1
|
Guo H, Luo J, Chen S, Yu T, Mu X, Chen F, Lu X, He J, Zheng Y, Bao C, Wang P, Yin Z, Li B. Replicon-Based Typing About IncG Plasmids and Molecular Characterization of Five IncG Plasmids Carrying Carbapenem Resistance Gene bla KPC-2. Infect Drug Resist 2024; 17:2987-2999. [PMID: 39045111 PMCID: PMC11265224 DOI: 10.2147/idr.s461039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/29/2024] [Indexed: 07/25/2024] Open
Abstract
Purpose To investigate the genetic diversity of IncG plasmids, we have proposed a typing scheme based on replicon repA and performed comparative genomic analysis of five IncG plasmids from China. Methods p30860-KPC, p116965-KPC, pA1705-KPC, pA1706-KPC and pNY5520-KPC total in five IncG plasmids from clinical isolates of Pseudomonas and Enterobacteriaceae, respectively, were fully sequenced and were compared with the previously collected reference plasmid p10265-KPC. Results Based on phylogeny, IncG-type plasmids are divided into IncG-I to IncG-VIII, the five plasmids belong to IncG-VIII. A detailed sequence comparison was then presented that the IncG plasmid involved accessory region I (Tn5563a/b/c/d/e), accessory region II (ISpa19), and accessory region III (bla KPC-2-region). Expect for the pNY5520-KPC, the rest of the plasmids had the same backbone structure as the reference one. Within the plasmids, insertion sequences Tn5563d and Tn5563e were identified, a novel unknown insertion region was found in Tn5563b/c/d/e. In addition, Tn6376b and Tn6376c were newly designated in the study. Conclusion The data presented here including a typing scheme and detailed genetic comparison which provide an insight into the diversification and evolution history of IncG plasmids.
Collapse
Affiliation(s)
- Huiqian Guo
- Department of Clinical Laboratory, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, People’s Republic of China
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Jing Luo
- Department of Clinical Laboratory, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, People’s Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Suming Chen
- Department of Clinical Laboratory, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Ting Yu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Xiaofei Mu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Xiuhui Lu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Jiaqi He
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Yali Zheng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Chunmei Bao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, People’s Republic of China
| | - Boan Li
- Department of Clinical Laboratory, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, People’s Republic of China
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, People’s Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| |
Collapse
|
2
|
Chen Z, Zhang Y, Mao D, Wang X, Luo Y. NaClO Co-selects antibiotic and disinfectant resistance in Klebsiella pneumonia: Implications for the potential risk of extensive disinfectant use during COVID-19 pandemic. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134102. [PMID: 38554506 DOI: 10.1016/j.jhazmat.2024.134102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/01/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024]
Abstract
The inappropriate use of antibiotics is widely recognized as the primary driver of bacterial antibiotic resistance. However, less attention has been given to the potential induction of multidrug-resistant bacteria through exposure to disinfectants. In this study, Klebsiella pneumonia, an opportunistic pathogen commonly associated with hospital and community-acquired infection, was experimentally exposed to NaClO at both minimum inhibitory concentration (MIC) and sub-MIC levels over a period of 60 days. The result demonstrated that NaClO exposure led to enhanced resistance of K. pneumonia to both NaClO itself and five antibiotics (erythromycin, polymyxin B, gentamicin, tetracycline, and ciprofloxacin). Concurrently, the evolved resistant strains exhibited fitness costs, as evidenced by decreased growth rates. Whole population sequencing revealed that both concentrations of NaClO exposure caused genetic mutations in the genome of K. pneumonia. Some of these mutations were known to be associated with antibiotic resistance, while others had not previously been identified as such. In addition, 11 identified mutations were located in the virulence factors, demonstrating that NaClO exposure may also impact the pathogenicity of K. pneumoniae. Overall, this study highlights the potential for the widespread use of NaClO-containing disinfectants during the COVID-19 pandemic to contribute to the emergence of antibiotic-resistant bacteria. ENVIRONMENTAL IMPLICATION: Considering the potential hazardous effects of disinfectant residues on environment, organisms and biodiversity, the sharp rise in use of disinfectants during COVID-19 pandemic has been considered highly likely to cause worldwide secondary disasters in ecosystems and human health. This study demonstrated that NaClO exposure enhanced the resistance of K. pneumonia to both NaClO and five antibiotics (erythromycin, polymyxin B, gentamicin, tetracycline, and ciprofloxacin), highlighting the widespread use of NaClO-containing disinfectants during the COVID-19 pandemic may increase the emergence of antibiotic-resistant bacteria in the environment.
