1
|
Zhang S, Song W, Marinos G, Waschina S, Zimmermann J, Kaleta C, Thomas T. Genome-scale metabolic modelling reveals interactions and key roles of symbiont clades in a sponge holobiont. Nat Commun 2024; 15:10858. [PMID: 39738126 DOI: 10.1038/s41467-024-55222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Sponges harbour complex microbiomes and as ancient metazoans and important ecosystem players are emerging as powerful models to understand the evolution and ecology of symbiotic interactions. Metagenomic studies have previously described the functional features of sponge symbionts, however, little is known about the metabolic interactions and processes that occur under different environmental conditions. To address this issue, we construct here constraint-based, genome-scale metabolic networks for the microbiome of the sponge Stylissa sp. Our models define the importance of sponge-derived nutrients for microbiome stability and discover how different organic inputs can result in net heterotrophy or autotrophy of the symbiont community. The analysis further reveals the key role that a newly discovered bacterial taxon has in cross-feeding activities and how it dynamically adjusts with nutrient inputs. Our study reveals insights into the functioning of a sponge microbiome and provides a framework to further explore and define metabolic interactions in holobionts.
Collapse
Affiliation(s)
- Shan Zhang
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Department of Ocean Science, School of Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Weizhi Song
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Geogios Marinos
- Research Group Medical Systems Biology, Institute of Experimental Medicine, University of Kiel and University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Silvio Waschina
- Institute of Human Nutrition and Food Science, University of Kiel, 24105, Kiel, Germany
| | - Johannes Zimmermann
- Research Group Medical Systems Biology, Institute of Experimental Medicine, University of Kiel and University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, University of Kiel and University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Torsten Thomas
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia.
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia.
| |
Collapse
|
2
|
Nalivaiko EY, Vasseur CM, Seebeck FP. Enzyme-Catalyzed Oxidative Degradation of Ergothioneine. Angew Chem Int Ed Engl 2024; 63:e202318445. [PMID: 38095354 DOI: 10.1002/anie.202318445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Ergothioneine is a sulfur-containing metabolite that is produced by bacteria and fungi, and is absorbed by plants and animals as a micronutrient. Ergothioneine reacts with harmful oxidants, including singlet oxygen and hydrogen peroxide, and may therefore protect cells against oxidative stress. Herein we describe two enzymes from actinobacteria that cooperate in the specific oxidative degradation of ergothioneine. The first enzyme is an iron-dependent thiol dioxygenase that produces ergothioneine sulfinic acid. A crystal structure of ergothioneine dioxygenase from Thermocatellispora tengchongensis reveals many similarities with cysteine dioxygenases, suggesting that the two enzymes share a common mechanism. The second enzyme is a metal-dependent ergothioneine sulfinic acid desulfinase that produces Nα-trimethylhistidine and SO2 . The discovery that certain actinobacteria contain the enzymatic machinery for O2 -dependent biosynthesis and O2 -dependent degradation of ergothioneine indicates that these organisms may actively manage their ergothioneine content.
Collapse
Affiliation(s)
- Egor Y Nalivaiko
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Camille M Vasseur
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| |
Collapse
|
3
|
Potential and Metabolic Pathways of Eugenol in the Management of Xanthomonas perforans, a Pathogen of Bacterial Spot of Tomato. Int J Mol Sci 2022; 23:ijms232314648. [PMID: 36498976 PMCID: PMC9739100 DOI: 10.3390/ijms232314648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Bacterial spot of tomato continues to pose a significant problem to tomato production worldwide. In Florida, bacterial spot of tomato caused by Xanthomonas perforans is one of the most important diseases responsible for tomato yield loss. This disease is difficult to control, and new strategies are continually being investigated to combat the devastating effect of this disease. Recent efforts focusing on essential oils based on small molecules have spurred interests in the utilization of this class of chemicals for disease management. In this study, we evaluated the efficacy of eugenol for the management of bacterial spot of tomato caused by X. perforans. In the greenhouse experiments, eugenol applied as a foliar spray significantly (p < 0.5) reduced bacterial spot disease compared to the untreated control. In the field experiments, the area under the disease progress curve (AUDPC) was significantly (p < 0.5) lower in the plots treated with eugenol or eugenol combined with the surfactant Cohere than in the untreated control plots, and it was comparable to the copper-based treatments. To provide additional insights into the possible pathways of eugenol activities, we applied a liquid chromatography mass spectrometry (LC-MS)-based metabolomic study using a thermo Q-Exactive orbitrap mass spectrometer with Dionex ultra high-performance liquid chromatography (UHPLC) on X. perforans strain 91−118 treated with eugenol. Our results showed that eugenol affected metabolite production in multiple pathways critical to bacterial survival. For example, treatment of cells with eugenol resulted in the downregulation of the glutathione metabolism pathway and associated metabolites, except for 5-oxoproline, which accumulation is known to be toxic to living cells. While the peaks corresponding to the putatively identified sarmentosin showed the most significant impact and reduced in response to eugenol treatment, branched-chain amino acids, such as L-isoleucine, increased in production, suggesting that eugenol may not negatively affect the protein biosynthesis pathways. The results from our study demonstrated the efficacy of eugenol in the management of bacterial spot of tomato under greenhouse and field conditions and identified multiple pathways that are targeted.
