1
|
Rubio-Canalejas A, Pedraz L, Torrents E. ReViTA: A novel in vitro transcription system to study gene regulation. N Biotechnol 2023; 76:41-48. [PMID: 37080534 DOI: 10.1016/j.nbt.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/17/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
ReViTA (Reverse in VitroTranscription Assay) is a novel in vitro transcription-based method to study gene expression under the regulation of specific transcription factors. The ReViTA system uses a plasmid with a control sequence, the promoter region of the studied gene, the transcription factor of interest, and an RNA polymerase saturated with σ70. The main objective of this study was to evaluate the method; thus, as a proof of concept, two different transcription factors were used, a transcriptional inducer, AlgR, and a repressor, LexA, from Pseudomonas aeruginosa. After the promoters were incubated with the transcription factors, the plasmid was transcribed into RNA and reverse transcribed to cDNA. Gene expression was measured using qRTPCR. Using the ReViTA plasmid, transcription induction of 55% was observed when AlgR protein was added and a 27% transcription reduction with the repressor LexA, compared with the samples without transcription factors. The results demonstrated the correct functioning of ReViTA as a novel method to study transcription factors and gene expression. Thus, ReViTA could be a rapid and accessible in vitro method to evaluate genes and regulators of various species.
Collapse
Affiliation(s)
- Alba Rubio-Canalejas
- Bacterial infections and antimicrobial therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST). Baldiri Reixac 15-21. 08028 Barcelona, Spain
| | - Lucas Pedraz
- Centre for Microbial Diseases and Immunity Research. University of British Columbia. Vancouver BC V6T1Z4, Canada
| | - Eduard Torrents
- Bacterial infections and antimicrobial therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST). Baldiri Reixac 15-21. 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Kim SI, Kim E, Yoon H. σ S-Mediated Stress Response Induced by Outer Membrane Perturbation Dampens Virulence in Salmonella enterica serovar Typhimurium. Front Microbiol 2021; 12:750940. [PMID: 34659184 PMCID: PMC8516096 DOI: 10.3389/fmicb.2021.750940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonella alters cellular processes as a strategy to improve its intracellular fitness during host infection. Alternative σ factors are known to rewire cellular transcriptional regulation in response to environmental stressors. σs factor encoded by the rpoS gene is a key regulator required for eliciting the general stress response in many proteobacteria. In this study, Salmonella Typhimurium deprived of an outer membrane protein YcfR was attenuated in intracellular survival and exhibited downregulation in Salmonella pathogenicity island-2 (SPI-2) genes. This decreased SPI-2 expression caused by the outer membrane perturbation was abolished in the absence of rpoS. Interestingly, regardless of the defects in the outer membrane integrity, RpoS overproduction decreased transcription from the common promoter of ssrA and ssrB, which encode a two-component regulatory system for SPI-2. RpoS was found to compete with RpoD for binding to the PssrA region, and its binding activity with RNA polymerase (RNAP) to form Eσs holoenzyme was stimulated by the small regulatory protein Crl. This study demonstrates that Salmonella undergoing RpoS-associated stress responses due to impaired envelope integrity may reciprocally downregulate the expression of SPI-2 genes to reduce its virulence.
Collapse
Affiliation(s)
- Seul I Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
3
|
Molina Mora JA, Montero-Manso P, García-Batán R, Campos-Sánchez R, Vilar-Fernández J, García F. A first perturbome of Pseudomonas aeruginosa: Identification of core genes related to multiple perturbations by a machine learning approach. Biosystems 2021; 205:104411. [PMID: 33757842 DOI: 10.1016/j.biosystems.2021.104411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/27/2023]
Abstract
Tolerance to stress conditions is vital for organismal survival, including bacteria under specific environmental conditions, antibiotics, and other perturbations. Some studies have described common modulation and shared genes during stress response to different types of disturbances (termed as perturbome), leading to the idea of central control at the molecular level. We implemented a robust machine learning approach to identify and describe genes associated with multiple perturbations or perturbome in a Pseudomonas aeruginosa PAO1 model. Using microarray datasets from the Gene Expression Omnibus (GEO), we evaluated six approaches to rank and select genes: using two methodologies, data single partition (SP method) or multiple partitions (MP method) for training and testing datasets, we evaluated three classification algorithms (SVM Support Vector Machine, KNN K-Nearest neighbor and RF Random Forest). Gene expression patterns and topological features at the systems level were included to describe the perturbome elements. We were able to select and describe 46 core response genes associated with multiple perturbations in P. aeruginosa PAO1 and it can be considered a first report of the P. aeruginosa perturbome. Molecular annotations, patterns in expression levels, and topological features in molecular networks revealed biological functions of biosynthesis, binding, and metabolism, many of them related to DNA damage repair and aerobic respiration in the context of tolerance to stress. We also discuss different issues related to implemented and assessed algorithms, including data partitioning, classification approaches, and metrics. Altogether, this work offers a different and robust framework to select genes using a machine learning approach.