Collapse
Affiliation(s)
- Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Yulin Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China.
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
García-Bayona L, Said N, Coyne MJ, Flores K, Elmekki NM, Sheahan ML, Camacho AG, Hutt K, Yildiz FH, Kovács ÁT, Waldor MK, Comstock LE. A pervasive large conjugative plasmid mediates multispecies biofilm formation in the intestinal microbiota increasing resilience to perturbations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.590671. [PMID: 38746121 PMCID: PMC11092513 DOI: 10.1101/2024.04.29.590671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Although horizontal gene transfer is pervasive in the intestinal microbiota, we understand only superficially the roles of most exchanged genes and how the mobile repertoire affects community dynamics. Similarly, little is known about the mechanisms underlying the ability of a community to recover after a perturbation. Here, we identified and functionally characterized a large conjugative plasmid that is one of the most frequently transferred elements among Bacteroidales species and is ubiquitous in diverse human populations. This plasmid encodes both an extracellular polysaccharide and fimbriae, which promote the formation of multispecies biofilms in the mammalian gut. We use a hybridization-based approach to visualize biofilms in clarified whole colon tissue with unprecedented 3D spatial resolution. These biofilms increase bacterial survival to common stressors encountered in the gut, increasing strain resiliency, and providing a rationale for the plasmid's recent spread and high worldwide prevalence.
Collapse
|
4
|
Nayar G, Terrizzano I, Seabolt E, Agarwal A, Boucher C, Ruiz J, Slizovskiy IB, Kaufman JH, Noyes NR. ggMOB: Elucidation of genomic conjugative features and associated cargo genes across bacterial genera using genus-genus mobilization networks. Front Genet 2022; 13:1024577. [PMID: 36568361 PMCID: PMC9779932 DOI: 10.3389/fgene.2022.1024577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Horizontal gene transfer mediated by conjugation is considered an important evolutionary mechanism of bacteria. It allows organisms to quickly evolve new phenotypic properties including antimicrobial resistance (AMR) and virulence. The frequency of conjugation-mediated cargo gene exchange has not yet been comprehensively studied within and between bacterial taxa. We developed a frequency-based network of genus-genus conjugation features and candidate cargo genes from whole-genome sequence data of over 180,000 bacterial genomes, representing 1,345 genera. Using our method, which we refer to as ggMOB, we revealed that over half of the bacterial genomes contained one or more known conjugation features that matched exactly to at least one other genome. Moreover, the proportion of genomes containing these conjugation features varied substantially by genus and conjugation feature. These results and the genus-level network structure can be viewed interactively in the ggMOB interface, which allows for user-defined filtering of conjugation features and candidate cargo genes. Using the network data, we observed that the ratio of AMR gene representation in conjugative versus non-conjugative genomes exceeded 5:1, confirming that conjugation is a critical force for AMR spread across genera. Finally, we demonstrated that clustering genomes by conjugation profile sometimes correlated well with classical phylogenetic structuring; but that in some cases the clustering was highly discordant, suggesting that the importance of the accessory genome in driving bacterial evolution may be highly variable across both time and taxonomy. These results can advance scientific understanding of bacterial evolution, and can be used as a starting point for probing genus-genus gene exchange within complex microbial communities that include unculturable bacteria. ggMOB is publicly available under the GNU licence at https://ruiz-hci-lab.github.io/ggMOB/.
