1
|
Agudo R, Reche MP. Revealing antibiotic resistance's ancient roots: insights from pristine ecosystems. Front Microbiol 2024; 15:1445155. [PMID: 39450285 PMCID: PMC11500074 DOI: 10.3389/fmicb.2024.1445155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
The prevailing belief that antibiotic resistance mechanisms emerged with human antibiotic use has been challenged. Evidence indicates that some antibiotic resistance genes (ARGs) have a long evolutionary history, predating the advent of antibiotics in human medicine, thereby demonstrating that resistance is an ancient phenomenon. Despite extensive surveys of resistance elements in environments impacted by human activity, limited data are available from remote and pristine habitats. This minireview aims to compile the most relevant research on the origins and evolution of ARGs in these habitats, which function as reservoirs for ancient resistance mechanisms. These studies indicate that ancient ARGs functionally similar to modern resistance genes, highlighting the general role of natural antimicrobial substances in fostering the evolution and exchange of diverse resistance mechanisms through horizontal gene transfer over time. This minireview underscores that antibiotic resistance was present in ancestral microbial communities and emphasizes the ecological role of antibiotics and resistance determinants. Understanding ancient ARGs is crucial for predicting and managing the evolution of antibiotic resistance. Thus, these insights provide a foundational basis for developing new antibiotics and strategies for microbial resistance management.
Collapse
Affiliation(s)
- Rubén Agudo
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - M. Paloma Reche
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
2
|
Çandiroğlu B, Güngör ND. The Biotechnological Potentials of Bacteria Isolated from Parsık Cave, Turkey : Measuring the enzyme profiles, antibiotic resistance and antimicrobial activity in bacteria. JOHNSON MATTHEY TECHNOLOGY REVIEW 2020. [DOI: 10.1595/205651320x15923194903811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since cave ecosystems have extraordinary environmental conditions, these ecosystems offer opportunities for microbiological studies. In this study, cultivable bacteria isolated from Parsık cave, Turkey, were investigated regarding enzyme profiles, antibiotic resistance and potential
for production of antimicrobial agents. The metabolic properties of 321 bacterial isolates were determined. The most produced enzyme by the isolates was found to be tyrosine arylamidase. The enzymatic reactions of the bacteria showed that Parsık cave isolates have high aminopeptidase
activity. The highest antibiotic resistance frequency of the isolates was 38.6% against ampicillin. While the isolates displayed variable inhibition rates against tested pathogenic microorganisms, they showed the highest inhibition against Candida albicans. The results show that the
bacteria isolated from Parsık cave have potential for further studies related to biotechnological applications. The study findings contribute increased knowledge on metabolic peculiarities of bacteria isolated from cave ecosystems.
Collapse
Affiliation(s)
- Begüm Çandiroğlu
- Institute of Graduate Studies in Sciences, Istanbul University Balabanaga Mah. Sehzadebasi Cd., 34134 Vezneciler Fatih-Istanbul, Turkey
| | - Nihal Doğruöz Güngör
- Department of Biology, Faculty of Science, Istanbul University Balabanaga Mah. Sehzadebasi Cd., 34134 Vezneciler Fatih-Istanbul, Turkey
| |
Collapse
|
3
|
Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. J Med Microbiol 2020; 69:1040-1048. [PMID: 32692643 PMCID: PMC7642979 DOI: 10.1099/jmm.0.001232] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Given the increased reporting of multi-resistant bacteria and the shortage of newly approved medicines, researchers have been looking towards extreme and unusual environments as a new source of antibiotics. Streptomyces currently provides many of the world's clinical antibiotics, so it comes as no surprise that these bacteria have recently been isolated from traditional medicine. Given the wide array of traditional medicines, it is hoped that these discoveries can provide the much sought after core structure diversity that will be required of a new generation of antibiotics. This review discusses the contribution of Streptomyces to antibiotics and the potential of newly discovered species in traditional medicine. We also explore how knowledge of traditional medicines can aid current initiatives in sourcing new and chemically diverse antibiotics.
