1
|
Schwarzkopf JMF, Mehner-Breitfeld D, Brüser T. A dimeric holin/antiholin complex controls lysis by phage T4. Front Microbiol 2024; 15:1419106. [PMID: 39309529 PMCID: PMC11413866 DOI: 10.3389/fmicb.2024.1419106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Lytic phages control the timepoint of host cell lysis by timing the holin-mediated release of cell wall-degrading endolysins. In phage T4, the antiholin RI inhibits the holin T, thereby preventing the early release of the T4 endolysin and lysis. The antiholin achieves lysis inhibition (LIN) in response to phage superinfections, thereby increasing the chance for lysis in an environment with a lower phage concentration. The holin T consists of a small N-terminal cytoplasmic domain, a transmembrane helix, and a periplasmic C-terminal domain. The antiholin is targeted to the periplasm by a cleavable signal peptide. Recently, the periplasmic soluble domains of the holin and the antiholin were found to form T2/RI2 tetramers in crystals. To investigate the functional relevance of this complex, we reconstituted LIN in a phage-free system, using only RI, T, and endolysin, and combined targeted mutagenesis with functional analyses. Inactivation of the RI signal peptide cleavage site did not abolish LIN, indicating that RI can function in a membrane-bound state, which argued against the tetramer. This led to analyses showing that only one of the two T/RI interfaces in the tetramer is physiologically relevant, which is also the only interaction site predicted by AlphaFold2. Some holin mutations at this interaction site prevented lysis, suggesting that the RI interaction likely acts by blocking the holin oligomerization required for hole formation. We conclude that LIN is mediated by a dimeric T/RI complex that, unlike the tetramer, can be easily formed when both partners are membrane-anchored.
Collapse
Affiliation(s)
| | | | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
2
|
Chernyshov SV, Masulis IS, Mikoulinskaia GV. From DNA to lytic proteins: transcription and translation of the bacteriophage T5 holin/endolysin operon. World J Microbiol Biotechnol 2024; 40:256. [PMID: 38926173 DOI: 10.1007/s11274-024-04063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The analysis of transcriptional activity of the bacteriophage T5 hol/endo operon conducted in the paper revealed a strong constitutive promoter recognized by E. coli RNA polymerase and a transcription initiation point of the operon. It was also shown that the only translational start codon for holin was a non-canonical TTG. Translation initiation regions (TIRs) of both genes of the operon (hol and endo) were further analyzed using chimeric constructs, in which parts of the hol/endo regulatory regions were fused with the gene of a reporter protein (EGFP). It was found that TIR of hol was 20 times less effective than that of endo. As it turned out, the level of EGFP production was influenced by the composition of the constructs and the type of the hol start codon. Apparently, the translational suppression of holin's accumulation and posttranslational activation of endolysin by Ca2+ are the main factors ensuring the proper timing of the host cell lysis by bacteriophage T5. The approach based on the use of chimeric constructs proposed in the paper can be recommended for studying other native or artificial operons of any complexity: analyzing the impacts of separate DNA regions, as well as their coupled effect, on the processes of transcription and translation of recombinant protein(s).
Collapse
Affiliation(s)
- Sergei V Chernyshov
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Prospekt Nauki, 6, Pushchino, Moscow region, Pushchino, Moscow region, 142290, Russia
| | - Irina S Masulis
- Institute of Cell Biophysics RAS PBC RAS, Institutskaya ul., 3, Pushchino, Pushchino, Moscow region, 142290, Russia
| | - Galina V Mikoulinskaia
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Prospekt Nauki, 6, Pushchino, Moscow region, Pushchino, Moscow region, 142290, Russia.
