light on how an organelle’s size can determine its physiological output. Manipulation of the MamE pathway may also open the door for control of nanoparticle size in future biotechnological applications. Magnetosomes are lipid-bound organelles that direct the biomineralization of magnetic nanoparticles in magnetotactic bacteria. Magnetosome membranes are not uniform in size and can grow in a biomineralization-dependent manner. However, the underlying mechanisms of magnetosome membrane growth regulation remain unclear. Using cryoelectron tomography, we systematically examined mutants with defects at various stages of magnetosome formation to identify factors involved in controlling membrane growth. We found that a conserved serine protease, MamE, plays a key role in magnetosome membrane growth regulation. When the protease activity of MamE is disrupted, magnetosome membrane growth is restricted, which, in turn, limits the size of the magnetite particles. Consistent with this finding, the upstream regulators of MamE protease activity, MamO and MamM, are also required for magnetosome membrane growth. We then used a combination of candidate and comparative proteomics approaches to identify Mms6 and MamD as two MamE substrates. Mms6 does not appear to participate in magnetosome membrane growth. However, in the absence of MamD, magnetosome membranes grow to a larger size than the wild type. Furthermore, when the cleavage of MamD by MamE protease is blocked, magnetosome membrane growth and biomineralization are severely inhibited, phenocopying the MamE protease-inactive mutant. We therefore propose that the growth of magnetosome membranes is controlled by a protease-mediated switch through processing of MamD. Overall, our work shows that, like many eukaryotic systems, bacteria control the growth and size of biominerals by manipulating the physical properties of intracellular organelles.
Collapse
|
8
|
Magnetotactic Bacteria Accumulate a Large Pool of Iron Distinct from Their Magnetite Crystals. Appl Environ Microbiol 2020; 86:AEM.01278-20. [PMID: 32887716 PMCID: PMC7642088 DOI: 10.1128/aem.01278-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Magnetotactic bacteria (MTB) produce iron-based intracellular magnetic crystals. They represent a model system for studying iron homeostasis and biomineralization in microorganisms. MTB sequester a large amount of iron in their crystals and have thus been proposed to significantly impact the iron biogeochemical cycle. Several studies proposed that MTB could also accumulate iron in a reservoir distinct from their crystals. Here, we present a chemical and magnetic methodology for quantifying the iron pools in the magnetotactic strain AMB-1. Results showed that most iron is not contained in crystals. We then adapted protocols for the fluorescent Fe(II) detection in bacteria and showed that iron could be detected outside crystals using fluorescence assays. This work suggests a more complex picture for iron homeostasis in MTB than previously thought. Because iron speciation controls its fate in the environment, our results also provide important insights into the geochemical impact of MTB. Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that form intracellular nanoparticles of magnetite (Fe3O4) or greigite (Fe3S4) in a genetically controlled manner. Magnetite and greigite synthesis requires MTB to transport a large amount of iron from the environment. Most intracellular iron was proposed to be contained within the crystals. However, recent mass spectrometry studies suggest that MTB may contain a large amount of iron that is not precipitated in crystals. Here, we attempted to resolve these discrepancies by performing chemical and magnetic assays to quantify the different iron pools in the magnetite-forming strain Magnetospirillum magneticum AMB-1, as well as in mutant strains showing defects in crystal precipitation, cultivated at various iron concentrations. All results show that magnetite represents at most 30% of the total intracellular iron under our experimental conditions and even less in the mutant strains. We further examined the iron speciation and subcellular localization in AMB-1 using the fluorescent indicator FIP-1, which was designed for the detection of labile Fe(II). Staining with this probe suggests that unmineralized reduced iron is found in the cytoplasm and associated with magnetosomes. Our results demonstrate that, under our experimental conditions, AMB-1 is able to accumulate a large pool of iron distinct from magnetite. Finally, we discuss the biochemical and geochemical implications of these results. IMPORTANCE Magnetotactic bacteria (MTB) produce iron-based intracellular magnetic crystals. They represent a model system for studying iron homeostasis and biomineralization in microorganisms. MTB sequester a large amount of iron in their crystals and have thus been proposed to significantly impact the iron biogeochemical cycle. Several studies proposed that MTB could also accumulate iron in a reservoir distinct from their crystals. Here, we present a chemical and magnetic methodology for quantifying the iron pools in the magnetotactic strain AMB-1. Results showed that most iron is not contained in crystals. We then adapted protocols for the fluorescent Fe(II) detection in bacteria and showed that iron could be detected outside crystals using fluorescence assays. This work suggests a more complex picture for iron homeostasis in MTB than previously thought. Because iron speciation controls its fate in the environment, our results also provide important insights into the geochemical impact of MTB.