Collapse
Affiliation(s)
- Jose Arturo Molina Mora
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| | | | - Raquel García-Batán
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| | - Rebeca Campos-Sánchez
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San José, Costa Rica.
| | | | - Fernando García
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| |
Collapse
|
4
|
Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules 2020; 25:E5662. [PMID: 33271787 PMCID: PMC7730664 DOI: 10.3390/molecules25235662] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/05/2022] Open
Abstract
Fluoroquinolones (FQs) are arguably among the most successful antibiotics of recent times. They have enjoyed over 30 years of clinical usage and become essential tools in the armoury of clinical treatments. FQs target the bacterial enzymes DNA gyrase and DNA topoisomerase IV, where they stabilise a covalent enzyme-DNA complex in which the DNA is cleaved in both strands. This leads to cell death and turns out to be a very effective way of killing bacteria. However, resistance to FQs is increasingly problematic, and alternative compounds are urgently needed. Here, we review the mechanisms of action of FQs and discuss the potential pathways leading to cell death. We also discuss quinolone resistance and how quinolone treatment can lead to resistance to non-quinolone antibiotics.
Collapse
Affiliation(s)
| | | | | | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (N.G.B.); (I.D.-S.); (L.R.A.)
| |
Collapse
|
5
|
Das B, Bhadra RK. (p)ppGpp Metabolism and Antimicrobial Resistance in Bacterial Pathogens. Front Microbiol 2020; 11:563944. [PMID: 33162948 PMCID: PMC7581866 DOI: 10.3389/fmicb.2020.563944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Single cell microorganisms including pathogens relentlessly face myriads of physicochemical stresses in their living environment. In order to survive and multiply under such unfavorable conditions, microbes have evolved with complex genetic networks, which allow them to sense and respond against these stresses. Stringent response is one such adaptive mechanism where bacteria can survive under nutrient starvation and other related stresses. The effector molecules for the stringent response are guanosine-5'-triphosphate 3'-diphosphate (pppGpp) and guanosine-3', 5'-bis(diphosphate) (ppGpp), together called (p)ppGpp. These effector molecules are now emerging as master regulators for several physiological processes of bacteria including virulence, persistence, and antimicrobial resistance. (p)ppGpp may work independently or along with its cofactor DksA to modulate the activities of its prime target RNA polymerase and other metabolic enzymes, which are involved in different biosynthetic pathways. Enzymes involved in (p)ppGpp metabolisms are ubiquitously present in bacteria and categorized them into three classes, i.e., canonical (p)ppGpp synthetase (RelA), (p)ppGpp hydrolase/synthetase (SpoT/Rel/RSH), and small alarmone synthetases (SAS). While RelA gets activated in response to amino acid starvation, enzymes belonging to SpoT/Rel/RSH and SAS family can synthesize (p)ppGpp in response to glucose starvation and several other stress conditions. In this review, we will discuss about the current status of the following aspects: (i) diversity of (p)ppGpp biosynthetic enzymes among different bacterial species including enteropathogens, (ii) signals that modulate the activity of (p)ppGpp synthetase and hydrolase, (iii) effect of (p)ppGpp in the production of antibiotics, and (iv) role of (p)ppGpp in the emergence of antibiotic resistant pathogens. Emphasis has been given to the cholera pathogen Vibrio cholerae due to its sophisticated and complex (p)ppGpp metabolic pathways, rapid mutational rate, and acquisition of antimicrobial resistance determinants through horizontal gene transfer. Finally, we discuss the prospect of (p)ppGpp metabolic enzymes as potential targets for developing antibiotic adjuvants and tackling persistence of infections.