Collapse
|
4
|
Flückger S, Igareta NV, Seebeck FP. Convergent Evolution of Fungal Cysteine Dioxygenases. Chembiochem 2020; 21:3082-3086. [PMID: 32543095 DOI: 10.1002/cbic.202000317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Cupin-type cysteine dioxygenases (CDOs) are non-heme iron enzymes that occur in animals, plants, bacteria and in filamentous fungi. In this report, we show that agaricomycetes contain an entirely unrelated type of CDO that emerged by convergent evolution from enzymes involved in the biosynthesis of ergothioneine. The activity of this CDO type is dependent on the ergothioneine precursor N-α-trimethylhistidine. The metabolic link between ergothioneine production and cysteine oxidation suggests that the two processes might be part of the same chemical response in fungi, for example against oxidative stress.
Collapse
Affiliation(s)
- Sebastian Flückger
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Nico V Igareta
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
5
|
Mota MJ, Lopes RP, Pinto CA, Sousa S, Gomes AM, Delgadillo I, Saraiva JA. The use of different fermentative approaches on Paracoccus denitrificans: Effect of high pressure and air availability on growth and metabolism. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Environmental Adaptability and Quorum Sensing: Iron Uptake Regulation during Biofilm Formation by Paracoccus denitrificans. Appl Environ Microbiol 2018; 84:AEM.00865-18. [PMID: 29776923 DOI: 10.1128/aem.00865-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/07/2018] [Indexed: 11/20/2022] Open
Abstract
Paracoccus denitrificans is a valuable model organism due to its versatile respiration capability and bioenergetic flexibility, both of which are critical to its survival in different environments. Quorum sensing (QS) plays a crucial role in the regulation of many cell functions; however, whether QS systems play a role in P. denitrificans is unknown. In this study, we demonstrated that iron uptake systems in P. denitrificans were directly regulated by a newly identified QS system. Genes coding for TonB-dependent systems, which transport chelated iron, were transcribed at higher levels in the QS-defective mutants. In contrast, genes coding for the Fbp system, which is TonB independent and transports unchelated ferric iron, were downregulated in the mutants. In brief, QS in P. denitrificans triggers a switch in iron uptake from TonB-dependent to TonB-independent transport during biofilm formation as higher concentrations of iron accumulate in the exopolysaccharide (EPS). Switching from TonB-dependent iron uptake systems to TonB-independent systems not only prevents cells from absorbing excess iron but also conserves energy. Our data suggest that iron uptake strategies are directly regulated by QS in Paracoccus denitrificans to support their survival in available ecological niches.IMPORTANCE As iron is an important trace metal for most organisms, its absorption is highly regulated. Fur has been reported as a prevalent regulator of iron acquisition. In addition, there is a relationship between QS and iron acquisition in pathogenic microbes. However, there have been few studies on the iron uptake strategies of nonpathogenic bacteria. In this study, we demonstrated that iron uptake systems in Paracoccus denitrificans PD1222 were regulated by a newly identified PdeR/PdeI QS system during biofilm formation, and we put forward a hypothesis that QS-dependent iron uptake systems benefit the stability of biofilms. This report elaborates the correlation among QS, iron uptake, and biofilm formation and thus contributes to an understanding of the ecological behavior of environmental bacteria.
Collapse
|
7
|
Suvorova IA, Rodionov DA. Comparative genomics of pyridoxal 5'-phosphate-dependent transcription factor regulons in Bacteria. Microb Genom 2016; 2:e000047. [PMID: 28348826 PMCID: PMC5320631 DOI: 10.1099/mgen.0.000047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022] Open
Abstract
The MocR-subfamily transcription factors (MocR-TFs) characterized by the GntR-family DNA-binding domain and aminotransferase-like sensory domain are broadly distributed among certain lineages of Bacteria. Characterized MocR-TFs bind pyridoxal 5'-phosphate (PLP) and control transcription of genes involved in PLP, gamma aminobutyric acid (GABA) and taurine metabolism via binding specific DNA operator sites. To identify putative target genes and DNA binding motifs of MocR-TFs, we performed comparative genomics analysis of over 250 bacterial genomes. The reconstructed regulons for 825 MocR-TFs comprise structural genes from over 200 protein families involved in diverse biological processes. Using the genome context and metabolic subsystem analysis we tentatively assigned functional roles for 38 out of 86 orthologous groups of studied regulators. Most of these MocR-TF regulons are involved in PLP metabolism, as well as utilization of GABA, taurine and ectoine. The remaining studied MocR-TF regulators presumably control genes encoding enzymes involved in reduction/oxidation processes, various transporters and PLP-dependent enzymes, for example aminotransferases. Predicted DNA binding motifs of MocR-TFs are generally similar in each orthologous group and are characterized by two to four repeated sequences. Identified motifs were classified according to their structures. Motifs with direct and/or inverted repeat symmetry constitute the majority of inferred DNA motifs, suggesting preferable TF dimerization in head-to-tail or head-to-head configuration. The obtained genomic collection of in silico reconstructed MocR-TF motifs and regulons in Bacteria provides a basis for future experimental characterization of molecular mechanisms for various regulators in this family.