Collapse
Affiliation(s)
- Gerry A. Quinn
- Centre for Molecular Biosciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Aiya M. Banat
- Department of Orthopaedics, Altnagelvin Hospital, Londonderry, Northern Ireland, UK
| | - Alyaa M. Abdelhameed
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | - Ibrahim M. Banat
- Centre for Molecular Biosciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
4
|
Terra L, Dyson PJ, Hitchings MD, Thomas L, Abdelhameed A, Banat IM, Gazze SA, Vujaklija D, Facey PD, Francis LW, Quinn GA. A Novel Alkaliphilic Streptomyces Inhibits ESKAPE Pathogens. Front Microbiol 2018; 9:2458. [PMID: 30459722 PMCID: PMC6232825 DOI: 10.3389/fmicb.2018.02458] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/25/2018] [Indexed: 01/20/2023] Open
Abstract
In an effort to stem the rising tide of multi-resistant bacteria, researchers have turned to niche environments in the hope of discovering new varieties of antibiotics. We investigated an ethnopharmacological (cure) from an alkaline/radon soil in the area of Boho, in the Fermanagh Scarplands (N. Ireland) for the presence of Streptomyces, a well-known producer of antibiotics. From this soil we isolated a novel (closest relative 57% of genome relatedness) Streptomyces sp. capable of growth at high alkaline pH (10.5) and tolerant of gamma radiation to 4 kGy. Genomic sequencing identified many alkaline tolerance (antiporter/multi-resistance) genes compared to S. coelicolor M145 (at 3:1), hence we designated the strain Streptomyces sp. myrophorea, isolate McG1, from the Greek, myro (fragrance) and phorea (porter/carrier). In vitro tests demonstrated the ability of the Streptomyces sp. myrophorea, isolate McG1 to inhibit the growth of many strains of ESKAPE pathogens; most notably carbapenem-resistant Acinetobacter baumannii (a critical pathogen on the WHO priority list of antibiotic-resistant bacteria), vancomycin-resistant Enterococcus faecium, and methicillin-resistant Staphylococcus aureus (both listed as high priority pathogens). Further in silico prediction of antimicrobial potential of Streptomyces sp. myrophorea, isolate McG1 by anti-SMASH and RAST software identified many secondary metabolite and toxicity resistance gene clusters (45 and 27, respectively) as well as many antibiotic resistance genes potentially related to antibiotic production. Follow-up in vitro tests show that the Streptomyces sp. myrophorea, isolate McG1 was resistant to 28 out of 36 clinical antibiotics. Although not a comprehensive analysis, we think that some of the Boho soils' reputed curative properties may be linked to the ability of Streptomyces sp. myrophorea, isolate McG1 to inhibit ESKAPE pathogens. More importantly, further analysis may elucidate other key components that could alleviate the tide of multi-resistant nosocomial infections.
Collapse
Affiliation(s)
- Luciana Terra
- Institute of Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Paul J Dyson
- Institute of Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Matthew D Hitchings
- Institute of Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Liam Thomas
- Institute of Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Alyaa Abdelhameed
- Institute of Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Salvatore A Gazze
- Institute of Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Dušica Vujaklija
- Laboratory for Molecular Genetics, Ruđer Bošković Institute, Zagreb, Croatia
| | - Paul D Facey
- Institute of Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Lewis W Francis
- Institute of Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Gerry A Quinn
- Laboratory for Molecular Genetics, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
5
|
Fu J, Zong G, Zhang P, Zhao Z, Ma J, Pang X, Cao G. XdhR negatively regulates actinorhodin biosynthesis in Streptomyces coelicolor M145. FEMS Microbiol Lett 2017; 364:4563580. [DOI: 10.1093/femsle/fnx226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Jiafang Fu
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, Jingshi Road 18877, Jinan 250062, Shandong, China
| | - Gongli Zong
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, Jingshi Road 18877, Jinan 250062, Shandong, China
| | - Peipei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
| | - Zhilong Zhao
- School of Phaemacy, Linyi University, Linyi, China
| | - Junxia Ma
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, Jingshi Road 18877, Jinan 250062, Shandong, China
| | - Xiuhua Pang
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
| | - Guangxiang Cao
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, Jingshi Road 18877, Jinan 250062, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
| |
Collapse
|
6
|
Arumugam T, Senthil Kumar P, Kameshwar R, Prapanchana K. Screening of novel actinobacteria and characterization of the potential isolates from mangrove sediment of south coastal India. Microb Pathog 2017; 107:225-233. [DOI: 10.1016/j.micpath.2017.03.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 11/27/2022]
|
7
|
Jaiswal AK, Elad Y, Paudel I, Graber ER, Cytryn E, Frenkel O. Linking the Belowground Microbial Composition, Diversity and Activity to Soilborne Disease Suppression and Growth Promotion of Tomato Amended with Biochar. Sci Rep 2017; 7:44382. [PMID: 28287177 PMCID: PMC5347032 DOI: 10.1038/srep44382] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/07/2017] [Indexed: 01/21/2023] Open