| |
Collapse
|
3
|
Bulssico J, PapukashvilI I, Espinosa L, Gandon S, Ansaldi M. Phage-antibiotic synergy: Cell filamentation is a key driver of successful phage predation. PLoS Pathog 2023; 19:e1011602. [PMID: 37703280 PMCID: PMC10519598 DOI: 10.1371/journal.ppat.1011602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/25/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Phages are promising tools to fight antibiotic-resistant bacteria, and as for now, phage therapy is essentially performed in combination with antibiotics. Interestingly, combined treatments including phages and a wide range of antibiotics lead to an increased bacterial killing, a phenomenon called phage-antibiotic synergy (PAS), suggesting that antibiotic-induced changes in bacterial physiology alter the dynamics of phage propagation. Using single-phage and single-cell techniques, each step of the lytic cycle of phage HK620 was studied in E. coli cultures treated with either ceftazidime, cephalexin or ciprofloxacin, three filamentation-inducing antibiotics. In the presence of sublethal doses of antibiotics, multiple stress tolerance and DNA repair pathways are triggered following activation of the SOS response. One of the most notable effects is the inhibition of bacterial division. As a result, a significant fraction of cells forms filaments that stop dividing but have higher rates of mutagenesis. Antibiotic-induced filaments become easy targets for phages due to their enlarged surface areas, as demonstrated by fluorescence microscopy and flow cytometry techniques. Adsorption, infection and lysis occur more often in filamentous cells compared to regular-sized bacteria. In addition, the reduction in bacterial numbers caused by impaired cell division may account for the faster elimination of bacteria during PAS. We developed a mathematical model to capture the interaction between sublethal doses of antibiotics and exposition to phages. This model shows that the induction of filamentation by sublethal doses of antibiotics can amplify the replication of phages and therefore yield PAS. We also use this model to study the consequences of PAS on the emergence of antibiotic resistance. A significant percentage of hyper-mutagenic filamentous bacteria are effectively killed by phages due to their increased susceptibility to infection. As a result, the addition of even a very low number of bacteriophages produced a strong reduction of the mutagenesis rate of the entire bacterial population. We confirm this prediction experimentally using reporters for bacterial DNA repair. Our work highlights the multiple benefits associated with the combination of sublethal doses of antibiotics with bacteriophages.
Collapse
Affiliation(s)
- Julián Bulssico
- Laboratoire de Chimie Bactérienne, UMR7283, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Irina PapukashvilI
- Laboratoire de Chimie Bactérienne, UMR7283, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
- Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, UMR7283, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Sylvain Gandon
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Mireille Ansaldi
- Laboratoire de Chimie Bactérienne, UMR7283, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| |
Collapse
|
4
|
Interaction between Phage T4 Protein RIII and Host Ribosomal Protein S1 Inhibits Endoribonuclease RegB Activation. Int J Mol Sci 2022; 23:ijms23169483. [PMID: 36012768 PMCID: PMC9409239 DOI: 10.3390/ijms23169483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lytic viruses of bacteria (bacteriophages, phages) are intracellular parasites that take over hosts' biosynthetic processes for their propagation. Most of the knowledge on the host hijacking mechanisms has come from the studies of the lytic phage T4, which infects Escherichia coli. The integrity of T4 development is achieved by strict control over the host and phage processes and by adjusting them to the changing infection conditions. In this study, using in vitro and in vivo biochemical methods, we detected the direct interaction between the T4 protein RIII and ribosomal protein S1 of the host. Protein RIII is known as a cytoplasmic antiholin, which plays a role in the lysis inhibition function of T4. However, our results show that RIII also acts as a viral effector protein mainly targeting S1 RNA-binding domains that are central for all the activities of this multifunctional protein. We confirm that the S1-RIII interaction prevents the S1-dependent activation of endoribonuclease RegB. In addition, we propose that by modulating the multiple processes mediated by S1, RIII could act as a regulator of all stages of T4 infection including the lysis inhibition state.
Collapse
|
5
|
Mehner-Breitfeld D, Schwarzkopf JMF, Young R, Kondabagil K, Brüser T. The Phage T4 Antiholin RI Has a Cleavable Signal Peptide, Not a SAR Domain. Front Microbiol 2021; 12:712460. [PMID: 34456892 PMCID: PMC8385771 DOI: 10.3389/fmicb.2021.712460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Holin/endolysin-mediated lysis of phage T4 of Escherichia coli is tightly regulated by the antiholins RI and RIII. While regulation by the cytoplasmic RIII plays a minor role, the periplasmic antiholin RI binds tightly to the holin T and is believed to directly sense periplasmic phage DNA from superinfections as a trigger for the inhibition of lysis. RI has been reported to contain a non-cleavable signal peptide that anchors the protein to the membrane. Lysis is believed to be induced at some stage by a membrane depolarization that causes a release of RI into the periplasm without cleavage of the signal anchor. For the current model of phage lysis induction, it is thus a fundamental assumption that the N-terminal trans-membrane domain (TMD) of RI is such a signal anchor release (SAR) domain. Here we show that, in contrast to previous reports, this domain of RI is a cleavable signal peptide. RI is processed and released into the periplasm as a mature protein, and inactivation of its signal peptidase cleavage site blocks processing and membrane release. The signal peptide of RI can also mediate the normal translocation of a well-characterized Sec substrate, PhoA, into the periplasm. This simplifies the current view of phage lysis regulation and suggests a fundamentally different interpretation of the recently published structure of the soluble domains of the RI–T complex.