Collapse
Affiliation(s)
- Inna A. Suvorova
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Science, Moscow, Russia
| | - Dmitry A. Rodionov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Science, Moscow, Russia
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Correspondence D. A. Rodionov ()
| |
Collapse
|
8
|
Identification of novel thermostable taurine–pyruvate transaminase from Geobacillus thermodenitrificans for chiral amine synthesis. Appl Microbiol Biotechnol 2015; 100:3101-11. [DOI: 10.1007/s00253-015-7129-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 11/27/2022]
|
9
|
Abstract
Mangroves are unique, and endangered, coastal ecosystems that play a vital role in the tropical and subtropical environments. A comprehensive description of the microbial communities in these ecosystems is currently lacking, and additional studies are required to have a complete understanding of the functioning and resilience of mangroves worldwide. In this work, we carried out a metagenomic study by comparing the microbial community of mangrove sediment with the rhizosphere microbiome of Avicennia marina, in northern Red Sea mangroves, along the coast of Saudi Arabia. Our results revealed that rhizosphere samples presented similar profiles at the taxonomic and functional levels and differentiated from the microbiome of bulk soil controls. Overall, samples showed predominance by Proteobacteria, Bacteroidetes and Firmicutes, with high abundance of sulfate reducers and methanogens, although specific groups were selectively enriched in the rhizosphere. Functional analysis showed significant enrichment in 'metabolism of aromatic compounds', 'mobile genetic elements', 'potassium metabolism' and 'pathways that utilize osmolytes' in the rhizosphere microbiomes. To our knowledge, this is the first metagenomic study on the microbiome of mangroves in the Red Sea, and the first application of unbiased 454-pyrosequencing to study the rhizosphere microbiome associated with A. marina. Our results provide the first insights into the range of functions and microbial diversity in the rhizosphere and soil sediments of gray mangrove (A. marina) in the Red Sea.
Collapse
|
10
|
Entner-Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1. Proc Natl Acad Sci U S A 2015. [PMID: 26195800 DOI: 10.1073/pnas.1507049112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose) is the polar head group of the plant sulfolipid SQ-diacylglycerol, and SQ comprises a major proportion of the organosulfur in nature, where it is degraded by bacteria. A first degradation pathway for SQ has been demonstrated recently, a "sulfoglycolytic" pathway, in addition to the classical glycolytic (Embden-Meyerhof) pathway in Escherichia coli K-12; half of the carbon of SQ is abstracted as dihydroxyacetonephosphate (DHAP) and used for growth, whereas a C3-organosulfonate, 2,3-dihydroxypropane sulfonate (DHPS), is excreted. The environmental isolate Pseudomonas putida SQ1 is also able to use SQ for growth, and excretes a different C3-organosulfonate, 3-sulfolactate (SL). In this study, we revealed the catabolic pathway for SQ in P. putida SQ1 through differential proteomics and transcriptional analyses, by in vitro reconstitution of the complete pathway by five heterologously produced enzymes, and by identification of all four organosulfonate intermediates. The pathway follows a reaction sequence analogous to the Entner-Doudoroff pathway for glucose-6-phosphate: It involves an NAD(+)-dependent SQ dehydrogenase, 6-deoxy-6-sulfogluconolactone (SGL) lactonase, 6-deoxy-6-sulfogluconate (SG) dehydratase, and 2-keto-3,6-dideoxy-6-sulfogluconate (KDSG) aldolase. The aldolase reaction yields pyruvate, which supports growth of P. putida, and 3-sulfolactaldehyde (SLA), which is oxidized to SL by an NAD(P)(+)-dependent SLA dehydrogenase. All five enzymes are encoded in a single gene cluster that includes, for example, genes for transport and regulation. Homologous gene clusters were found in genomes of other P. putida strains, in other gamma-Proteobacteria, and in beta- and alpha-Proteobacteria, for example, in genomes of Enterobacteria, Vibrio, and Halomonas species, and in typical soil bacteria, such as Burkholderia, Herbaspirillum, and Rhizobium.