Collapse
Affiliation(s)
- Gowri Nayar
- Department of Biomedical Informatics, Stanford University, Stanford, CA, United States
| | | | - Ed Seabolt
- IBM Research Almaden, San Jose, CA, United States
| | | | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, United States
| | - Jaime Ruiz
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, United States
| | - Ilya B. Slizovskiy
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, United States
| | | | - Noelle R. Noyes
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, United States,*Correspondence: Noelle R. Noyes,
| |
Collapse
|
5
|
Streamlined Genetic Manipulation of Diverse Bacteroides and Parabacteroides Isolates from the Human Gut Microbiota. mBio 2019; 10:mBio.01762-19. [PMID: 31409684 PMCID: PMC6692515 DOI: 10.1128/mbio.01762-19] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have entered an era when studies of the gut microbiota are transitioning from basic questions of composition and host effects to understanding the microbial molecules that underlie compositional shifts and mediate health and disease processes. The importance of the gut Bacteroidales to human health and disease and their potential as a source of engineered live biotherapeutics make these bacteria of particular interest for in-depth mechanistic study. However, there are still barriers to the genetic analysis of diverse Bacteroidales strains, limiting our ability to study important host and community phenotypes identified in these strains. Here, we have overcome many of these obstacles by constructing a series of vectors that allow easy genetic manipulation in diverse gut Bacteroides and Parabacteroides strains. These constructs fill a critical need and allow streamlined allelic replacement in diverse gut Bacteroidales, including the growing number of multiantibiotic-resistant strains present in the modern-day human intestine. Studies of the gut microbiota have dramatically increased in recent years as the importance of this microbial ecosystem to human health and disease is better appreciated. The Bacteroidales are the most abundant order of bacteria in the healthy human gut and induce both health-promoting and disease-promoting effects. There are more than 55 species of gut Bacteroidales with extensive intraspecies genetic diversity, especially in regions involved in the synthesis of molecules that interact with other bacteria, the host, and the diet. This property necessitates the study of diverse species and strains. In recent years, the genetic toolkit to study these bacteria has greatly expanded, but we still lack a facile system for creating deletion mutants and allelic replacements in diverse strains, especially with the rapid increase in resistance to the two antibiotics used for genetic manipulation. Here, we present a new versatile and highly efficient vector suite that allows the creation of allelic deletions and replacements in multiresistant strains of Bacteroides and Parabacteroides using a gain-of-function system based on polysaccharide utilization. These vectors also allow for easy counterselection independent of creating a mutant background strain, using a toxin from a type VI secretion system of Bacteroides fragilis. Toxin production during counterselection is induced with one of two different molecules, providing flexibility based on strain phenotypes. This family of vectors greatly facilitates functional genetic analyses and extends the range of gut Bacteroidales strains that can be genetically modified to include multiresistant strains that are currently genetically intractable with existing genetic tools.
Collapse
|
6
|
Husain F, Tang K, Veeranagouda Y, Boente R, Patrick S, Blakely G, Wexler HM. Novel large-scale chromosomal transfer in Bacteroides fragilis contributes to its pan-genome and rapid environmental adaptation. Microb Genom 2019; 3. [PMID: 29208130 PMCID: PMC5729914 DOI: 10.1099/mgen.0.000136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteroides fragilis, an important component of the human gastrointestinal microbiota, can cause lethal extra-intestinal infection upon escape from the gastrointestinal tract. We demonstrated transfer and recombination of large chromosomal segments from B. fragilis HMW615, a multidrug resistant clinical isolate, to B. fragilis 638R. In one example, the transfer of a segment of ~435 Kb/356 genes replaced ~413 Kb/326 genes of the B. fragilis 638R chromosome. In addition to transfer of antibiotic resistance genes, these transfers (1) replaced complete divergent polysaccharide biosynthesis loci; (2) replaced DNA inversion-controlled intergenic shufflons (that control expression of genes encoding starch utilization system outer membrane proteins) with more complex, divergent shufflons; and (3) introduced additional intergenic shufflons encoding divergent Type 1 restriction/modification systems. Conjugative transposon-like genes within a transferred segment and within a putative integrative conjugative element (ICE5) ~45 kb downstream from the transferred segment both encode proteins that may be involved in the observed transfer. These data indicate that chromosomal transfer is a driver of antigenic diversity and nutrient adaptation in Bacteroides that (1) contributes to the dissemination of the extensive B. fragilis pan-genome, (2) allows rapid adaptation to a changing environment and (3) can confer pathogenic characteristics to host symbionts.