Collapse
Affiliation(s)
| | | | - Ry Young
- Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
6
|
Barron-Montenegro R, García R, Dueñas F, Rivera D, Opazo-Capurro A, Erickson S, Moreno-Switt AI. Comparative Analysis of Felixounavirus Genomes Including Two New Members of the Genus That Infect Salmonella Infantis. Antibiotics (Basel) 2021; 10:806. [PMID: 34356727 PMCID: PMC8300805 DOI: 10.3390/antibiotics10070806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonella spp. is one of the most common foodborne pathogens worldwide; therefore, its control is highly relevant for the food industry. Phages of the Felixounavirus genus have the characteristic that one phage can infect a large number of different Salmonella serovars and, thus, are proposed as an alternative to antimicrobials in food production. Here, we describe two new members of the Felixounavirus genus named vB_Si_35FD and vB_Si_DR94, which can infect Salmonella Infantis. These new members were isolated and sequenced, and a subsequent comparative genomic analysis was conducted including 23 publicly available genomes of Felixounaviruses that infect Salmonella. The genomes of vB_Si_35FD and vB_Si_DR94 are 85,818 and 85,730 bp large and contain 129 and 125 coding sequences, respectively. The genomes did not show genes associated with virulence or antimicrobial resistance, which could be useful for candidates to use as biocontrol agents. Comparative genomics revealed that closely related Felixounavirus are found in distinct geographical locations and that this genus has a conserved genomic structure despite its worldwide distribution. Our study revealed a highly conserved structure of the phage genomes, and the two newly described phages could represent promising biocontrol candidates against Salmonella spp. from a genomic viewpoint.
Collapse
Affiliation(s)
- Rocío Barron-Montenegro
- Laboratorio de Investigación en Agentes Antimicrobianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (R.B.-M.); (A.O.-C.)
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7550000, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Lo Barnechea, Santiago 7690000, Chile;
| | - Rodrigo García
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile;
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Fernando Dueñas
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8320000, Chile;
| | - Dácil Rivera
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Lo Barnechea, Santiago 7690000, Chile;
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8320000, Chile;
| | - Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antimicrobianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (R.B.-M.); (A.O.-C.)
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Lo Barnechea, Santiago 7690000, Chile;
| | - Stephen Erickson
- Laboratory Corporation of America Holdings, New Brighton, MN 55112, USA;
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7550000, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Lo Barnechea, Santiago 7690000, Chile;
| |
Collapse
|
7
|
Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res 2021; 248:126746. [PMID: 33773329 DOI: 10.1016/j.micres.2021.126746] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Appearance of pathogenic bacteria resistant to most, if not all, known antibiotics is currently one of the most significant medical problems. Therefore, development of novel antibacterial therapies is crucial for efficient treatment of bacterial infections in the near future. One possible option is to employ enzymes, encoded by bacteriophages, which cause destruction of bacterial cell membranes and walls. Bacteriophages use such enzymes to destroy bacterial host cells at the final stage of their lytic development, in order to ensure effective liberation of progeny virions. Nevertheless, to use such bacteriophage-encoded proteins in medicine and/or biotechnology, it is crucial to understand details of their biological functions and biochemical properties. Therefore, in this review article, we will present and discuss our current knowledge on the processes of bacteriophage-mediated bacterial cell lysis, with special emphasis on enzymes involved in them. Regulation of timing of the lysis is also discussed. Finally, possibilities of the practical use of these enzymes as antibacterial agents will be underlined and perspectives of this aspect will be presented.