Abstract
Biochar, in addition to sequestering carbon, ameliorating soil, and improving plant performance, can impact foliar and soilborne plant diseases. Nevertheless, the mechanisms associated with suppression of soilborne diseases and improved plant performances are not well understood. This study is designed to establish the relationships between biochar-induced changes in rhizosphere microbial community structure, taxonomic and functional diversity, and activity with soilborne disease suppression and enhanced plant performance in a comprehensive fashion. Biochar suppressed Fusarium crown and root-rot of tomato and simultaneously improved tomato plant growth and physiological parameters. Furthermore, biochar reduced Fusarium root colonization and survival in soil, and increased the culturable counts of several biocontrol and plant growth promoting microorganisms. Illumina sequencing analyses of 16S rRNA gene revealed substantial differences in rhizosphere bacterial taxonomical composition between biochar-amended and non-amended treatments. Moreover, biochar amendment caused a significant increase in microbial taxonomic and functional diversity, microbial activities and an overall shift in carbon-source utilization. High microbial taxonomic and functional diversity and activity in the rhizosphere has been previously associated with suppression of diseases caused by soilborne pathogens and with plant growth promotion, and may collectively explain the significant reduction of disease and improvement in plant performance observed in the presence of biochar.
Collapse
Affiliation(s)
- Amit K. Jaiswal
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan 50250, Israel
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P. O. Box 12, Rehovot, 76100, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan 50250, Israel
| | - Indira Paudel
- Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P. O. Box 12, Rehovot, 76100, Israel
| | - Ellen R. Graber
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Bet Dagan 50250, Israel
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Bet Dagan 50250, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
8
|
Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot (Tokyo) 2016; 70:25-40. [PMID: 27381522 DOI: 10.1038/ja.2016.82] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/22/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022]
Abstract
As bacteria and fungi have been found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often silent under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. This review addresses current progress in the activation of these pathways, describing methods for activating silent genes. It especially focuses on genetic manipulation of transcription and translation (ribosome engineering), the utilization of elicitors, metabolism remodeling and co-cultivation. In particular, the principles and technical points of ribosome engineering and the significance of S-adenosylmethionine in bacterial physiology, especially secondary metabolism, are described in detail.
Collapse
|
9
|
Rashad FM, Fathy HM, El-Zayat AS, Elghonaimy AM. Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiol Res 2015; 175:34-47. [PMID: 25805507 DOI: 10.1016/j.micres.2015.03.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 11/16/2022]
Abstract
Different strategies have been employed for selective isolation of Streptomycetes from 20 marine samples varied in their biological nature. The recovery of Streptomycetes isolates (112) was influenced preferentially by different strategies; sediment samples were the best source of potential candidate Streptomycetes. All isolates exhibited antimicrobial activities with variable spectrum; the most promising isolates (31) were phenotypically characterized and identified as Streptomyces sp.; these isolates exhibited variable capacity for secretion of numerous hydrolytic enzymes such as catalase, protease, amylase, lipase, lecithinase, asparaginase, chitinase and pectinase. All the strains resisted both penicillin and streptomycin, 29 were sensitive to neomycin; the majority of strains (25) showed multiple antibiotic resistance index greater than 0.2; 23, 22 and 13 degraded the shrimp shell, chicken feather and corn cob, respectively, producing bioactive substance(s) which indicates their diversity and their ecological role in the marine ecosystem. At least 28 strains exhibited nematicidal activity in vitro and in vivo against root-knot nematode and supported plant growth. In vitro, the assessed Streptomyces species exhibited the ability to produce gibberellic acid, indole acetic acid, abscisic acid, kinetin and benzyladenine. Except for indole acetic acid, this is the first report concerning the ability of marine Streptomyces to produce such phytohormones and the use of shrimp shell waste as a mono component medium for production of phytohormones. The study is efficacious in selecting effective biodiverse strains of marine Streptomyces that may work under diverse agro-ecological conditions as a useful element in plant nutrition and as biocontrol agents involved in integrated management programs.
