1
|
Mahdi S, Beuning PJ, Korzhnev DM. Functional asymmetry in processivity clamp proteins. Biophys J 2025; 124:1549-1561. [PMID: 40247618 DOI: 10.1016/j.bpj.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
Symmetric homo-oligomeric proteins comprising multiple copies of identical subunits are abundant in all domains of life. To fulfill their biological function, these complexes undergo conformational changes, binding events, or posttranslational modifications, leading to loss of symmetry. Processivity clamp proteins that encircle DNA and play multiple roles in DNA replication and repair are archetypical homo-oligomeric symmetric protein complexes. The symmetrical nature of processivity clamps enables simultaneous interactions with multiple protein binding partners; such interactions result in asymmetric changes that facilitate the transition between clamp loading and DNA replication and between DNA replication and repair. The ring-shaped processivity clamps are opened and loaded onto DNA by clamp-loader complexes via asymmetric intermediates with one of the intermonomer interfaces disrupted, undergo spontaneous opening events, and bind heterogeneous partners. Eukaryotic clamp proteins are subject to ubiquitylation, SUMOylation, and acetylation, affecting their biological functions. There is increasing evidence of the functional asymmetry of the processivity clamp proteins from structural, biophysical, and computational studies. Here, we review the symmetry and asymmetry of processivity clamps and their roles in regulating the various functions of the clamps.
Collapse
Affiliation(s)
- Sam Mahdi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts; Department of Bioengineering, Northeastern University, Boston, Massachusetts.
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut.
| |
Collapse
|
2
|
Chang S, Laureti L, Thrall ES, Kay MS, Philippin G, Jergic S, Pagès V, Loparo JJ. A bipartite interaction with the processivity clamp potentiates Pol IV-mediated TLS. Proc Natl Acad Sci U S A 2025; 122:e2421471122. [PMID: 39993197 PMCID: PMC11892629 DOI: 10.1073/pnas.2421471122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/06/2024] [Indexed: 02/26/2025] Open
Abstract
Processivity clamps mediate polymerase switching for translesion synthesis (TLS). All three Escherichia coli TLS polymerases interact with the β2 processivity clamp through a conserved clamp-binding motif (CBM), which is indispensable for TLS. Notably, Pol IV also interacts weakly with the rim of the clamp through non-CBM residues. Ablating this "rim contact" in cells results in selective sensitivity to DNA-damaging agents, raising the question how the rim contact contributes to TLS. Here, we show that the rim contact is critical for TLS past a strong replication block but barely necessary for a weak blocking lesion. Within the in vitro reconstituted E. coli replisome, the rim mutation compromises Pol IV-mediated TLS past 3-deaza-methyl dA, a strong block, whereas barely affecting TLS past N2-furfuryl dG, a weak block. Similar observations are also made in E. coli cells bearing a single copy of these lesions in the genome. At lesion-stalled replication forks, single-stranded DNA binding protein locally enriches Pol IV, enabling it to bind the low-affinity rim site. This interaction poises Pol IV to better compete with Pol III, the replicative polymerase, which competitively inhibits Pol IV from interacting with the clamp through its CBM. We propose that this bipartite clamp interaction enables Pol IV to rapidly resolve lesion-stalled replication at a strong block through TLS, which reduces damage-induced mutagenesis.