Collapse
Affiliation(s)
- Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Krzysztof Łepek
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Katarzyna Kosznik-Kwaśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Karolina Zdrojewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Monika Maciąg-Dorszyńska
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
8
|
Krieger IV, Kuznetsov V, Chang JY, Zhang J, Moussa SH, Young RF, Sacchettini JC. The Structural Basis of T4 Phage Lysis Control: DNA as the Signal for Lysis Inhibition. J Mol Biol 2020; 432:4623-4636. [PMID: 32562709 DOI: 10.1016/j.jmb.2020.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/05/2023]
Abstract
Optimal phage propagation depends on the regulation of the lysis of the infected host cell. In T4 phage infection, lysis occurs when the holin protein (T) forms lesions in the host membrane. However, the lethal function of T can be blocked by an antiholin (RI) during lysis inhibition (LIN). LIN sets if the infected cell undergoes superinfection, then the lysis is delayed until host/phage ratio becomes more favorable for the release of progeny. It has been thought that a signal derived from the superinfection is required to activate RI. Here we report structures that suggest a radically different model in which RI binds to T irrespective of superinfection, causing it to accumulate in a membrane as heterotetrameric 2RI-2T complex. Moreover, we show the complex binds non-specifically to DNA, suggesting that the gDNA from the superinfecting phage serves as the LIN signal and that stabilization of the complex by DNA binding is what defines LIN. Finally, we show that soluble domain of free RI crystallizes in a domain-swapped homotetramer, which likely works as a sink for RI molecules released from the RI-T complex to ensure efficient lysis. These results constitute the first structural basis and a new model not only for the historic LIN phenomenon but also for the temporal regulation of phage lysis in general.
Collapse
Affiliation(s)
- Inna V Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vladimir Kuznetsov
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Jeng-Yih Chang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Department of Biochemistry and Biophysics
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Department of Biochemistry and Biophysics
| | - Samir H Moussa
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Department of Biochemistry and Biophysics
| | - Ryland F Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Department of Biochemistry and Biophysics
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
9
|
Hays SG, Seed KD. Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite. eLife 2020; 9:e53200. [PMID: 32329714 PMCID: PMC7182436 DOI: 10.7554/elife.53200] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/01/2020] [Indexed: 12/28/2022] Open
Abstract
Bacteria, bacteriophages that prey upon them, and mobile genetic elements (MGEs) compete in dynamic environments, evolving strategies to sense the milieu. The first discovered environmental sensing by phages, lysis inhibition, has only been characterized and studied in the limited context of T-even coliphages. Here, we discover lysis inhibition in the etiological agent of the diarrheal disease cholera, Vibrio cholerae, infected by ICP1, a phage ubiquitous in clinical samples. This work identifies the ICP1-encoded holin, teaA, and antiholin, arrA, that mediate lysis inhibition. Further, we show that an MGE, the defensive phage satellite PLE, collapses lysis inhibition. Through lysis inhibition disruption a conserved PLE protein, LidI, is sufficient to limit the phage produced from infection, bottlenecking ICP1. These studies link a novel incarnation of the classic lysis inhibition phenomenon with conserved defensive function of a phage satellite in a disease context, highlighting the importance of lysis timing during infection and parasitization.
Collapse
Affiliation(s)
- Stephanie G Hays
- Department of Plant and Microbial Biology, University of CaliforniaBerkeleyUnited States
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of CaliforniaBerkeleyUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
10
|
Akter M, Brown N, Clokie M, Yeasmin M, Tareq TM, Baddam R, Azad MAK, Ghosh AN, Ahmed N, Talukder KA. Prevalence of Shigella boydii in Bangladesh: Isolation and Characterization of a Rare Phage MK-13 That Can Robustly Identify Shigellosis Caused by Shigella boydii Type 1. Front Microbiol 2019; 10:2461. [PMID: 31787934 PMCID: PMC6853846 DOI: 10.3389/fmicb.2019.02461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/14/2019] [Indexed: 11/25/2022] Open
Abstract
Shigellosis, caused by Shigella boydii type 1, is understudied and underreported. For 3 years, GEMS study identified 5.4% of all Shigella as S. boydii. We showed the prevalent serotypes of S. boydii in Bangladesh and phage-based diagnosis of S. boydii type 1, a rapid and low-cost approach. Previously typed 793 clinical S. boydii strains were used for serotype distribution. Twenty-eight environmental water samples were collected for isolation of Shigella phages. Forty-eight serotypes of Shigella and other enteric bacteria were used for testing the susceptibility to phage MK-13. Electron microscopy, restriction enzyme analysis, whole genome sequencing (WGS), and annotation were performed for extensive characterization. S. boydii type 1 is the second most prevalent serotype among 20 serotypes of S. boydii in Bangladesh. We isolated a novel phage, MK-13, which specifically lyses S. boydii type 1, but doesn’t lyse other 47 serotypes of Shigella or other enteric bacteria tested. The phage belongs to the Myoviridae family and distinct from other phages indicated by electron microscopy and restriction enzyme analysis, respectively. MK-13 genome consists of 158 kbp of circularly permuted double-stranded DNA with G + C content of 49.45%, and encodes 211 open reading frames including four tRNA-coding regions. The genome has 98% identity with previously reported phage, ΦSboM-AG3, reported to have a broader host range infecting most of the S. boydii and other species of Shigella tested. To our knowledge, MK-13 is the first phage reported to be used as a diagnostic marker to detect S. boydii type 1, especially in remote settings with limited laboratory infrastructure.