Collapse
Affiliation(s)
- Fasahath Husain
- Brentwood Biomedical Research Institute, Los Angeles, CA, USA
| | | | | | | | | | | | - Hannah M. Wexler
- Research, GLAVAHCS, 11301 Wilshire Blvd., 691/151J Bldg. 115, Room 312, Los Angeles, CA, USA
- *Correspondence: Hannah M. Wexler,
| |
Collapse
|
7
|
Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512-537. [PMID: 28369623 PMCID: PMC5812530 DOI: 10.1093/femsre/fux008] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA that transmit both vertically, in a host-integrated state, and horizontally, through excision and transfer to new recipients. Different families of ICEs have been discovered with more or less restricted host ranges, which operate by similar mechanisms but differ in regulatory networks, evolutionary origin and the types of variable genes they contribute to the host. Based on reviewing recent experimental data, we propose a general model of ICE life style that explains the transition between vertical and horizontal transmission as a result of a bistable decision in the ICE-host partnership. In the large majority of cells, the ICE remains silent and integrated, but hidden at low to very low frequencies in the population specialized host cells appear in which the ICE starts its process of horizontal transmission. This bistable process leads to host cell differentiation, ICE excision and transfer, when suitable recipients are present. The ratio of ICE bistability (i.e. ratio of horizontal to vertical transmission) is the outcome of a balance between fitness costs imposed by the ICE horizontal transmission process on the host cell, and selection for ICE distribution (i.e. ICE 'fitness'). From this emerges a picture of ICEs as elements that have adapted to a mostly confined life style within their host, but with a very effective and dynamic transfer from a subpopulation of dedicated cells.
Collapse
Affiliation(s)
- François Delavat
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Nicolas Pradervand
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | | |
Collapse
|
8
|
Hopp CM, Gardner JF, Salyers AA. The Xis2d protein of CTnDOT binds to the intergenic region between the mob and tra operons. Plasmid 2015. [PMID: 26212728 DOI: 10.1016/j.plasmid.2015.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CTnDOT is a 65kbp integrative and conjugative element (ICE) that carries genes encoding both tetracycline and erythromycin resistances. The excision operon of this element encodes Xis2c, Xis2d, and Exc proteins involved in the excision of CTnDOT from host chromosomes. These proteins are also required in the complex transcriptional regulation of the divergently transcribed transfer (tra) and mobilization (mob) operons of CTnDOT. Transcription of the tra operon is positively regulated by Xis2c and Xis2d, whereas, transcription of the mob operon is positively regulated by Xis2d and Exc. Xis2d is the only protein that is involved in the excision reaction, as well as the transcriptional regulation of both the mob and tra operons. This paper helps establish how Xis2d binds the DNA in the mob and tra region. Unlike other excisionase proteins, Xis2d binds a region of dyad symmetry. The binding site is located in the intergenic region between the mob and tra promoters, and once bound Xis2d induces a bend in the DNA. Xis2d binding to this region could be the preliminary step for the activation of both operons. Then the other proteins, like Exc, can interact with Xis2d and form higher order complexes.
Collapse
Affiliation(s)
- Crystal M Hopp
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Jeffrey F Gardner
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Abigail A Salyers
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
9
|
Tamanai-Shacoori Z, Monfort C, Oliviero N, Gautier P, Bonnaure-Mallet M, Jolivet-Gougeon A. cfxA expression in oral clinical Capnocytophaga isolates. Anaerobe 2015. [PMID: 26204794 DOI: 10.1016/j.anaerobe.2015.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Capnocytophaga spp. are commensal bacteria involved in oral and systemic diseases, with a variable susceptibility to beta-lactams. The cfxA gene expression level was assessed using quantitative RT-PCR, and reasons of the observed misexpression were discussed, as insertion of foreign genetic material, contributing to dissemination and evolution of antibiotic resistance genes.
Collapse
Affiliation(s)
- Zohreh Tamanai-Shacoori
- Equipe de Microbiologie, EA 1254, Université de Rennes 1, Université Européenne de Bretagne, 2, avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Clarisse Monfort
- Equipe de Microbiologie, EA 1254, Université de Rennes 1, Université Européenne de Bretagne, 2, avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Nolwenn Oliviero
- Equipe de Microbiologie, EA 1254, Université de Rennes 1, Université Européenne de Bretagne, 2, avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Philippe Gautier
- Pole Biologie, Rennes Teaching Hospital, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Martine Bonnaure-Mallet
- Equipe de Microbiologie, EA 1254, Université de Rennes 1, Université Européenne de Bretagne, 2, avenue du Professeur Léon Bernard, 35043 Rennes, France; Pole Odontologie, Rennes Teaching Hospital, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Anne Jolivet-Gougeon
- Equipe de Microbiologie, EA 1254, Université de Rennes 1, Université Européenne de Bretagne, 2, avenue du Professeur Léon Bernard, 35043 Rennes, France; Pole Biologie, Rennes Teaching Hospital, 2 rue Henri Le Guilloux, 35033 Rennes, France.