Collapse
Affiliation(s)
- Seungwoo Chang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Luisa Laureti
- Cancer Research Center of Marseille: Team DNA Damage and Genome Instability|CNRS, Aix Marseille Université, Inserm, Institut Paoli-Calmettes, MarseilleF-13009, France
| | - Elizabeth S. Thrall
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Marguerite S. Kay
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Gaëlle Philippin
- Cancer Research Center of Marseille: Team DNA Damage and Genome Instability|CNRS, Aix Marseille Université, Inserm, Institut Paoli-Calmettes, MarseilleF-13009, France
| | - Slobodan Jergic
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW2522, Australia
| | - Vincent Pagès
- Cancer Research Center of Marseille: Team DNA Damage and Genome Instability|CNRS, Aix Marseille Université, Inserm, Institut Paoli-Calmettes, MarseilleF-13009, France
| | - Joseph J. Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| |
Collapse
|
3
|
Tafoya C, Ching B, Garcia E, Lee A, Acevedo M, Bass K, Chau E, Lin H, Mamora K, Reeves M, Vaca M, van Iderstein W, Velasco L, Williams V, Yonemoto G, Yonemoto T, Heller DM, Diaz A. Genome-wide screen overexpressing mycobacteriophage Amelie genes identifies multiple inhibitors of mycobacterial growth. G3 (BETHESDA, MD.) 2025; 15:jkae285. [PMID: 39657018 PMCID: PMC11797047 DOI: 10.1093/g3journal/jkae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
The genome sequences of thousands of bacteriophages have been determined and functions for many of the encoded genes have been assigned based on homology to characterized sequences. However, functions have not been assigned to more than two-thirds of the identified phage genes as they have no recognizable sequence features. Recent genome-wide overexpression screens have begun to identify bacteriophage genes that encode proteins that reduce or inhibit bacterial growth. This study describes the construction of a plasmid-based overexpression library of 76 genes encoded by Cluster K1 mycobacteriophage Amelie, which is genetically similar to cluster K phages Waterfoul and Hammy recently described in similar screens and closely related to phages that infect clinically important mycobacteria. Twenty-six out of the 76 genes evaluated in our screen, encompassing 34% of the genome, reduced growth of the host Mycobacterium smegmatis to various degrees. More than one-third of these 26 toxic genes have no known function, and 10 of the 26 genes almost completely abolished host growth upon overexpression. Notably, while several of the toxic genes identified in Amelie shared homologs with other Cluster K phages recently screened, this study uncovered 7 previously unknown gene families that exhibit cytotoxic properties, thereby broadening the repertoire of known phage-encoded growth inhibitors. This work, carried out under the HHMI-supported SEA-GENES project (Science Education Alliance Gene-function Exploration by a Network of Emerging Scientists), underscores the importance of comprehensive overexpression screens in elucidating genome-wide patterns of phage gene function and novel interactions between phages and their hosts.
Collapse
Affiliation(s)
- Chelsea Tafoya
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Brandon Ching
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Elva Garcia
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Alyssa Lee
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Melissa Acevedo
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Kelsey Bass
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Elizabeth Chau
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Heidi Lin
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Kaitlyn Mamora
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Michael Reeves
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Madyllyne Vaca
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | | | - Luis Velasco
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Vivianna Williams
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Grant Yonemoto
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Tyler Yonemoto
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Danielle M Heller
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Arturo Diaz
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| |
Collapse
|
4
|
Łazowski K, Woodgate R, Fijalkowska IJ. Escherichia coli DNA replication: the old model organism still holds many surprises. FEMS Microbiol Rev 2024; 48:fuae018. [PMID: 38982189 PMCID: PMC11253446 DOI: 10.1093/femsre/fuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, United States