Collapse
Affiliation(s)
- Ferial M Rashad
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Hayam M Fathy
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Ayatollah S El-Zayat
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Ahlam M Elghonaimy
- Department of Plant Protection, Nematology Unit, Dessert Research Center, Cairo, Egypt
| |
Collapse
|
10
|
Paul AK, Dey S. Hexavalent Chromate Reduction During Growth and by Immobilized Cells of Arthrobacter sp. SUK 1205. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/std.2015.158.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
The mthA mutation conferring low-level resistance to streptomycin enhances antibiotic production in Bacillus subtilis by increasing the S-adenosylmethionine pool size. J Bacteriol 2014; 196:1514-24. [PMID: 24509311 DOI: 10.1128/jb.01441-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain Str(r) mutations that confer low-level streptomycin resistance result in the overproduction of antibiotics by Bacillus subtilis. Using comparative genome-sequencing analysis, we successfully identified this novel mutation in B. subtilis as being located in the mthA gene, which encodes S-adenosylhomocysteine/methylthioadenosine nucleosidase, an enzyme involved in the S-adenosylmethionine (SAM)-recycling pathways. Transformation experiments showed that this mthA mutation was responsible for the acquisition of low-level streptomycin resistance and overproduction of bacilysin. The mthA mutant had an elevated level of intracellular SAM, apparently acquired by arresting SAM-recycling pathways. This increase in the SAM level was directly responsible for bacilysin overproduction, as confirmed by forced expression of the metK gene encoding SAM synthetase. The mthA mutation fully exerted its effect on antibiotic overproduction in the genetic background of rel(+) but not the rel mutant, as demonstrated using an mthA relA double mutant. Strikingly, the mthA mutation activated, at the transcription level, even the dormant ability to produce another antibiotic, neotrehalosadiamine, at concentrations of 150 to 200 μg/ml, an antibiotic not produced (<1 μg/ml) by the wild-type strain. These findings establish the significance of SAM in initiating bacterial secondary metabolism. They also suggest a feasible methodology to enhance or activate antibiotic production, by introducing either the rsmG mutation to Streptomyces or the mthA mutation to eubacteria, since many eubacteria have mthA homologues.
Collapse
|
12
|
Ochi K, Tanaka Y, Tojo S. Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements. ACTA ACUST UNITED AC 2014; 41:403-14. [DOI: 10.1007/s10295-013-1349-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/12/2013] [Indexed: 01/31/2023]
Abstract
Abstract
Since bacteria were found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often “silent” under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. We review current progress on this topic, describing concepts for activating silent genes. We especially focus on genetic manipulation of transcription and translation, as well as the utilization of rare earth elements as a novel method to activate the silent genes. The possible roles of silent genes in bacterial physiology are also discussed.
