1
|
Jeter VL, Escalante-Semerena JC. Elevated Levels of an Enzyme Involved in Coenzyme B 12 Biosynthesis Kills Escherichia coli. mBio 2022; 13:e0269721. [PMID: 35012330 PMCID: PMC8749415 DOI: 10.1128/mbio.02697-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Cobamides are cobalt-containing cyclic tetrapyrroles involved in the metabolism of organisms from all domains of life but produced de novo only by some bacteria and archaea. The pathway is thought to involve up to 30 enzymes, five of which comprise the so-called "late" steps of cobamide biosynthesis. Two of these reactions activate the corrin ring, one activates the nucleobase, a fourth one condenses activated precursors, and a phosphatase yields the final product of the pathway. The penultimate step is catalyzed by a polytopic integral membrane protein, namely, the cobamide (5'-phosphate) synthase, also known as cobamide synthase. At present, the reason for the association of all putative and bona fide cobamide synthases to cell membranes is unclear and intriguing. Here, we show that, in Escherichia coli, elevated levels of cobamide synthase kill the cell by dissipating the proton motive force and compromising membrane stability. We also show that overproduction of the phosphatase that catalyzes the last step of the pathway or phage shock protein A prevents cell death when the gene encoding cobamide synthase is overexpressed. We propose that in E. coli, and probably all cobamide producers, cobamide synthase anchors a multienzyme complex responsible for the assembly of vitamin B12 and other cobamides. IMPORTANCE E. coli is the best-studied prokaryote, and some strains of this bacterium are human pathogens. We show that when the level of the enzyme that catalyzes the penultimate step of vitamin B12 biosynthesis is elevated, the viability of E. coli decreases. These findings are of broad significance because the enzyme alluded to is an integral membrane protein in all cobamide-producing bacteria, many of which are human pathogens. Our results may provide new avenues for the development of antimicrobials, because none of the enzymes involved in vitamin B12 biosynthesis are present in mammalian cells.
Collapse
Affiliation(s)
- Victoria L. Jeter
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
2
|
Riegert AS, Narindoshvili T, Coricello A, Richards NGJ, Raushel FM. Functional Characterization of Two PLP-Dependent Enzymes Involved in Capsular Polysaccharide Biosynthesis from Campylobacter jejuni. Biochemistry 2021; 60:2836-2843. [PMID: 34505775 DOI: 10.1021/acs.biochem.1c00439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Campylobacter jejuni is a Gram-negative, pathogenic bacterium that causes campylobacteriosis, a form of gastroenteritis. C. jejuni is the most frequent cause of food-borne illness in the world, surpassing Salmonella and E. coli. Coating the surface of C. jejuni is a layer of sugar molecules known as the capsular polysaccharide that, in C. jejuni NCTC 11168, is composed of a repeating unit of d-glycero-l-gluco-heptose, d-glucuronic acid, d-N-acetyl-galactosamine, and d-ribose. The d-glucuronic acid moiety is further amidated with either serinol or ethanolamine. It is unknown how these modifications are synthesized and attached to the polysaccharide. Here, we report the catalytic activities of two previously uncharacterized, pyridoxal phosphate (PLP)-dependent enzymes, Cj1436 and Cj1437, from C. jejuni NCTC 11168. Using a combination of mass spectrometry and nuclear magnetic resonance, we determined that Cj1436 catalyzes the decarboxylation of l-serine phosphate to ethanolamine phosphate. Cj1437 was shown to catalyze the transamination of dihydroxyacetone phosphate to (S)-serinol phosphate in the presence of l-glutamate. The probable routes to the ultimate formation of the glucuronamide substructures in the capsular polysaccharides of C. jejuni are discussed.