Collapse
Affiliation(s)
- Bhabatosh Das
- Infection and Immunology Division, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| |
Collapse
|
6
|
Degeneration of industrial bacteria caused by genetic instability. World J Microbiol Biotechnol 2020; 36:119. [DOI: 10.1007/s11274-020-02901-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
|
7
|
Ferenci T. Irregularities in genetic variation and mutation rates with environmental stresses. Environ Microbiol 2019; 21:3979-3988. [PMID: 31600848 DOI: 10.1111/1462-2920.14822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 11/26/2022]
Abstract
The appearance of new mutations is determined by the equilibrium between DNA error formation and repair. In bacteria like Escherichia coli, stresses are thought shift this balance towards increased mutagenesis. Recent findings, however, suggest a very uneven relationship between stress and mutations. Only a subset of stressful environments increase the net rate of mutation and different forms of nutritional stress (such as oxygen, carbon or phosphorus limitations) result in markedly different mutation rates after similar reductions in growth rate. Moreover, different stresses result in altered mutational spectra, with some increasing transposition and others increasing indel formation. Single-base substitution rates are lower with some stresses than in unstressed bacteria. Indeed, changes to the mix of mutations with stress are more widespread than a marked increase in net mutation rate. Much remains to be learned on how environments have unique mutational signatures and why some stresses are more mutagenic than others. Even beyond stress-induced genetic variation, the fundamental unresolved question in the stress-mutation relationship is the adaptive value of different types of mutations and mutation rates; is transposition, for example, more advantageous under anaerobic conditions? It remains to be investigated whether stress-specific genetic variation impacts on evolvability differentially in distinct environments.
Collapse
Affiliation(s)
- Thomas Ferenci
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
8
|
Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes. Cells 2019; 8:cells8050492. [PMID: 31121936 PMCID: PMC6562680 DOI: 10.3390/cells8050492] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023] Open
Abstract
Essential biochemical reactions and processes within living organisms are coupled to subcellular fluctuations of metal ions. Disturbances in cellular metal ion homeostasis are frequently associated with pathological alterations, including neurotoxicity causing neurodegeneration, as well as metabolic disorders or cancer. Considering these important aspects of the cellular metal ion homeostasis in health and disease, measurements of subcellular ion signals are of broad scientific interest. The investigation of the cellular ion homeostasis using classical biochemical methods is quite difficult, often even not feasible or requires large cell numbers. Here, we report of genetically encoded fluorescent probes that enable the visualization of metal ion dynamics within individual living cells and their organelles with high temporal and spatial resolution. Generally, these probes consist of specific ion binding domains fused to fluorescent protein(s), altering their fluorescent properties upon ion binding. This review focuses on the functionality and potential of these genetically encoded fluorescent tools which enable monitoring (sub)cellular concentrations of alkali metals such as K+, alkaline earth metals including Mg2+ and Ca2+, and transition metals including Cu+/Cu2+ and Zn2+. Moreover, we discuss possible approaches for the development and application of novel metal ion biosensors for Fe2+/Fe3+, Mn2+ and Na+.