Collapse
Affiliation(s)
- Kozo Ochi
- grid.417545.6 000000010665883X Department of Life Science Hiroshima Institute of Technology Miyake 2-1-1 731-5193 Saeki-ku Hiroshima Japan
| | - Yukinori Tanaka
- grid.417545.6 000000010665883X Department of Life Science Hiroshima Institute of Technology Miyake 2-1-1 731-5193 Saeki-ku Hiroshima Japan
| | - Shigeo Tojo
- grid.417545.6 000000010665883X Department of Life Science Hiroshima Institute of Technology Miyake 2-1-1 731-5193 Saeki-ku Hiroshima Japan
| |
Collapse
|
13
|
|
14
|
Kurth F, Zeitler K, Feldhahn L, Neu TR, Weber T, Krištůfek V, Wubet T, Herrmann S, Buscot F, Tarkka MT. Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiol 2013; 13:205. [PMID: 24025151 PMCID: PMC3848169 DOI: 10.1186/1471-2180-13-205] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/10/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Host plant roots, mycorrhizal mycelium and microbes are important and potentially interacting factors shaping the performance of mycorrhization helper bacteria (MHB). We investigated the impact of a soil microbial community on the interaction between the extraradical mycelium of the ectomycorrhizal fungus Piloderma croceum and the MHB Streptomyces sp. AcH 505 in both the presence and the absence of pedunculate oak microcuttings. RESULTS Specific primers were designed to target the internal transcribed spacer of the rDNA and an intergenic region between two protein encoding genes of P. croceum and the intergenic region between the gyrA and gyrB genes of AcH 505. These primers were used to perform real-time PCR with DNA extracted from soil samples. With a sensitivity of 10 genome copies and a linear range of 6 orders of magnitude, these real-time PCR assays enabled the quantification of purified DNA from P. croceum and AcH 505, respectively. In soil microcosms, the fungal PCR signal was not affected by AcH 505 in the absence of the host plant. However, the fungal signal became weaker in the presence of the plant. This decrease was only observed in microbial filtrate amended microcosms. In contrast, the PCR signal of AcH 505 increased in the presence of P. croceum. The increase was not significant in sterile microcosms that contained plant roots. CONCLUSIONS Real-time quantitative PCR assays provide a method for directly detecting and quantifying MHB and mycorrhizal fungi in plant microcosms. Our study indicates that the presence of microorganisms and plant roots can both affect the nature of MHB-fungus interactions, and that mycorrhizal fungi may enhance MHB growth.
Collapse
Affiliation(s)
- Florence Kurth
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Katharina Zeitler
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Lasse Feldhahn
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Thomas R Neu
- Department River Ecology, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, 39114 Magdeburg, Germany
| | - Tilmann Weber
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen, Germany
| | - Václav Krištůfek
- Biology Centre AS CR, v. v. i. - Institute of Soil Biology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Tesfaye Wubet
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- German Centre for Integrative Biodiversity Research, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Sylvie Herrmann
- German Centre for Integrative Biodiversity Research, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
- Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - François Buscot
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- German Centre for Integrative Biodiversity Research, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Mika T Tarkka
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- German Centre for Integrative Biodiversity Research, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Craney A, Ahmed S, Nodwell J. Towards a new science of secondary metabolism. J Antibiot (Tokyo) 2013; 66:387-400. [PMID: 23612726 DOI: 10.1038/ja.2013.25] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/12/2013] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
Secondary metabolites are a reliable and very important source of medicinal compounds. While these molecules have been mined extensively, genome sequencing has suggested that there is a great deal of chemical diversity and bioactivity that remains to be discovered and characterized. A central challenge to the field is that many of the novel or poorly understood molecules are expressed at low levels in the laboratory-such molecules are often described as the 'cryptic' secondary metabolites. In this review, we will discuss evidence that research in this field has provided us with sufficient knowledge and tools to express and purify any secondary metabolite of interest. We will describe 'unselective' strategies that bring about global changes in secondary metabolite output as well as 'selective' strategies where a specific biosynthetic gene cluster of interest is manipulated to enhance the yield of a single product.
Collapse
Affiliation(s)
- Arryn Craney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Michael Degroote Institute for Infectious Diseases Research, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
16
|
Ochi K, Hosaka T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 2012; 97:87-98. [PMID: 23143535 PMCID: PMC3536979 DOI: 10.1007/s00253-012-4551-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 11/29/2022]
Abstract
Genome sequencing of Streptomyces, myxobacteria, and fungi showed that although each strain contains genes that encode the enzymes to synthesize a plethora of potential secondary metabolites, only a fraction are expressed during fermentation. Interest has therefore grown in the activation of these cryptic pathways. We review current progress on this topic, describing concepts for activating silent genes, utilization of “natural” mutant-type RNA polymerases and rare earth elements, and the applicability of ribosome engineering to myxobacteria and fungi, the microbial groups known as excellent searching sources, as well as actinomycetes, for secondary metabolites.