Collapse
Affiliation(s)
- Alexander S Riegert
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Tamari Narindoshvili
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Adriana Coricello
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Frank M Raushel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Abstract
Salmonella is a human pathogen of worldwide importance, and coenzyme B12 is critical for the pathogenic lifestyle of this bacterium. The importance of the work reported here lies on the improvements to the methodology used to isolate cobamide synthase, a polytopic integral membrane protein that catalyzes the penultimate step of coenzyme B12 biosynthesis. Cobamides are cobalt-containing cyclic tetrapyrroles used by cells from all domains of life but only produced de novo by some bacteria and archaea. The “late steps” of the adenosylcobamide biosynthetic pathway are responsible for the assembly of the nucleotide loop and are required during de novo synthesis and precursor salvaging. These steps are characterized by activation of the corrin ring and lower ligand base, condensation of the activated precursors to adenosylcobamide phosphate, and removal of the phosphate, yielding a complete adenosylcobamide molecule. The condensation of the activated corrin ring and lower ligand base is performed by an integral membrane protein, cobamide (5′ phosphate) synthase (CobS), and represents an important convergence of two pathways necessary for nucleotide loop assembly. Interestingly, membrane association of this penultimate step is conserved among all cobamide producers, yet the physiological relevance of this association is not known. Here, we present the purification and biochemical characterization of the CobS enzyme of the enterobacterium Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, investigate its association with liposomes, and quantify the effect of the lipid bilayer on its enzymatic activity and substrate affinity. We report a purification scheme that yields pure CobS protein, allowing in vitro functional analysis. Additionally, we report a method for liposome reconstitution of CobS, allowing for physiologically relevant studies of this inner membrane protein in a phospholipid bilayer. In vitro and in vivo data reported here expand our understanding of CobS and the implications of membrane-associated adenosylcobamide biosynthesis.
Collapse
|
4
|
Baum C, Menezes RC, Svatoš A, Schubert T. Cobamide remodeling in the freshwater microalga Chlamydomonas reinhardtii. FEMS Microbiol Lett 2020; 367:5932200. [DOI: 10.1093/femsle/fnaa171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
ABSTRACTMicroalgae are not able to produce cobamides (Cbas, B12 vitamers) de novo. Hence, the production of catalytically active Cba-containing methionine synthase (MetH), which is present in selected representatives, is dependent on the availability of exogenous B12 vitamers. Preferences in the utilization of exogenous Cbas equipped with either adenine or 5,6-dimethylbenzimidazole as lower base have been reported for some microalgae. Here, we investigated the utilization of norcobamides (NorCbas) for growth by the Cba-dependent Chlamydomonas reinhardtii mutant strain (ΔmetE). The growth yields in the presence of NorCbas were lower in comparison to those achieved with Cbas. NorCbas lack a methyl group in the linker moiety of the nucleotide loop. C. reinhardtii was also tested for the remodeling of NorCbas (e.g. adeninyl-norcobamide) in the presence of different benzimidazoles. Extraction of the NorCbas from C. reinhardtii, their purification, and identification confirmed the exchange of the lower base of the vitamers. However, the linker moiety of the NorCbas nucleotide loop was not exchanged. This observation strongly indicates the presence of an alternative mode of Cba deconstruction in C. reinhardtii that differs from the amidohydrolase (CbiZ)-dependent pathway described in Cba-remodeling bacteria and archaea.
Collapse
Affiliation(s)
- Christoph Baum
- Research Group Anaerobic Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany
| | - Riya C Menezes
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Torsten Schubert
- Research Group Anaerobic Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
5
|
Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: Cobamides unveil microbial interactions. Science 2020; 369:369/6499/eaba0165. [PMID: 32631870 DOI: 10.1126/science.aba0165] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial communities are essential to fundamental processes on Earth. Underlying the compositions and functions of these communities are nutritional interdependencies among individual species. One class of nutrients, cobamides (the family of enzyme cofactors that includes vitamin B12), is widely used for a variety of microbial metabolic functions, but these structurally diverse cofactors are synthesized by only a subset of bacteria and archaea. Advances at different scales of study-from individual isolates, to synthetic consortia, to complex communities-have led to an improved understanding of cobamide sharing. Here, we discuss how cobamides affect microbes at each of these three scales and how integrating different approaches leads to a more complete understanding of microbial interactions.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Amanda N Shelton
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Sokolovskaya OM, Mok KC, Park JD, Tran JLA, Quanstrom KA, Taga ME. Cofactor Selectivity in Methylmalonyl Coenzyme A Mutase, a Model Cobamide-Dependent Enzyme. mBio 2019; 10:e01303-19. [PMID: 31551329 PMCID: PMC6759758 DOI: 10.1128/mbio.01303-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022] Open
Abstract