Collapse
|
9
|
Yang Z, Zeng X, Tsui SKW. Investigating function roles of hypothetical proteins encoded by the Mycobacterium tuberculosis H37Rv genome. BMC Genomics 2019; 20:394. [PMID: 31113361 PMCID: PMC6528289 DOI: 10.1186/s12864-019-5746-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/29/2019] [Indexed: 11/29/2022] Open
Abstract
Background Mycobacterium tuberculosis (MTB) is a common bacterium causing tuberculosis and remains a major pathogen for mortality. Although the MTB genome has been extensively explored for two decades, the functions of 27% (1051/3906) of encoded proteins have yet to be determined and these proteins are annotated as hypothetical proteins. Methods We assigned functions to these hypothetical proteins using SSEalign, a newly designed algorithm utilizing structural information. A set of rigorous criteria was applied to these annotations in order to examine whether they were supported by each parameter. Virulence factors and potential drug targets were also screened among the annotated proteins. Results For 78% (823/1051) of the hypothetical proteins, we could identify homologs in Escherichia coli and Salmonella typhimurium by using SSEalign. Functional classification analysis indicated that 62.2% (512/823) of these annotated proteins were enzymes with catalytic activities and most of these annotations were supported by at least two other independent parameters. A relatively high proportion of transporter was identified in MTB genome, indicating the potential frequent transportation of frequent absorbing essential metabolites and excreting toxic materials in MTB. Twelve virulence factors and ten vaccine candidates were identified within these MTB hypothetical proteins, including two genes (rpoS and pspA) related to stress response to the host immune system. Furthermore, we have identified six novel drug target candidates among our annotated proteins, including Rv0817 and Rv2927c, which could be used for treating MTB infection. Conclusions Our annotation of the MTB hypothetical proteins will probably serve as a useful dataset for future MTB studies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5746-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiyuan Yang
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR
| | - Xi Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR.,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR. .,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR. .,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR.
| |
Collapse
|
10
|
Osonga FJ, Akgul A, Yazgan I, Akgul A, Ontman R, Kariuki VM, Eshun GB, Sadik OA. Flavonoid-derived anisotropic silver nanoparticles inhibit growth and change the expression of virulence genes in Escherichia coli SM10. RSC Adv 2018; 8:4649-4661. [PMID: 33489091 PMCID: PMC7745121 DOI: 10.1039/c7ra13480k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 11/21/2022] Open
Abstract
We hereby present a novel greener and ecofriendly synthesis of anisotropic silver nanoparticles (AgNPs) using water soluble quercetin diphosphate (QDP). QDP was employed as a reducing, capping and stabilizing agent at room temperature without any extraneous reagents. The purpose of this study was to determine the effects of modified quercetin pentaphosphate silver nanoparticles (QPP-AgNPs) and quercetin diphosphate derived silver nanoparticles (QDP-AgNPs) on microbial growth and expressions of virulence-related genes in Escherichia coli SM10. The gene expression analysis was carried out for 12 genes which are related to virulence and stress in E. coli SM10, namely: RpoD, RpoS, ibpB, clpB, uspA, fliC, fimH, fimF, kdpE, artJ, hyaA, and gyrA. Results showed that QDP-AgNPs reduced the swarming motility by 98% which correlated with the reduction in the expression of FliC flagellar gene. A simultaneous increase in the expression of the fimbrial genes FimH and FimF that are related to motility was recorded. In contrast, treatment of the microbes with QPP-AgNPs resulted in 90% of the swarming motility at different patterns compared to QDP-AgNPs treatment for the gene expressions of motility elements. The study revealed that QDP-AgNPs up-regulated the stress related RpoD and ibpB expressions, while QPP-AgNPs up-regulated the stress related RpoS and uspA gene expressions. However, both QDP-AgNPs and QPP-AgNPs up-regulated kpdE, artJ and gry at different levels. QDP-AgNPs were also tested for their antibacterial and antifungal activities, which showed μmolar cidal activity. The growth kinetics of both Gram (−) and Gram (+) bacteria were strongly altered by QDP-AgNPs activity. Energy dispersive absorption spectroscopy (EDS) studies revealed that silver ions and/or the nanoparticles themselves transferred into bacterial cells. To the best of our knowledge, this is the first report of studying the genetic and kinetic response of bacteria to modified quercetin phosphate mediated silver nanoparticles and we hereby report that the molecules used to synthesize AgNPs bring about a strong effect on AgNPs manipulatory activity on the tested 12-genes. We hereby present a novel greener and ecofriendly synthesis of anisotropic silver nanoparticles (AgNPs) using water soluble quercetin diphosphate (QDP). QDP was employed as a reducing, capping and stabilizing agent at room temperature without any extraneous reagents.![]()