Collapse
|
11
|
Wübbeler JH, Hiessl S, Meinert C, Poehlein A, Schuldes J, Daniel R, Steinbüchel A. The genome of Variovorax paradoxus strain TBEA6 provides new understandings for the catabolism of 3,3'-thiodipropionic acid and hence the production of polythioesters. J Biotechnol 2015; 209:85-95. [PMID: 26073999 DOI: 10.1016/j.jbiotec.2015.06.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 11/30/2022]
Abstract
The betaproteobacterium Variovorax paradoxus strain TBEA6 is capable of using 3,3'-thiodipropionic acid (TDP) as sole carbon and energy source for growth. This thioether is employed for several industrial applications. It can be applied as precursor for the biotechnical production of polythioesters (PTE), which represent persistent bioplastics. Consequently, the genome of V. paradoxus strain TBEA6 was sequenced. The draft genome sequence comprises approximately 7.2Mbp and 6852 predicted open reading frames. Furthermore, transposon mutagenesis to unravel the catabolism of TDP in strain TBEA6 was performed. Screening of 20,000 mutants mapped the insertions of Tn5::mob in 32 mutants, which all showed no growth with TDP as sole carbon source. Based on the annotated genome sequence together with transposon-induced mutagenesis, defined gene deletions, in silico analyses and comparative genomics, a comprehensive pathway for the catabolism of TDP is proposed: TDP is imported via the tripartite tricarboxcylate transport system and/or the TRAP-type dicarboxylate transport system. The initial cleavage of TDP into 3-hydroxypropionic acid (3HP) and 3-mercaptopropionic acid (3MP), which serves as precursor substrate for PTE synthesis, is most probably performed by the FAD-dependent oxidoreductase Fox. 3HP is presumably catabolized via malonate semialdehyde, whereas 3MP is oxygenated by the 3MP-dioxygenase Mdo yielding 3-sulfinopropionic acid (3SP). Afterwards, 3SP is linked to coenzyme A. The next step is the abstraction of sulfite by a desulfinase, and the resulting propionyl-CoA enters the central metabolism. Sulfite is oxidized to sulfate by the sulfite-oxidizing enzyme SoeABC and is subsequently excreted by the cells by the sulfate exporter Pse.
Collapse
Affiliation(s)
- Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Sebastian Hiessl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Christina Meinert
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Jörg Schuldes
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany; Faculty of Biology, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
12
|
Denger K, Weiss M, Felux AK, Schneider A, Mayer C, Spiteller D, Huhn T, Cook AM, Schleheck D. Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle. Nature 2014; 507:114-7. [PMID: 24463506 DOI: 10.1038/nature12947] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/12/2013] [Indexed: 01/01/2023]
Abstract
Sulphoquinovose (SQ, 6-deoxy-6-sulphoglucose) has been known for 50 years as the polar headgroup of the plant sulpholipid in the photosynthetic membranes of all higher plants, mosses, ferns, algae and most photosynthetic bacteria. It is also found in some non-photosynthetic bacteria, and SQ is part of the surface layer of some Archaea. The estimated annual production of SQ is 10,000,000,000 tonnes (10 petagrams), thus it comprises a major portion of the organo-sulphur in nature, where SQ is degraded by bacteria. However, despite evidence for at least three different degradative pathways in bacteria, no enzymic reaction or gene in any pathway has been defined, although a sulphoglycolytic pathway has been proposed. Here we show that Escherichia coli K-12, the most widely studied prokaryotic model organism, performs sulphoglycolysis, in addition to standard glycolysis. SQ is catabolised through four newly discovered reactions that we established using purified, heterologously expressed enzymes: SQ isomerase, 6-deoxy-6-sulphofructose (SF) kinase, 6-deoxy-6-sulphofructose-1-phosphate (SFP) aldolase, and 3-sulpholactaldehyde (SLA) reductase. The enzymes are encoded in a ten-gene cluster, which probably also encodes regulation, transport and degradation of the whole sulpholipid; the gene cluster is present in almost all (>91%) available E. coli genomes, and is widespread in Enterobacteriaceae. The pathway yields dihydroxyacetone phosphate (DHAP), which powers energy conservation and growth of E. coli, and the sulphonate product 2,3-dihydroxypropane-1-sulphonate (DHPS), which is excreted. DHPS is mineralized by other bacteria, thus closing the sulphur cycle within a bacterial community.
Collapse
Affiliation(s)
- Karin Denger
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Weiss
- Konstanz Research School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Ann-Katrin Felux
- Konstanz Research School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Alexander Schneider
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076 Tübingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076 Tübingen, Germany
| | - Dieter Spiteller
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Thomas Huhn
- Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| | - Alasdair M Cook
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|