Cobamides, a uniquely diverse family of enzyme cofactors related to vitamin B12, are produced exclusively by bacteria and archaea but used in all domains of life. While it is widely accepted that cobamide-dependent organisms require specific cobamides for their metabolism, the biochemical mechanisms that make cobamides functionally distinct are largely unknown. Here, we examine the effects of cobamide structural variation on a model cobamide-dependent enzyme, methylmalonyl coenzyme A (CoA) mutase (MCM). The in vitro binding affinity of MCM for cobamides can be dramatically influenced by small changes in the structure of the lower ligand of the cobamide, and binding selectivity differs between bacterial orthologs of MCM. In contrast, variations in the lower ligand have minor effects on MCM catalysis. Bacterial growth assays demonstrate that cobamide requirements of MCM in vitro largely correlate with in vivo cobamide dependence. This result underscores the importance of enzyme selectivity in the cobamide-dependent physiology of bacteria.IMPORTANCE Cobamides, including vitamin B12, are enzyme cofactors used by organisms in all domains of life. Cobamides are structurally diverse, and microbial growth and metabolism vary based on cobamide structure. Understanding cobamide preference in microorganisms is important given that cobamides are widely used and appear to mediate microbial interactions in host-associated and aquatic environments. Until now, the biochemical basis for cobamide preferences was largely unknown. In this study, we analyzed the effects of the structural diversity of cobamides on a model cobamide-dependent enzyme, methylmalonyl-CoA mutase (MCM). We found that very small changes in cobamide structure could dramatically affect the binding affinity of cobamides to MCM. Strikingly, cobamide-dependent growth of a model bacterium, Sinorhizobium meliloti, largely correlated with the cofactor binding selectivity of S. meliloti MCM, emphasizing the importance of cobamide-dependent enzyme selectivity in bacterial growth and cobamide-mediated microbial interactions.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
- Department of Chemistry, University of California Berkeley, Berkeley, California, USA
| | - Kenny C Mok
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jong Duk Park
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jennifer L A Tran
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Kathryn A Quanstrom
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
7
|
Keller S, Wetterhorn KM, Vecellio A, Seeger M, Rayment I, Schubert T. Structural and functional analysis of an l-serine O-phosphate decarboxylase involved in norcobamide biosynthesis. FEBS Lett 2019; 593:3040-3053. [PMID: 31325159 DOI: 10.1002/1873-3468.13543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 11/11/2022]
Abstract
Structural diversity of natural cobamides (Cbas, B12 vitamers) is limited to the nucleotide loop. The loop is connected to the cobalt-containing corrin ring via an (R)-1-aminopropan-2-ol O-2-phosphate (AP-P) linker moiety. AP-P is produced by the l-threonine O-3-phosphate (l-Thr-P) decarboxylase CobD. Here, the CobD homolog SMUL_1544 of the organohalide-respiring epsilonproteobacterium Sulfurospirillum multivorans was characterized as a decarboxylase that produces ethanolamine O-phosphate (EA-P) from l-serine O-phosphate (l-Ser-P). EA-P is assumed to serve as precursor of the linker moiety of norcobamides that function as cofactors in the respiratory reductive dehalogenase. SMUL_1544 (SmCobD) is a pyridoxal-5'-phosphate (PLP)-containing enzyme. The structural analysis of the SmCobD apoprotein combined with the characterization of truncated mutant proteins uncovered a role of the SmCobD N-terminus in efficient l-Ser-P conversion.
Collapse
Affiliation(s)
- Sebastian Keller
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Karl M Wetterhorn
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, WI, USA
| | - Alison Vecellio
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, WI, USA
| | - Mark Seeger
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, WI, USA
| | - Ivan Rayment
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, WI, USA
| | - Torsten Schubert
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
8
|
Türkowsky D, Jehmlich N, Diekert G, Adrian L, von Bergen M, Goris T. An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS Microbiol Ecol 2019; 94:4830072. [PMID: 29390082 DOI: 10.1093/femsec/fiy013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Organohalide respiration (OHR) is a crucial process in the global halogen cycle and of interest for bioremediation. However, investigations on OHR are hampered by the restricted genetic accessibility and the poor growth yields of many organohalide-respiring bacteria (OHRB). Therefore, genomics, transcriptomics and proteomics are often used to investigate OHRB. In general, these gene expression studies are more useful when the data of the different 'omics' approaches are integrated and compared among a wide range of cultivation conditions and ideally involve several closely related OHRB. Despite the availability of a couple of proteomic and transcriptomic datasets dealing with OHRB, such approaches are currently not covered in reviews. Therefore, we here present an integrative and comparative overview of omics studies performed with the OHRB Sulfurospirillum multivorans, Dehalococcoides mccartyi, Desulfitobacterium spp. and Dehalobacter restrictus. Genes, transcripts, proteins and the regulatory and biochemical processes involved in OHR are discussed, and a comprehensive view on the unusual metabolism of D. mccartyi, which is one of the few bacteria possibly using a quinone-independent respiratory chain, is provided. Several 'omics'-derived theories on OHRB, e.g. the organohalide-respiratory chain, hydrogen metabolism, corrinoid biosynthesis or one-carbon metabolism are critically discussed on the basis of this integrative approach.