Collapse
Affiliation(s)
- Francis J Osonga
- Department of Chemistry, Center for Research in Advanced Sensing Technologies, Environmental Sustainability (CREATES) State University of New York at Binghamton, PO Box 6000, Binghamton, NY 13902-6000, USA
| | - Ali Akgul
- Department of Basic Sciences, College of Veterinary Medicine Mississippi State University, P. O. Box 6100, MS 39762-6100, USA
| | - Idris Yazgan
- Department of Chemistry, Center for Research in Advanced Sensing Technologies, Environmental Sustainability (CREATES) State University of New York at Binghamton, PO Box 6000, Binghamton, NY 13902-6000, USA
| | - Ayfer Akgul
- Department of Sustainable Bioproducts, College of Forest Resources, Mississippi State University, Box 9820, Starkville, MS 39762-9601, USA
| | - Renata Ontman
- Department of Chemistry, Center for Research in Advanced Sensing Technologies, Environmental Sustainability (CREATES) State University of New York at Binghamton, PO Box 6000, Binghamton, NY 13902-6000, USA
| | - Victor M Kariuki
- Department of Chemistry, Center for Research in Advanced Sensing Technologies, Environmental Sustainability (CREATES) State University of New York at Binghamton, PO Box 6000, Binghamton, NY 13902-6000, USA
| | - Gaddi B Eshun
- Department of Chemistry, Center for Research in Advanced Sensing Technologies, Environmental Sustainability (CREATES) State University of New York at Binghamton, PO Box 6000, Binghamton, NY 13902-6000, USA
| | - Omowunmi A Sadik
- Department of Chemistry, Center for Research in Advanced Sensing Technologies, Environmental Sustainability (CREATES) State University of New York at Binghamton, PO Box 6000, Binghamton, NY 13902-6000, USA
| |
Collapse
|
11
|
Moreau PL. Rapid evolution of acetic acid-detoxifying Escherichia coli under phosphate starvation conditions requires activation of the cryptic PhnE permease and induction of translesion synthesis DNA polymerases. FEMS Microbiol Lett 2017; 364:2982872. [PMID: 28199639 DOI: 10.1093/femsle/fnx031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/05/2017] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli incubated in phosphate-limiting minimal medium dies during prolonged incubation as a result of the production of acetic acid. Variants that consume acetic acid generally sweep through the population after three serial cultures. Evolvability may primarily result from induction of the potentially mutagenic LexA DNA damage response or from growth of preexisting mutants. Cells starved of phosphate induce the LexA regulon through a unique mechanism based on an increase in the internal pH at the approach of the stationary phase. Evolved cells resume growth on phosphorylated products as a result of the activation of the cryptic PhnE permease. Here, it is shown that first PhnE-expressing revertants swept through starved populations independently of the expression of the LexA regulon. Induction of the LexA regulon and especially of the translesion synthesis DNA polymerases Pol IV and Pol V was, however, absolutely required for the ultimate evolution of acetic acid-detoxifying mutant strains. Both growth under selection and induction of translesion synthesis DNA polymerases are therefore required for adaptive evolution under phosphate starvation conditions.
Collapse
|
12
|
Maharjan RP, Ferenci T. A shifting mutational landscape in 6 nutritional states: Stress-induced mutagenesis as a series of distinct stress input-mutation output relationships. PLoS Biol 2017; 15:e2001477. [PMID: 28594817 PMCID: PMC5464527 DOI: 10.1371/journal.pbio.2001477] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/15/2017] [Indexed: 12/16/2022] Open
Abstract
Environmental stresses increase genetic variation in bacteria, plants, and human cancer cells. The linkage between various environments and mutational outcomes has not been systematically investigated, however. Here, we established the influence of nutritional stresses commonly found in the biosphere (carbon, phosphate, nitrogen, oxygen, or iron limitation) on both the rate and spectrum of mutations in Escherichia coli. We found that each limitation was associated with a remarkably distinct mutational profile. Overall mutation rates were not always elevated, and nitrogen, iron, and oxygen limitation resulted in major spectral changes but no net increase in rate. Our results thus suggest that stress-induced mutagenesis is a diverse series of stress input-mutation output linkages that is distinct in every condition. Environment-specific spectra resulted in the differential emergence of traits needing particular mutations in these settings. Mutations requiring transpositions were highest under iron and oxygen limitation, whereas base-pair substitutions and indels were highest under phosphate limitation. The unexpected diversity of input-output effects explains some important phenomena in the mutational biases of evolving genomes. The prevalence of bacterial insertion sequence transpositions in the mammalian gut or in anaerobically stored cultures is due to environmentally determined mutation availability. Likewise, the much-discussed genomic bias towards transition base substitutions in evolving genomes can now be explained as an environment-specific output. Altogether, our conclusion is that environments influence genetic variation as well as selection.