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Berger MB, Cisneros GA. Distal Mutations in the β-Clamp of DNA Polymerase III* Disrupt DNA Orientation and Affect Exonuclease Activity. J Am Chem Soc 2023; 145:3478-3490. [PMID: 36745735 PMCID: PMC10237177 DOI: 10.1021/jacs.2c11713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA polymerases are responsible for the replication and repair of DNA found in all DNA-based organisms. DNA Polymerase III is the main replicative polymerase of E. coli and is composed of over 10 proteins. A subset of these proteins (Pol III*) includes the polymerase (α), exonuclease (ϵ), clamp (β), and accessory protein (θ). Mutations of residues in, or around the active site of the catalytic subunits (α and ϵ), can have a significant impact on catalysis. However, the effects of distal mutations in noncatalytic subunits on the activity of catalytic subunits are less well-characterized. Here, we investigate the effects of two Pol III* variants, β-L82E/L82'E and β-L82D/L82'D, on the proofreading reaction catalyzed by ϵ. MD simulations reveal major changes in the dynamics of Pol III*, which extend throughout the complex. These changes are mostly induced by a shift in the position of the DNA substrate inside the β-clamp, although no major structural changes are observed in the protein complex. Quantum mechanics/molecular mechanics (QM/MM) calculations indicate that the β-L82D/L82'D variant has reduced catalytic proficiency due to highly endoergic reaction energies resulting from structural changes in the active site and differences in the electric field at the active site arising from the protein and substrate. Conversely, the β-L82E/L82'E variant is predicted to maintain proofreading activity, exhibiting a similar reaction barrier for nucleotide excision compared with the WT system. However, significant differences in the reaction mechanism are obtained due to the changes induced by the mutations on the β-clamp.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
6
|
Heller D, Amaya I, Mohamed A, Ali I, Mavrodi D, Deighan P, Sivanathan V. Systematic overexpression of genes encoded by mycobacteriophage Waterfoul reveals novel inhibitors of mycobacterial growth. G3 (BETHESDA, MD.) 2022; 12:jkac140. [PMID: 35727726 PMCID: PMC9339283 DOI: 10.1093/g3journal/jkac140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 01/21/2023]
Abstract
Bacteriophages represent an enormous reservoir of novel genes, many of which are unrelated to existing entries in public databases and cannot be assigned a predicted function. Characterization of these genes can provide important insights into the intricacies of phage-host interactions and may offer new strategies to manipulate bacterial growth and behavior. Overexpression is a useful tool in the study of gene-mediated effects, and we describe here the construction of a plasmid-based overexpression library of a complete set of genes for Waterfoul, a mycobacteriophage closely related to those infecting clinically important strains of Mycobacterium tuberculosis and/or Mycobacterium abscessus. The arrayed Waterfoul gene library was systematically screened in a plate-based cytotoxicity assay, identifying a diverse set of 32 Waterfoul gene products capable of inhibiting the growth of the host Mycobacterium smegmatis and providing a first look at the frequency and distribution of cytotoxic products encoded within a single mycobacteriophage genome. Several of these Waterfoul gene products were observed to confer potent anti-mycobacterial effects, making them interesting candidates for follow-up mechanistic studies.
Collapse
Affiliation(s)
- Danielle Heller
- Department of Science Education, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Isabel Amaya
- Department of Science Education, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Aleem Mohamed
- Department of Biology, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Ilzat Ali
- Department of Biology, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Dmitri Mavrodi
- Center for Molecular & Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Padraig Deighan
- Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | - Viknesh Sivanathan
- Department of Science Education, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| |
Collapse
|
7
|
Scotland MK, Homiski C, Sutton MD. During Translesion Synthesis, Escherichia coli DinB89 (T120P) Alters Interactions of DinB (Pol IV) with Pol III Subunit Assemblies and SSB, but Not with the β Clamp. J Bacteriol 2022; 204:e0061121. [PMID: 35285726 PMCID: PMC9017331 DOI: 10.1128/jb.00611-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