Collapse
|
9
|
Pekarsky A, Spadiut O. Intrinsically Magnetic Cells: A Review on Their Natural Occurrence and Synthetic Generation. Front Bioeng Biotechnol 2020; 8:573183. [PMID: 33195134 PMCID: PMC7604359 DOI: 10.3389/fbioe.2020.573183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
The magnetization of non-magnetic cells has great potential to aid various processes in medicine, but also in bioprocess engineering. Current approaches to magnetize cells with magnetic nanoparticles (MNPs) require cellular uptake or adsorption through in vitro manipulation of cells. A relatively new field of research is "magnetogenetics" which focuses on in vivo production and accumulation of magnetic material. Natural intrinsically magnetic cells (IMCs) produce intracellular, MNPs, and are called magnetotactic bacteria (MTB). In recent years, researchers have unraveled function and structure of numerous proteins from MTB. Furthermore, protein engineering studies on such MTB proteins and other potentially magnetic proteins, like ferritins, highlight that in vivo magnetization of non-magnetic hosts is a thriving field of research. This review summarizes current knowledge on recombinant IMC generation and highlights future steps that can be taken to succeed in transforming non-magnetic cells to IMCs.
Collapse
Affiliation(s)
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
10
|
Arakaki A, Goto M, Maruyama M, Yoda T, Tanaka M, Yamagishi A, Yoshikuni Y, Matsunaga T. Restoration and Modification of Magnetosome Biosynthesis by Internal Gene Acquisition in a Magnetotactic Bacterium. Biotechnol J 2020; 15:e2000278. [DOI: 10.1002/biot.202000278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/02/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Atsushi Arakaki
- Division of Biotechnology and Life Science Institute of Engineering Tokyo University of Agriculture and Technology 2‐24‐16 Naka‐cho Koganei Tokyo 184‐8588 Japan
| | - Mayu Goto
- Division of Biotechnology and Life Science Institute of Engineering Tokyo University of Agriculture and Technology 2‐24‐16 Naka‐cho Koganei Tokyo 184‐8588 Japan
| | - Mina Maruyama
- Division of Biotechnology and Life Science Institute of Engineering Tokyo University of Agriculture and Technology 2‐24‐16 Naka‐cho Koganei Tokyo 184‐8588 Japan
| | - Takuto Yoda
- Division of Biotechnology and Life Science Institute of Engineering Tokyo University of Agriculture and Technology 2‐24‐16 Naka‐cho Koganei Tokyo 184‐8588 Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2‐12‐1 O‐okayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Ayana Yamagishi
- Division of Biotechnology and Life Science Institute of Engineering Tokyo University of Agriculture and Technology 2‐24‐16 Naka‐cho Koganei Tokyo 184‐8588 Japan
| | - Yasuo Yoshikuni
- DNA Synthesis Science Program Lawrence Berkeley National Laboratory The U.S. Department of Energy Joint Genome Institute Berkeley CA 94720 USA
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science Institute of Engineering Tokyo University of Agriculture and Technology 2‐24‐16 Naka‐cho Koganei Tokyo 184‐8588 Japan
- Japan Agency for Marine‐Earth Science and Technology (JAMSTEC) 2‐15, Natsushima‐cho Yokosuka Kanagawa 237‐0061 Japan
| |
Collapse
|
11
|