Collapse
Affiliation(s)
- Ram P. Maharjan
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Ferenci
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
The SOS and RpoS Regulons Contribute to Bacterial Cell Robustness to Genotoxic Stress by Synergistically Regulating DNA Polymerase Pol II. Genetics 2017; 206:1349-1360. [PMID: 28468910 PMCID: PMC5500135 DOI: 10.1534/genetics.116.199471] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/25/2017] [Indexed: 11/18/2022] Open
Abstract
Mitomycin C (MMC) is a genotoxic agent that induces DNA cross-links, DNA alkylation, and the production of reactive oxygen species (ROS). MMC induces the SOS response and RpoS regulons in Escherichia coli SOS-encoded functions are required for DNA repair, whereas the RpoS regulon is typically induced by metabolic stresses that slow growth. Thus, induction of the RpoS regulon by MMC may be coincidental, because DNA damage slows growth; alternatively, the RpoS regulon may be an adaptive response contributing to cell survival. In this study, we show that the RpoS regulon is primarily induced by MMC-induced ROS production. We also show that RpoS regulon induction is required for the survival of MMC-treated growing cells. The major contributor to RpoS-dependent resistance to MMC treatment is DNA polymerase Pol II, which is encoded by the polB gene belonging to the SOS regulon. The observation that polB gene expression is controlled by the two major stress response regulons that are required to maximize survival and fitness further emphasizes the key role of this DNA polymerase as an important factor in genome stability.
Collapse
|
14
|
Michel B, Sinha AK. The inactivation of rfaP, rarA or sspA gene improves the viability of the Escherichia coli DNA polymerase III holD mutant. Mol Microbiol 2017; 104:1008-1026. [PMID: 28342235 DOI: 10.1111/mmi.13677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
The Escherichia coli holD mutant is poorly viable because the stability of holoenzyme polymerase III (Pol III HE) on DNA is compromised. Consequently, the SOS response is induced and the SOS polymerases DinB and Pol II further hinder replication. Mutations that restore the holD mutant viability belong to two classes, those that stabilize Pol III on DNA and those that prevent the deleterious effects of DinB over-production. We identified a dnaX mutation and the inactivation of rfaP and sspA genes as belonging to the first class of holD mutant suppressors. dnaX encodes a Pol III clamp loader subunit that interacts with HolD. rfaP encodes a lipopolysaccharide kinase that acts in outer membrane biogenesis. Its inactivation improves the holD mutant growth in part by affecting potassium import, previously proposed to stabilize Pol III HE on DNA by increasing electrostatic interactions. sspA encodes a global transcriptional regulator and growth of the holD mutant in its absence suggests that SspA controls genes that affect protein-DNA interactions. The inactivation of rarA belongs to the second class of suppressor mutations. rarA inactivation has a weak effect but is additive with other suppressor mutations. Our results suggest that RarA facilitates DinB binding to abandoned forks.
