1
|
Simke W, Walker ME, Calderone LA, Putz AT, Patteson JB, Vitro CN, Zizola CF, Redinbo MR, Pandelia ME, Grove TL, Li B. Structural Basis for Methine Excision by a Heme Oxygenase-like Enzyme. ACS CENTRAL SCIENCE 2024; 10:1524-1536. [PMID: 39220707 PMCID: PMC11363339 DOI: 10.1021/acscentsci.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024]
Abstract
Heme oxygenase-like domain-containing oxidases (HDOs) are a rapidly expanding enzyme family that typically use dinuclear metal cofactors instead of heme. FlcD, an HDO from the opportunistic pathogen Pseudomonas aeruginosa, catalyzes the excision of an oxime carbon in the biosynthesis of the copper-containing antibiotic fluopsin C. We show that FlcD is a dioxygenase that catalyzes a four-electron oxidation. Crystal structures of FlcD reveal a mononuclear iron in the active site, which is coordinated by two histidines, one glutamate, and the oxime of the substrate. Enzyme activity, Mössbauer spectroscopy, and electron paramagnetic resonance spectroscopy analyses support the usage of a mononuclear iron cofactor. This cofactor resembles that of mononuclear non-heme iron-dependent enzymes and breaks the paradigm of dinuclear HDO cofactors. This study begins to illuminate the catalytic mechanism of methine excision and indicates convergent evolution of different lineages of mononuclear iron-dependent enzymes.
Collapse
Affiliation(s)
- William
C. Simke
- Department
of Chemistry, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Morgan E. Walker
- Department
of Chemistry, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Logan A. Calderone
- Department
of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Andrew T. Putz
- Department
of Chemistry, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Jon B. Patteson
- Department
of Chemistry, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Caitlin N. Vitro
- Department
of Chemistry, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Cynthia F. Zizola
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Matthew R. Redinbo
- Department
of Chemistry, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Integrated
Program for Biological and Genome Sciences, Department of Biochemistry
and Biophysics, and Department of Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Maria-Eirini Pandelia
- Department
of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Tyler L. Grove
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Bo Li
- Department
of Chemistry, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Phan HN, Manley OM, Skirboll SS, Cha L, Hilovsky D, Chang WC, Thompson PM, Liu X, Makris TM. Excision of a Protein-Derived Amine for p-Aminobenzoate Assembly by the Self-Sacrificial Heterobimetallic Protein CADD. Biochemistry 2023; 62:3276-3282. [PMID: 37936269 DOI: 10.1021/acs.biochem.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Chlamydia protein associating with death domains (CADD), the founding member of a recently discovered class of nonheme dimetal enzymes termed hemeoxygenase-like dimetaloxidases (HDOs), plays an indispensable role in pathogen survival. CADD orchestrates the biosynthesis of p-aminobenzoic acid (pABA) for integration into folate via the self-sacrificial excision of a protein-derived tyrosine (Tyr27) and several additional processing steps, the nature and timing of which have yet to be fully clarified. Nuclear magnetic resonance (NMR) and proteomics approaches reveal the source and probable timing of amine installation by a neighboring lysine (Lys152). Turnover studies using limiting O2 have identified a para-aminobenzaldehyde (pABCHO) metabolic intermediate that is formed on the path to pABA formation. The use of pABCHO and other probe substrates shows that the heterobimetallic Fe/Mn form of the enzyme is capable of oxygen insertion to generate the pABA-carboxylate.
Collapse
Affiliation(s)
- Han N Phan
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Olivia M Manley
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sydney S Skirboll
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lide Cha
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Dalton Hilovsky
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Peter M Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- The Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas M Makris
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Wooldridge R, Stone S, Pedraza A, Ray WK, Helm RF, Allen KD. The Chlamydia trachomatis p-aminobenzoate synthase CADD is a manganese-dependent oxygenase that uses its own amino acid residues as substrates. FEBS Lett 2023; 597:557-572. [PMID: 36647787 DOI: 10.1002/1873-3468.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023]
Abstract
CADD (chlamydia protein associating with death domains) is a p-aminobenzoate (pAB) synthase involved in a noncanonical route for tetrahydrofolate biosynthesis in Chlamydia trachomatis. Although previously implicated to employ a diiron cofactor, here, we show that pAB synthesis by CADD requires manganese and the physiological cofactor is most likely a heterodinuclear Mn/Fe cluster. Isotope-labeling experiments revealed that the two oxygen atoms in the carboxylic acid portion of pAB are derived from molecular oxygen. Further, mass spectrometry-based proteomic analyses of CADD-derived peptides demonstrated a glycine substitution at Tyr27, providing strong evidence that this residue is sacrificed for pAB synthesis. Additionally, Lys152 was deaminated and oxidized to aminoadipic acid, supporting its proposed role as a sacrificial amino group donor.
Collapse
Affiliation(s)
| | - Spenser Stone
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Andrew Pedraza
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - W Keith Ray
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Kylie D Allen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
4
|
Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis. Proc Natl Acad Sci U S A 2022; 119:e2210908119. [PMID: 36122239 PMCID: PMC9522330 DOI: 10.1073/pnas.2210908119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine. As a member of the emerging superfamily of heme oxygenase-like diiron oxidases (HDOs), CADD was proposed to use a diiron cofactor for catalysis. However, we report maximal pABA formation by CADD occurs upon the addition of both iron and manganese, which implicates a heterobimetallic Fe:Mn cluster is the catalytically active form. Isotopic labeling experiments and proteomics studies show that CADD generates pABA from a protein-derived tyrosine (Tyr27), a residue that is ∼14 Å from the dimetal site. We propose that this self-sacrificial reaction occurs through O2 activation by a probable Fe:Mn cluster through a radical relay mechanism that connects to the "substrate" Tyr, followed by amination and direct oxygen insertion. These results provide the molecular basis for pABA formation in C. trachomatis, which will inform the design of novel therapeutics.
Collapse
|
5
|
Manley OM, Tang H, Xue S, Guo Y, Chang WC, Makris TM. BesC Initiates C-C Cleavage through a Substrate-Triggered and Reactive Diferric-Peroxo Intermediate. J Am Chem Soc 2021; 143:21416-21424. [PMID: 34898198 PMCID: PMC8876372 DOI: 10.1021/jacs.1c11109] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BesC catalyzes the iron- and O2-dependent cleavage of 4-chloro-l-lysine to form 4-chloro-l-allylglycine, formaldehyde, and ammonia. This process is a critical step for a biosynthetic pathway that generates a terminal alkyne amino acid which can be leveraged as a useful bio-orthogonal handle for protein labeling. As a member of an emerging family of diiron enzymes that are typified by their heme oxygenase-like fold and a very similar set of coordinating ligands, recently termed HDOs, BesC performs an unusual type of carbon-carbon cleavage reaction that is a significant departure from reactions catalyzed by canonical dinuclear-iron enzymes. Here, we show that BesC activates O2 in a substrate-gated manner to generate a diferric-peroxo intermediate. Examination of the reactivity of the peroxo intermediate with a series of lysine derivatives demonstrates that BesC initiates this unique reaction trajectory via cleavage of the C4-H bond; this process represents the rate-limiting step in a single turnover reaction. The observed reactivity of BesC represents the first example of a dinuclear-iron enzyme that utilizes a diferric-peroxo intermediate to capably cleave a C-H bond as part of its native function, thus circumventing the formation of a high-valent intermediate more commonly associated with substrate monooxygenations.
Collapse
Affiliation(s)
- Olivia M. Manley
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Haoyu Tang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shan Xue
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas M. Makris
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States,Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|