| |
Collapse
|
10
|
Pathria S, Rolando M, Lieman K, Hayes S, Hardies S, Serwer P. Islands of non-essential genes, including a DNA translocation operon, in the genome of bacteriophage 0305ϕ8-36. BACTERIOPHAGE 2014; 2:25-35. [PMID: 22666654 PMCID: PMC3357382 DOI: 10.4161/bact.19546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigate genes of lytic, Bacillus thuringiensis bacteriophage 0305ϕ8-36 that are non-essential for laboratory propagation, but might have a function in the wild. We isolate deletion mutants to identify these genes. The non-permutation of the genome (218.948 Kb, with a 6.479 Kb terminal repeat and 247 identified orfs) simplifies isolation of deletion mutants. We find two islands of non-essential genes. The first island (3.01% of the genomic DNA) has an informatically identified DNA translocation operon. Deletion causes no detectable growth defect during propagation in a dilute agarose overlay. Identification of the DNA translocation operon begins with a DNA relaxase and continues with a translocase and membrane-binding anchor proteins. The relaxase is in a family, first identified here, with homologs in other bacteriophages. The second deleted island (3.71% of the genome) has genes for two metallo-protein chaperonins and two tRNAs. Deletion causes a significant growth defect. In addition, (1) we find by "in situ" (in-plaque) single-particle fluorescence microscopy that adsorption to the host occurs at the tip of the 486 nm long tail, (2) we develop a procedure of 0305ϕ8-36 purification that does not cause tail contraction, and (3) we then find by electron microscopy that 0305ϕ8-36 undergoes tail tip-tail tip dimerization that potentially blocks adsorption to host cells, presumably with effectiveness that increases as the bacteriophage particle concentration increases. These observations provide an explanation of the previous observation that 0305ϕ8-36 does not lyse liquid cultures, even though 0305ϕ8-36 is genomically lytic.
Collapse
Affiliation(s)
- Saurav Pathria
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
UNLABELLED CTnDOT is a 65-kb conjugative transposon that is found in Bacteroides spp., which are one of the more abundant members within the lower human gastrointestinal tract. CTnDOT encodes resistance to the antibiotics erythromycin and tetracycline (Tc). An interesting feature of CTnDOT is that exposure to low levels of Tc induces a cascade of events that ultimately results in CTnDOT conjugative transfer. However, Tc is apparently not a switch that activates transfer but rather a signal that appears to override a series of negative regulators that inhibit premature excision and transfer of CTnDOT. In this minireview, we summarize over 20 years of research that focused on elucidating the highly coordinated regulation of excision, mobilization, and transfer of CTnDOT. IMPORTANCE Bacteroides spp. are abundant commensals in the human colon, but they are also considered opportunistic pathogens, as they can cause life-threatening infections if they should escape the colon. Bacteroides spp. are the most common cause of anaerobic infections and are rather difficult to treat due to the prevalence of antibiotic resistance within this genus. Today over 80% of Bacteroides are resistant to tetracycline (Tc), and a study looking at both clinical and community isolates demonstrated that this resistance was specifically due to the conjugative transposon CTnDOT.
Collapse
|
12
|
Tetracycline-related transcriptional regulation of the CTnDOT mobilization region. J Bacteriol 2013; 195:5431-8. [PMID: 24078614 DOI: 10.1128/jb.00691-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CTnDOT is a 65-kb conjugative transposon (CTn) in Bacteroides spp. that confers resistance to the antibiotics erythromycin and tetracycline (Tc). Conjugative transfer of CTnDOT is regulated upon exposure of cells to Tc. In the absence of Tc, no transfer is detectable; however, a cascade of regulatory events results in the conjugative transfer of CTnDOT upon Tc induction. Previous studies addressing regulation of CTnDOT conjugative transfer focused primarily on the 13-kb transfer (tra) operon, which encodes the proteins required for assembly of the mating apparatus. We report here that the mob operon that encodes the relaxase and coupling proteins required for mobilization of CTnDOT are regulated at the transcriptional level upon Tc induction. The Xis2d and Exc excision proteins are required for the upregulation of mob transcription upon Tc induction, and yet a deletion of xis2c has no effect. We also show preliminary evidence suggesting that the integrase, IntDOT, may play a regulatory role, as pLYL72 transfer is not detectable when intDOT is provided in trans.