Collapse
Affiliation(s)
- Mahmuda Akter
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Nathan Brown
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martha Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Mahmuda Yeasmin
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tokee M Tareq
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ramani Baddam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Muhammad A K Azad
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Amar N Ghosh
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Niyaz Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Kaisar A Talukder
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| |
Collapse
|
11
|
Abedon ST. Look Who's Talking: T-Even Phage Lysis Inhibition, the Granddaddy of Virus-Virus Intercellular Communication Research. Viruses 2019; 11:v11100951. [PMID: 31623057 PMCID: PMC6832632 DOI: 10.3390/v11100951] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
That communication can occur between virus-infected cells has been appreciated for nearly as long as has virus molecular biology. The original virus communication process specifically was that seen with T-even bacteriophages-phages T2, T4, and T6-resulting in what was labeled as a lysis inhibition. Another proposed virus communication phenomenon, also seen with T-even phages, can be described as a phage-adsorption-induced synchronized lysis-inhibition collapse. Both are mediated by virions that were released from earlier-lysing, phage-infected bacteria. Each may represent ecological responses, in terms of phage lysis timing, to high local densities of phage-infected bacteria, but for lysis inhibition also to locally reduced densities of phage-uninfected bacteria. With lysis inhibition, the outcome is a temporary avoidance of lysis, i.e., a lysis delay, resulting in increased numbers of virions (greater burst size). Synchronized lysis-inhibition collapse, by contrast, is an accelerated lysis which is imposed upon phage-infected bacteria by virions that have been lytically released from other phage-infected bacteria. Here I consider some history of lysis inhibition, its laboratory manifestation, its molecular basis, how it may benefit expressing phages, and its potential ecological role. I discuss as well other, more recently recognized examples of virus-virus intercellular communication.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA.
| |
Collapse
|
12
|
Igler C, Abedon ST. Commentary: A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision. Front Microbiol 2019; 10:1171. [PMID: 31214137 PMCID: PMC6557168 DOI: 10.3389/fmicb.2019.01171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 01/21/2023] Open
Affiliation(s)
- Claudia Igler
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH, United States
| |
Collapse
|
13
|
Latino L, Midoux C, Vergnaud G, Pourcel C. Investigation of Pseudomonas aeruginosa strain PcyII-10 variants resisting infection by N4-like phage Ab09 in search for genes involved in phage adsorption. PLoS One 2019; 14:e0215456. [PMID: 30990839 PMCID: PMC6467409 DOI: 10.1371/journal.pone.0215456] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteria and their bacteriophages coexist and coevolve for the benefit of both in a mutualistic association. Multiple mechanisms are used by bacteria to resist phages in a trade-off between survival and maintenance of fitness. In vitro studies allow inquiring into the fate of virus and host in different conditions aimed at mimicking natural environment. We analyse here the mutations emerging in a clinical Pseudomonas aeruginosa strain in response to infection by Ab09, a N4-like lytic podovirus and describe a variety of chromosomal deletions and mutations conferring resistance. Some deletions result from illegitimate recombination taking place during long-term maintenance of the phage genome. Phage variants with mutations in a tail fiber gene are selected during pseudolysogeny with the capacity to infect resistant cells and produce large plaques. These results highlight the complex host/phage association and suggest that phage Ab09 promotes bacterial chromosome rearrangements. Finally this study points to the possible role of two bacterial genes in Ab09 phage adhesion to the cell, rpsB encoding protein S2 of the 30S ribosomal subunit and ORF1587 encoding a Wzy-like membrane protein involved in LPS biosynthesis.