Translesion synthesis (TLS) by specialized DNA polymerases (Pols) is an evolutionarily conserved mechanism for tolerating replication-blocking DNA lesions. Using the Escherichia coli dinB-encoded Pol IV as a model to understand how TLS is coordinated with the actions of the high-fidelity Pol III replicase, we previously described a novel Pol IV mutant containing a threonine 120-to-proline mutation (Pol IV-T120P) that failed to exchange places with Pol III at the replication fork in vitro as part of a Pol III-Pol IV switch. This in vitro defect correlated with the inability of Pol IV-T120P to support TLS in vivo, suggesting Pol IV gains access to the DNA, at least in part, via a Pol III-Pol IV switch. Interaction of Pol IV with the β sliding clamp and the single-stranded DNA binding protein (SSB) significantly stimulates Pol IV replication and facilitates its access to the DNA. In this work, we demonstrate that Pol IV interacts physically with Pol III. We further show that Pol IV-T120P interacts normally with the β clamp, but is impaired in interactions with the α catalytic and εθ proofreading subunits of Pol III, as well as SSB. Taken together with published work, these results provide strong support for the model in which Pol IV-Pol III and Pol IV-SSB interactions help to regulate the access of Pol IV to the DNA. Finally, we describe several additional E. coli Pol-Pol interactions, suggesting Pol-Pol interactions play fundamental roles in coordinating bacterial DNA replication, DNA repair, and TLS. IMPORTANCE Specialized DNA polymerases (Pols) capable of catalyzing translesion synthesis (TLS) generate mutations that contribute to bacterial virulence, pathoadaptation, and antimicrobial resistance. One mechanism by which the bacterial TLS Pol IV gains access to the DNA to generate mutations is by exchanging places with the bacterial Pol III replicase via a Pol III-Pol IV switch. Here, we describe multiple Pol III-Pol IV interactions and discuss evidence that these interactions are required for the Pol III-Pol IV switch. Furthermore, we describe several additional E. coli Pol-Pol interactions that may play fundamental roles in managing the actions of the different bacterial Pols in DNA replication, DNA repair, and TLS.
Collapse
Affiliation(s)
- Michelle K. Scotland
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Caleb Homiski
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Mark D. Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
8
|
Elevated Levels of the Escherichia coli nrdAB-Encoded Ribonucleotide Reductase Counteract the Toxicity Caused by an Increased Abundance of the β Clamp. J Bacteriol 2021; 203:e0030421. [PMID: 34543109 DOI: 10.1128/jb.00304-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Expression of the Escherichia coli dnaN-encoded β clamp at ≥10-fold higher than chromosomally expressed levels impedes growth by interfering with DNA replication. A mutant clamp (βE202K bearing a glutamic acid-to-lysine substitution at residue 202) binds to DNA polymerase III (Pol III) with higher affinity than the wild-type clamp, suggesting that its failure to impede growth is independent of its ability to sequester Pol III away from the replication fork. Our results demonstrate that the dnaNE202K strain underinitiates DNA replication due to insufficient levels of DnaA-ATP and expresses several DnaA-regulated genes at altered levels, including nrdAB, that encode the class 1a ribonucleotide reductase (RNR). Elevated expression of nrdAB was dependent on hda function. As the β clamp-Hda complex regulates the activity of DnaA by stimulating its intrinsic ATPase activity, this finding suggests that the dnaNE202K allele supports an elevated level of Hda activity in vivo compared with the wild-type strain. In contrast, using an in vitro assay reconstituted with purified components the βE202K and wild-type clamp proteins supported comparable levels of Hda activity. Nevertheless, co-overexpression of the nrdAB-encoded RNR relieved the growth defect caused by elevated levels of the β clamp. These results support a model in which increased cellular levels of DNA precursors relieve the ability of elevated β clamp levels to impede growth and suggest either that multiple effects stemming from the dnaNE202K mutation contribute to elevated nrdAB levels or that Hda plays a noncatalytic role in regulating DnaA-ATP by sequestering it to reduce its availability. IMPORTANCE DnaA bound to ATP acts in initiation of DNA replication and regulates the expression of several genes whose products act in DNA metabolism. The state of the ATP bound to DnaA is regulated in part by the β clamp-Hda complex. The dnaNE202K allele was identified by virtue of its inability to impede growth when expressed ≥10-fold higher than chromosomally expressed levels. While the dnaNE202K strain exhibits several phenotypes consistent with heightened Hda activity, the wild-type and βE202K clamp proteins support equivalent levels of Hda activity in vitro. Taken together, these results suggest that βE202K-Hda plays a noncatalytic role in regulating DnaA-ATP. This, as well as alternative models, is discussed.
Collapse
|