Collapse
Affiliation(s)
- Dominique Türkowsky
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, Germany
| | - Tobias Goris
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
9
|
Jeter VL, Mattes TA, Beattie NR, Escalante-Semerena JC. A New Class of Phosphoribosyltransferases Involved in Cobamide Biosynthesis Is Found in Methanogenic Archaea and Cyanobacteria. Biochemistry 2019; 58:951-964. [PMID: 30640434 DOI: 10.1021/acs.biochem.8b01253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cobamides are coenzymes used by cells from all domains of life but made de novo by only some bacteria and archaea. The last steps of the cobamide biosynthetic pathway activate the corrin ring and the lower ligand base, condense the activated intermediates, and dephosphorylate the product prior to the release of the biologically active coenzyme. In bacteria, a phosphoribosyltransferase (PRTase) enyzme activates the base into its α-mononucleotide. The enzyme from Salmonella enterica ( SeCobT) has been extensively biochemically and structurally characterized. The crystal structure of the putative PRTase from the archaeum Methanocaldococcus jannaschii ( MjCobT) is known, but its function has not been validated. Here we report the in vivo and in vitro characterization of MjCobT. In vivo, in vitro, and phylogenetic data reported here show that MjCobT belongs to a new class of NaMN-dependent PRTases. We also show that the Synechococcus sp. WH7803 CobT protein has PRTase activity in vivo. Lastly, results of isothermal titration calorimetry and analytical ultracentrifugation analysis show that the biologically active form of MjCobT is a dimer, not a trimer, as suggested by its crystal structure.
Collapse
|
10
|
Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME JOURNAL 2018; 13:789-804. [PMID: 30429574 PMCID: PMC6461909 DOI: 10.1038/s41396-018-0304-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 11/08/2022]
Abstract
The vitamin B12 family of cofactors known as cobamides are essential for a variety of microbial metabolisms. We used comparative genomics of 11,000 bacterial species to analyze the extent and distribution of cobamide production and use across bacteria. We find that 86% of bacteria in this data set have at least one of 15 cobamide-dependent enzyme families, but only 37% are predicted to synthesize cobamides de novo. The distribution of cobamide biosynthesis and use vary at the phylum level. While 57% of Actinobacteria are predicted to biosynthesize cobamides, only 0.6% of Bacteroidetes have the complete pathway, yet 96% of species in this phylum have cobamide-dependent enzymes. The form of cobamide produced by the bacteria could be predicted for 58% of cobamide-producing species, based on the presence of signature lower ligand biosynthesis and attachment genes. Our predictions also revealed that 17% of bacteria have partial biosynthetic pathways, yet have the potential to salvage cobamide precursors. Bacteria with a partial cobamide biosynthesis pathway include those in a newly defined, experimentally verified category of bacteria lacking the first step in the biosynthesis pathway. These predictions highlight the importance of cobamide and cobamide precursor salvaging as examples of nutritional dependencies in bacteria.
Collapse
|
11
|
Tavares NK, VanDrisse CM, Escalante-Semerena JC. Rhodobacterales use a unique L-threonine kinase for the assembly of the nucleotide loop of coenzyme B 12. Mol Microbiol 2018; 110:239-261. [PMID: 30098062 DOI: 10.1111/mmi.14100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several of the enzymes involved in the conversion of adenosylcobyric acid (AdoCby) to adenosylcobamide (AdoCba) are yet to be identified and characterized in some cobamide (Cba)-producing prokaryotes. Using a bioinformatics approach, we identified the bluE gene (locus tag RSP_0788) of Rhodobacter sphaeroides 2.4.1 as a putative functional homolog of the L-threonine kinase enzyme (PduX, EC 2.7.1.177) of S. enterica. In AdoCba, (R)-1-aminopropan-2-ol O-phosphate (AP-P) links the nucleotide loop to the corrin ring; most known AdoCba producers derive AP-P from L-Thr-O-3-phosphate (L-Thr-P). Here, we show that RsBluE has L-Thr-independent ATPase activity in vivo and in vitro. We used 31 P-NMR spectroscopy to show that RsBluE generates L-Thr-P at the expense of ATP and is unable to use L-Ser as a substrate. BluE from R. sphaeroides or Rhodobacter capsulatus restored AdoCba biosynthesis in S. enterica ΕpduX and R. sphaeroides ΕbluE mutant strains. R. sphaeroides ΕbluE strains exhibited a decreased pigment phenotype that was restored by complementation with BluE. Finally, phylogenetic analyses revealed that bluE was restricted to the genomes of a few Rhodobacterales that appear to have a preference for a specific form of Cba, namely Coᴽ-(ᴽ-5,6-dimethylbenzimidazolyl-Coᵦ-adenosylcobamide (a.k.a. adenosylcobalamin, AdoCbl; coenzyme B12 , CoB12 ).