Collapse
Affiliation(s)
- Libera Latino
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Cédric Midoux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Christine Pourcel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- * E-mail: ,
| |
Collapse
|
14
|
Abstract
The first steps in phage lysis involve a temporally controlled permeabilization of the cytoplasmic membrane followed by enzymatic degradation of the peptidoglycan. For Caudovirales of Gram-negative hosts, there are two different systems: the holin-endolysin and pinholin-SAR endolysin pathways. In the former, lysis is initiated when the holin forms micron-scale holes in the inner membrane, releasing active endolysin into the periplasm to degrade the peptidoglycan. In the latter, lysis begins when the pinholin causes depolarization of the membrane, which activates the secreted SAR endolysin. Historically, the disruption of the first two barriers of the cell envelope was thought to be necessary and sufficient for lysis of Gram-negative hosts. However, recently a third functional class of lysis proteins, the spanins, has been shown to be required for outer membrane disruption. Spanins are so named because they form a protein bridge that connects both membranes. Most phages produce a two-component spanin complex, composed of an outer membrane lipoprotein (o-spanin) and an inner membrane protein (i-spanin) with a predominantly coiled-coil periplasmic domain. Some phages have a different type of spanin which spans the periplasm as a single molecule, by virtue of an N-terminal lipoprotein signal and a C-terminal transmembrane domain. Evidence is reviewed supporting a model in which the spanins function by fusing the inner membrane and outer membrane. Moreover, it is proposed that spanin function is inhibited by the meshwork of the peptidoglycan, thus coupling the spanin step to the first two steps mediated by the holin and endolysin.
Collapse
Affiliation(s)
- Jesse Cahill
- Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States.
| | - Ry Young
- Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
15
|
Phage-Antibiotic Synergy via Delayed Lysis. Appl Environ Microbiol 2018; 84:AEM.02085-18. [PMID: 30217844 DOI: 10.1128/aem.02085-18] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022] Open
Abstract
When phages infect bacteria cultured in the presence of sublethal doses of antibiotics, the sizes of the phage plaques are significantly increased. This phenomenon is known as phage-antibiotic synergy (PAS). In this study, the observation of PAS was extended to a wide variety of bacterium-phage pairs using different classes of antibiotics. PAS was shown in both Gram-positive and Gram-negative bacteria. Cells stressed with β-lactam antibiotics filamented or swelled extensively, resulting in an increase in phage production. PAS was also sometimes observed in the presence of other classes of antibiotics with or without bacterial filamentation. The addition of antibiotics induced recA expression in various bacteria, but a recA deletion mutant strain of Escherichia coli also showed filamentation and PAS in the presence of quinolone antibiotics. The phage adsorption efficiency did not change in the presence of the antibiotics when the cell surfaces were enlarged as they filamented. Increases in the production of phage DNA and mRNAs encoding phage proteins were observed in these cells, with only a limited increase in protein production. The data suggest that PAS is the product of a prolonged period of particle assembly due to delayed lysis. The increase in the cell surface area far exceeded the increase in phage holin production in the filamented host cells, leading to a relatively limited availability of intracellular holins for aggregating and forming holes in the host membrane. Reactive oxygen species (ROS) stress also led to an increased production of phages, while heat stress resulted in only a limited increase in phage production.IMPORTANCE Phage-antibiotic synergy (PAS) has been reported for a decade, but the underlying mechanism has never been vigorously investigated. This study shows the presence of PAS from a variety of phage-bacterium-antibiotic pairings. We show that increased phage production resulted directly from a lysis delay caused by the relative shortage of holin in filamented bacterial hosts in the presence of sublethal concentrations of stress-inducing substances, such as antibiotics and reactive oxygen species (ROS).
Collapse
|
16
|
Enzymes and Mechanisms Employed by Tailed Bacteriophages to Breach the Bacterial Cell Barriers. Viruses 2018; 10:v10080396. [PMID: 30060520 PMCID: PMC6116005 DOI: 10.3390/v10080396] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023] Open
Abstract
Monoderm bacteria possess a cell envelope made of a cytoplasmic membrane and a cell wall, whereas diderm bacteria have and extra lipid layer, the outer membrane, covering the cell wall. Both cell types can also produce extracellular protective coats composed of polymeric substances like, for example, polysaccharidic capsules. Many of these structures form a tight physical barrier impenetrable by phage virus particles. Tailed phages evolved strategies/functions to overcome the different layers of the bacterial cell envelope, first to deliver the genetic material to the host cell cytoplasm for virus multiplication, and then to release the virion offspring at the end of the reproductive cycle. There is however a major difference between these two crucial steps of the phage infection cycle: virus entry cannot compromise cell viability, whereas effective virion progeny release requires host cell lysis. Here we present an overview of the viral structures, key protein players and mechanisms underlying phage DNA entry to bacteria, and then escape of the newly-formed virus particles from infected hosts. Understanding the biological context and mode of action of the phage-derived enzymes that compromise the bacterial cell envelope may provide valuable information for their application as antimicrobials.
Collapse
|