Collapse
Affiliation(s)
- Kozo Ochi
- Department of Life Science, Hiroshima Institute of Technology, Miyake 2-1-1, Saeki-ku, Hiroshima, 731-5193, Japan.
| | | |
Collapse
|
17
|
Kurtböke DI. Exploitation of phage battery in the search for bioactive actinomycetes. Appl Microbiol Biotechnol 2010; 89:931-7. [PMID: 21120467 DOI: 10.1007/s00253-010-3021-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 12/01/2022]
Abstract
Screening of microbial natural products continues to represent an important route to the discovery of novel bioactive compounds for the development of new therapeutic agents, and actinomycetes are still the major producers of biopharmaceuticals. Selective isolation of bioactive actinomycete species, in particular the rare ones, has thus become a target for industrial microbiologists. In this context, bacteriophages have proven to be useful tools as (1) naturally present indicators of under-represented or rare actinomycete taxa in environmental samples, (2) indicators of the relatedness of bioactive taxa in target-directed search and discovery, (3) de-selection agents of unwanted taxa on isolation plates in target-specific search for rare actinomycete taxa, (4) tools in screening assays for specific targets. Against this background, a number of case studies are presented to illustrate the use of bacteriophages as tools in actinomycete-origin bioactive compound search and discovery programs.
Collapse
Affiliation(s)
- D Ipek Kurtböke
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
| |
Collapse
|
18
|
Putative TetR family transcriptional regulator SCO1712 encodes an antibiotic downregulator in Streptomyces coelicolor. Appl Environ Microbiol 2010; 76:3039-43. [PMID: 20190084 DOI: 10.1128/aem.02426-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A tetR family transcriptional regulatory gene (SCO1712) was identified as a global antibiotic regulatory gene from a Streptomyces interspecies DNA microarray analysis. SCO1712 disruption in Streptomyces coelicolor not only upregulated antibiotic biosynthesis through pathway-specific regulators when a previously identified pleiotropic downregulatory wblA was expressed but also further stimulated antibiotic production in a wblA deletion mutant, implying that SCO1712 might encode a novel antibiotic downregulator.
Collapse
|
19
|
Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martínez-Solano L, Sánchez MB. A global view of antibiotic resistance. FEMS Microbiol Rev 2009; 33:44-65. [DOI: 10.1111/j.1574-6976.2008.00142.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
20
|
Characterization of an inducible, antibiotic-resistant aminoacyl-tRNA synthetase gene in Streptomyces coelicolor. J Bacteriol 2008; 190:6253-7. [PMID: 18621902 DOI: 10.1128/jb.00737-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Streptomyces coelicolor has two genes encoding tryptophanyl-tRNA synthetases, one of which (trpRS1) is resistant to and transcriptionally activated by indolmycin. We found that this gene also confers resistance to chuangxinmycin (another antibiotic that inhibits bacterial tryptophanyl-tRNA synthetases) and that its transcription is not absolutely dependent on either antibiotic.
Collapse
|
21
|
Zhao JY, Xia ZJ, Sun X, Zhong L, Jiang DM, Liu H, Wang J, Qin ZJ, Li YZ. Cloning and characterization of an rRNA methyltransferase from Sorangium cellulosum. Biochem Biophys Res Commun 2008; 370:140-4. [PMID: 18355448 DOI: 10.1016/j.bbrc.2008.03.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/11/2008] [Indexed: 11/24/2022]
Abstract
A locus (kmr) responsible for aminoglycosides-resistance of Sorangium cellulosum was cloned and characterized in Myxococcus xanthus. The gene kmr encodes a putative rRNA methyltransferase. Expression of the complete ORF endowed the Myxococcus transformants with the resistance to aminoglycosidic antibiotics of kanamycin, apramycin, gentamycin, neomycin, and tobramycin at an extraordinary high-level (MIC, higher than 500 microg/ml). However, the gene did not function in Escherichia coli cells. In Sorangium genome, the gene kmr was followed by a putative integrase gene, and was highly homologous in different Sorangium strains. The Sorangium rRNA methyltransferase sequence was in low similarity to the reported 16S rRNA methyltransferases, and their resistance spectrums were also different. The results indicate that the rRNA methyltransferase (Kmr) in Sorangium strains is a new member of the rRNA methyltransferases family.
Collapse
Affiliation(s)
- Jing-Yi Zhao
- State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|