Collapse
Affiliation(s)
- Bénédicte Michel
- Genome Biology Department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Anurag Kumar Sinha
- Genome Biology Department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| |
Collapse
|
15
|
A DinB Ortholog Enables Mycobacterial Growth under dTTP-Limiting Conditions Induced by the Expression of a Mycobacteriophage-Derived Ribonucleotide Reductase Gene. J Bacteriol 2015; 198:352-62. [PMID: 26527643 DOI: 10.1128/jb.00669-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/24/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Mycobacterium species such as M. smegmatis and M. tuberculosis encode at least two translesion synthesis (TLS) polymerases, DinB1 and DinB2, respectively. Although predicted to be linked to DNA repair, their role in vivo remains enigmatic. M. smegmatis mc(2)155, a strain commonly used to investigate mycobacterial genetics, has two copies of dinB2, the gene that codes for DinB2, by virtue of a 56-kb chromosomal duplication. Expression of a mycobacteriophage D29 gene (gene 50) encoding a class II ribonucleotide reductase in M. smegmatis ΔDRKIN, a strain derived from mc(2)155 in which one copy of the duplication is lost, resulted in DNA replication defects and growth inhibition. The inhibitory effect could be linked to the deficiency of dTTP that resulted under these circumstances. The selective inhibition observed in the ΔDRKIN strain was found to be due solely to a reduced dosage of dinB2 in this strain. Mycobacterium bovis, which is closely related to M. tuberculosis, the tuberculosis pathogen, was found to be highly susceptible to gene 50 overexpression. Incidentally, these slow-growing pathogens harbor one copy of dinB2. The results indicate that the induction of a dTTP-limiting state can lead to growth inhibition in mycobacteria, with the effect being maximum in cells deficient in DinB2. IMPORTANCE Mycobacterium species, such as M. tuberculosis, the tuberculosis pathogen, are known to encode several Y family DNA polymerases, one of which is DinB2, an ortholog of the DNA repair-related protein DinP of Escherichia coli. Although this protein has been biochemically characterized previously and found to be capable of translesion synthesis in vitro, its in vivo function remains unknown. Using a novel method to induce dTTP deficiency in mycobacteria, we demonstrate that DinB2 can aid mycobacterial survival under such conditions. Apart from unraveling a specific role for the mycobacterial Y family DNA polymerase DinB2 for the first time, this study also paves the way for the development of drugs that can kill mycobacteria by inducing a dTTP-deficient state.
Collapse
|
16
|
Abstract
All living organisms are continually exposed to agents that damage their DNA, which threatens the integrity of their genome. As a consequence, cells are equipped with a plethora of DNA repair enzymes to remove the damaged DNA. Unfortunately, situations nevertheless arise where lesions persist, and these lesions block the progression of the cell's replicase. In these situations, cells are forced to choose between recombination-mediated "damage avoidance" pathways or a specialized DNA polymerase (pol) to traverse the blocking lesion. The latter process is referred to as Translesion DNA Synthesis (TLS). As inferred by its name, TLS not only results in bases being (mis)incorporated opposite DNA lesions but also bases being (mis)incorporated downstream of the replicase-blocking lesion, so as to ensure continued genome duplication and cell survival. Escherichia coli and Salmonella typhimurium possess five DNA polymerases, and while all have been shown to facilitate TLS under certain experimental conditions, it is clear that the LexA-regulated and damage-inducible pols II, IV, and V perform the vast majority of TLS under physiological conditions. Pol V can traverse a wide range of DNA lesions and performs the bulk of mutagenic TLS, whereas pol II and pol IV appear to be more specialized TLS polymerases.
Collapse
|
17
|
Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage. J Bacteriol 2015; 197:2792-809. [PMID: 26100038 DOI: 10.1128/jb.00101-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/11/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Escherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure of E. coli to DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that the in vitro interaction between Rep and Pol IV reported previously also occurs in vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecA in vivo and is recruited to sites of DSBs to aid in the restoration of DNA replication. IMPORTANCE DNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstrate in vivo localization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings provide in vivo evidence that Pol IV aids in maintaining genomic stability not only by bypassing DNA lesions but also by participating in the restoration of stalled replication forks.
Collapse
|
18
|
Stress-induced mutation rates show a sigmoidal and saturable increase due to the RpoS sigma factor in Escherichia coli. Genetics 2014; 198:1231-5. [PMID: 25213168 DOI: 10.1534/genetics.114.170258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stress-induced mutagenesis was investigated in the absence of selection for growth fitness by using synthetic biology to control perceived environmental stress in Escherichia coli. We find that controlled intracellular RpoS dosage is central to a sigmoidal, saturable three- to fourfold increase in mutation rates and associated changes in DNA repair proteins.