Collapse
|
13
|
Guo W, Hao H, Dai M, Wang Y, Huang L, Peng D, Wang X, Wang H, Yao M, Sun Y, Liu Z, Yuan Z. Development of quinoxaline 1, 4-dioxides resistance in Escherichia coli and molecular change under resistance selection. PLoS One 2012; 7:e43322. [PMID: 22952665 PMCID: PMC3429478 DOI: 10.1371/journal.pone.0043322] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/19/2012] [Indexed: 11/24/2022] Open
Abstract
Quinoxaline 1, 4-dioxides (QdNOs) has been used in animals as antimicrobial agents and growth promoters for decades. However, the resistance to QdNOs in pathogenic bacteria raises worldwide concern but it is barely known. To explore the molecular mechanism involved in development of QdNOs resistance in Escherichia coli, 6 strains selected by QdNOs in vitro and 21 strains isolated from QdNOs-used swine farm were subjected to MIC determination and PCR amplification of oqxA gene. A conjugative transfer was carried out to evaluate the transfer risk of QdNOs resistant determinant. Furthermore, the transcriptional profile of a QdNOs-resistant E. coli (79O4-2) selected in vitro with its parent strain 79–161 was assayed with a prokaryotic suppression subtractive hybridization (SSH) PCR cDNA subtraction. The result showed that more than 95% (20/21) clinical isolates were oqxA positive, while all the 6 induced QdNOs-resistant strains carried no oqxA gene and exhibited low frequency of conjugation. 44 fragments were identified by SSH PCR subtraction in the QdNOs-resistant strain 79O4-2. 18 cDNAs were involved in biosynthesis of Fe-S cluster (narH), protein (rpoA, trmD, truA, glyS, ileS, rplFCX, rpsH, fusA), lipoate (lipA), lipid A (lpxC), trehalose (otsA), CTP(pyrG) and others molecular. The 11 cDNAs were related to metabolism or degradation of glycolysis (gpmA and pgi) and proteins (clpX, clpA, pepN and fkpB). The atpADG and ubiB genes were associated with ATP biosynthesis and electron transport chain. The pathway of the functional genes revealed that E. coli may adapt the stress generated by QdNOs or develop specific QdNOs-resistance by activation of antioxidative agents biosynthesis (lipoate and trehalose), protein biosynthesis, glycolysis and oxidative phosphorylation. This study initially reveals the possible molecular mechanism involved in the development of QdNOs-resistance in E. coli, providing with novel insights in prediction and assessment of the emergency and horizontal transfer of QdNOs-resistance in E. coli.
Collapse
Affiliation(s)
- Wentao Guo
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nguyen M, Vedantam G. Mobile genetic elements in the genus Bacteroides, and their mechanism(s) of dissemination. Mob Genet Elements 2011; 1:187-196. [PMID: 22479685 DOI: 10.4161/mge.1.3.18448] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/15/2011] [Accepted: 10/17/2011] [Indexed: 01/25/2023] Open
Abstract
Bacteroides spp organisms, the predominant commensal bacteria in the human gut have become increasingly resistant to many antibiotics. They are now also considered to be reservoirs of antibiotic resistance genes due to their capacity to harbor and disseminate these genes via mobile transmissible elements that occur in bewildering variety. Gene dissemination occurs within and from Bacteroides spp primarily by conjugation, the molecular mechanisms of which are still poorly understood in the genus, even though the need to prevent this dissemination is urgent. One current avenue of research is thus focused on interventions that use non-antibiotic methodologies to prevent conjugation-based DNA transfer.
Collapse
Affiliation(s)
- Mai Nguyen
- Section of Digestive Diseases and Nutrition; University of Illinois; Chicago, IL USA
| | | |
Collapse
|