Wang X, Zheng H, Wang Q, Jiang W, Wen Y, Tian J, Sun J, Li Y, Li J. Novel Protein Mg2046 Regulates Magnetosome Synthesis in Magnetospirillum gryphiswaldense MSR-1 by Modulating a Proper Redox Status. Front Microbiol 2019; 10:1478. [PMID: 31297108 PMCID: PMC6607277 DOI: 10.3389/fmicb.2019.01478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/13/2019] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a large, polyphyletic group of aquatic microorganisms capable of absorbing large amounts of iron and synthesizing intercellular nano-scaled nanoparticles termed magnetosomes. In our previous transcriptomic studies, we discovered that a novel gene (MGMSRv2_2046, termed as mg2046) in Magnetospirillum gryphiswaldense strain MSR-1 was significantly up-regulated during the period of magnetosome synthesis. In the present study, we constructed a MSR-1 mutant strain with deletion of mg2046 (termed Δmg2046) in order to evaluate the role of this gene in cell physiological status and magnetosome formation process. In comparison with wild-type MSR-1, Δmg2046 showed similar cell growth, but much lower cell magnetic response, smaller number and size of magnetosomes, and reduced iron absorption ability. mg2046 deletion evidently disrupted iron uptake, and redox equilibrium, and strongly inhibited transcription of dissimilatory denitrification pathway genes. Our experimental findings, taken together with results of gene homology analysis, indicate that Mg2046 acts as a positive regulator in MSR-1 under microaerobic conditions, responding to hypoxia signals and participating in regulation of oxygen metabolism, in part as a co-regulator of dissimilatory denitrification pathway with oxygen sensor MgFnr (MGMSRv2_2946, termed as Mg2946). Mg2046 is clearly involved in coupled regulation of cellular oxygen, iron and nitrogen metabolism under micro-aerobic or anaerobic conditions. Our findings help explain how MSR-1 cells initiate dissimilatory denitrification pathway and overcome energy deficiency under microaerobic conditions, and have broader implications regarding bacterial survival and energy metabolism strategies under hypoxia.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Haolan Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qing Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Jiang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiesheng Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jianbo Sun
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jilun Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Ashraf N, Ahmad F, Da-Wei L, Zhou RB, Feng-Li H, Yin DC. Iron/iron oxide nanoparticles: advances in microbial fabrication, mechanism study, biomedical, and environmental applications. Crit Rev Microbiol 2019; 45:278-300. [PMID: 30985230 DOI: 10.1080/1040841x.2019.1593101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbially synthesized iron oxide nanoparticles (FeONPs) hold great potential for biomedical, clinical, and environmental applications owing to their several unique features. Biomineralization, a process that exists in almost every living organism playing a significant role in the fabrication of FeONPs through the involvement of 5-100 nm sized protein compartments such as dodecameric (Dps), ferritin, and encapsulin with their diameters 9, 12, and ∼32 nm, respectively. This contribution provides a detailed overview of the green synthesis of FeONPs by microbes and their applications in biomedical and environmental fields. The first part describes our understanding in the biological fabrication of zero-valent FeONPs with special emphasis on ferroxidase (FO) mediated series of steps involving in the translocation, oxidation, nucleation, and storage of iron in Dps, ferritin, and encapsulin protein nano-compartments. Secondly, this review elaborates the significance of biologically synthesized FeONPs in biomedical science for the detection, treatment, and prevention of various diseases. Thirdly, we tried to provide the recent advances of using FeONPs in the environmental process, e.g. detection, degradation, remediation and treatment of toxic pesticides, dyes, metals, and wastewater.