Collapse
|
12
|
Selective Utilization of Benzimidazolyl-Norcobamides as Cofactors by the Tetrachloroethene Reductive Dehalogenase of Sulfurospirillum multivorans. J Bacteriol 2018; 200:JB.00584-17. [PMID: 29378885 DOI: 10.1128/jb.00584-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
The organohalide-respiring bacterium Sulfurospirillum multivorans produces a unique cobamide, namely, norpseudo-B12, which serves as cofactor of the tetrachloroethene (PCE) reductive dehalogenase (PceA). As previously reported, a replacement of the adeninyl moiety, the lower base of the cofactor, by exogenously applied 5,6-dimethylbenzimidazole led to inactive PceA. To explore the general effect of benzimidazoles on the PCE metabolism, the susceptibility of the organism for guided biosynthesis of various singly substituted benzimidazolyl-norcobamides was investigated, and their use as cofactor by PceA was analyzed. Exogenously applied 5-methylbenzimidazole (5-MeBza), 5-hydroxybenzimidazole (5-OHBza), and 5-methoxybenzimidazole (5-OMeBza) were found to be efficiently incorporated as lower bases into norcobamides (NCbas). Structural analysis of the NCbas by nuclear magnetic resonance spectroscopy uncovered a regioselectivity in the utilization of these precursors for NCba biosynthesis. When 5-MeBza was added, a mixture of 5-MeBza-norcobamide and 6-MeBza-norcobamide was formed, and the PceA enzyme activity was affected. In the presence of 5-OHBza, almost exclusively 6-OHBza-norcobamide was produced, while in the presence of 5-OMeBza, predominantly 5-OMeBza-norcobamide was detected. Both NCbas were incorporated into PceA, and no negative effect on the PceA activity was observed. In crystal structures of PceA, both NCbas were bound in the base-off mode with the 6-OHBza and 5-OMeBza lower bases accommodated by the same solvent-exposed hydrophilic pocket that harbors the adenine as the lower base of authentic norpseudo-B12 In this study, a selective production of different norcobamide isomers containing singly substituted benzimidazoles as lower bases is shown, and unique structural insights into their utilization as cofactors by a cobamide-containing enzyme are provided.IMPORTANCE Guided biosynthesis of norcobamides containing singly substituted benzimidazoles as lower bases by the organohalide-respiring epsilonproteobacterium Sulfurospirillum multivorans is reported. An unprecedented specificity in the formation of norcobamide isomers containing hydroxylated or methoxylated benzimidazoles was observed that implicated a strict regioselectivity of the norcobamide biosynthesis in the organism. In contrast to 5,6-dimethylbenzimidazolyl-norcobamide, the incorporation of singly substituted benzimidazolyl-norcobamides as a cofactor into the tetrachloroethene reductive dehalogenase was not impaired. The enzyme was found to be functional with different isomers and not limited to the use of adeninyl-norcobamide. Structural analysis of the enzyme equipped with either adeninyl- or benzimidazolyl-norcobamide cofactors visualized for the first time structurally different cobamides bound in base-off conformation to the cofactor-binding site of a cobamide-containing enzyme.
Collapse
|
13
|
Schubert T, Adrian L, Sawers RG, Diekert G. Organohalide respiratory chains: composition, topology and key enzymes. FEMS Microbiol Ecol 2018; 94:4923014. [DOI: 10.1093/femsec/fiy035] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Torsten Schubert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, D-04318 Leipzig, Germany
- Department of Geobiotechnology, Technische Universität Berlin, Ackerstraße 74, D-13355 Berlin, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
14
|
Goris T, Schenz B, Zimmermann J, Lemos M, Hackermüller J, Schubert T, Diekert G. The complete genome of the tetrachloroethene-respiring Epsilonproteobacterium Sulfurospirillum halorespirans. J Biotechnol 2017. [DOI: 10.1016/j.jbiotec.2017.06.1197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Schubert T. The organohalide-respiring bacterium Sulfurospirillum multivorans: a natural source for unusual cobamides. World J Microbiol Biotechnol 2017; 33:93. [DOI: 10.1007/s11274-017-2258-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/01/2017] [Indexed: 01/27/2023]
|