Collapse
Affiliation(s)
- Noreen Ashraf
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Fiaz Ahmad
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Li Da-Wei
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Ren-Bin Zhou
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - He Feng-Li
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Da-Chuan Yin
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| |
Collapse
|
13
|
Abstract
Uncovering the mechanisms that underlie the biogenesis and maintenance of eukaryotic organelles is a vibrant and essential area of biological research. In comparison, little attention has been paid to the process of compartmentalization in bacteria and archaea. This lack of attention is in part due to the common misconception that organelles are a unique evolutionary invention of the "complex" eukaryotic cell and are absent from the "primitive" bacterial and archaeal cells. Comparisons across the tree of life are further complicated by the nebulous criteria used to designate subcellular structures as organelles. Here, with the aid of a unified definition of a membrane-bounded organelle, we present some of the recent findings in the study of lipid-bounded organelles in bacteria and archaea.
Collapse
Affiliation(s)
- Carly R Grant
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Juan Wan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
14
|
Tanaka M, Suwatthanarak T, Arakaki A, Johnson BRG, Evans SD, Okochi M, Staniland SS, Matsunaga T. Enhanced Tubulation of Liposome Containing Cardiolipin by MamY Protein from Magnetotactic Bacteria. Biotechnol J 2018; 13:e1800087. [DOI: 10.1002/biot.201800087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/18/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and EngineeringTokyo Institute of Technology2‐12‐1, O‐okayama, Meguro‐kuTokyo 152‐8552Japan
| | - Thanawat Suwatthanarak
- Department of Chemical Science and EngineeringTokyo Institute of Technology2‐12‐1, O‐okayama, Meguro‐kuTokyo 152‐8552Japan
| | - Atsushi Arakaki
- Division of Biotechnology and Life ScienceInstitute of EngineeringTokyo University of Agriculture and Technology2‐24‐16 Naka‐cho, KoganeiTokyo 184‐8588Japan
| | | | - Stephen D. Evans
- School of Physics and AstronomyUniversity of LeedsLeeds LS2 9JTUK
| | - Mina Okochi
- Department of Chemical Science and EngineeringTokyo Institute of Technology2‐12‐1, O‐okayama, Meguro‐kuTokyo 152‐8552Japan
| | | | - Tadashi Matsunaga
- Division of Biotechnology and Life ScienceInstitute of EngineeringTokyo University of Agriculture and Technology2‐24‐16 Naka‐cho, KoganeiTokyo 184‐8588Japan
- Faculty of Science and EngineeringWaseda University3‐4‐1, Okubo, Shinjuku‐kuTokyo 169‐8555Japan
| |
Collapse
|
15
|
Yan L, Xing W. Methods to Study Magnetotactic Bacteria and Magnetosomes. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Barber-Zucker S, Zarivach R. A Look into the Biochemistry of Magnetosome Biosynthesis in Magnetotactic Bacteria. ACS Chem Biol 2017; 12:13-22. [PMID: 27930882 DOI: 10.1021/acschembio.6b01000] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Magnetosomes are protein-rich membrane organelles that encapsulate magnetite or greigite and whose chain alignment enables magnetotactic bacteria (MTB) to sense the geomagnetic field. As these bacteria synthesize uniform magnetic particles, their biomineralization mechanism is of great interest among researchers from different fields, from material engineering to medicine. Both magnetosome formation and magnetic particle synthesis are highly controlled processes that can be divided into several crucial steps: membrane invagination from the inner-cell membrane, protein sorting, the magnetosomes' arrangement into chains, iron transport, chemical environment regulation of the magnetosome lumen, magnetic particle nucleation, and finally crystal growth, size, and morphology control. This complex system involves an ensemble of unique proteins that participate in different stages during magnetosome formation, some of which were extensively studied in recent years. Here, we present the current knowledge on magnetosome biosynthesis with a focus on the different proteins and the main biochemical pathways along this process.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department of Life
Sciences,
the National Institute for Biotechnology in the Negev and Ilse Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raz Zarivach
- Department of Life
Sciences,
the National Institute for Biotechnology in the Negev and Ilse Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|