Collapse
|
19
|
Abstract
ABSTRACT: Bacterial adaptation to suboptimal nutrient environments, including host and/or extreme environments, is subject to complex, coordinated control involving many proteins and RNAs. Among the γ-proteobacteria, which includes many pathogens, the RpoS regulon has been a key focus for many years. Although the RpoS regulator was first identified as a growth phase-dependent regulator, our current understanding of RpoS is now more nuanced as this central regulator also has roles in exponential phase, biofilm development, bacterial virulence and bacterial persistence, as well as in stress adaptation. Induction of RpoS can also exert substantial metabolic effects by negatively regulating key systems including flagella biosynthesis, cryptic phage gene expression and the tricarboxylic acid cycle. Although core RpoS-controlled metabolic functions are conserved, there are substantial differences in RpoS regulation even among closely related bacteria, indicating that regulatory plasticity may be an important aspect of RpoS regulation, which is important in evolutionary adaptation to specialized environments.
Collapse
Affiliation(s)
- Herb E Schellhorn
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
20
|
Caporale LH. Overview of the creative genome: effects of genome structure and sequence on the generation of variation and evolution. Ann N Y Acad Sci 2012; 1267:1-10. [PMID: 22954209 DOI: 10.1111/j.1749-6632.2012.06749.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This overview of a special issue of Annals of the New York Academy of Sciences discusses uneven distribution of distinct types of variation across the genome, the dependence of specific types of variation upon distinct classes of DNA sequences and/or the induction of specific proteins, the circumstances in which distinct variation-generating systems are activated, and the implications of this work for our understanding of evolution and of cancer. Also discussed is the value of non text-based computational methods for analyzing information carried by DNA, early insights into organizational frameworks that affect genome behavior, and implications of this work for comparative genomics.
Collapse
|
21
|
Ryall B, Eydallin G, Ferenci T. Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol Mol Biol Rev 2012; 76:597-625. [PMID: 22933562 PMCID: PMC3429624 DOI: 10.1128/mmbr.05028-11] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diversity in adaptive responses is common within species and populations, especially when the heterogeneity of the frequently large populations found in environments is considered. By focusing on events in a single clonal population undergoing a single transition, we discuss how environmental cues and changes in growth rate initiate a multiplicity of adaptive pathways. Adaptation is a comprehensive process, and stochastic, regulatory, epigenetic, and mutational changes can contribute to fitness and overlap in timing and frequency. We identify culture history as a major determinant of both regulatory adaptations and microevolutionary change. Population history before a transition determines heterogeneities due to errors in translation, stochastic differences in regulation, the presence of aged, damaged, cheating, or dormant cells, and variations in intracellular metabolite or regulator concentrations. It matters whether bacteria come from dense, slow-growing, stressed, or structured states. Genotypic adaptations are history dependent due to variations in mutation supply, contingency gene changes, phase variation, lateral gene transfer, and genome amplifications. Phenotypic adaptations underpin genotypic changes in situations such as stress-induced mutagenesis or prophage induction or in biofilms to give a continuum of adaptive possibilities. Evolutionary selection additionally provides diverse adaptive outcomes in a single transition and generally does not result in single fitter types. The totality of heterogeneities in an adapting population increases the chance that at least some individuals meet immediate or future challenges. However, heterogeneity complicates the adaptomics of single transitions, and we propose that subpopulations will need to be integrated into future population biology and systems biology predictions of bacterial behavior.
Collapse
Affiliation(s)
- Ben Ryall
- School of Molecular Bioscience, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
22
|
Double-Strand Break Repair and Holliday Junction Processing Are Required for Chromosome Processing in Stationary-Phase Escherichia coli Cells. G3-GENES GENOMES GENETICS 2012; 1:417-26. [PMID: 22384352 PMCID: PMC3276156 DOI: 10.1534/g3.111.001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/10/2011] [Indexed: 11/25/2022]
Abstract
As nutrients are depleted and cell division ceases in batch cultures of bacteria, active processes are required to ensure that each cell has a complete copy of its genome. How chromosome number is manipulated and maintained in nondividing bacterial cells is not fully understood. Using flow cytometric analysis of cells from different growth phases, we show that the Holliday junction–processing enzymes RuvABC and RecG, as well as RecBCD, the enzyme complex that initiates DNA double-strand break repair, are required to establish the normal distribution of fluorescent peaks, which is commonly accepted to reflect the distribution of chromosome numbers. Our results reveal that these proteins are required for the proper processing of chromosomes in stationary phase.
Collapse
|
23
|
Abstract
Hypermutability is a phenotype characterized by a moderate to high elevation of spontaneous mutation rates and could result from DNA replication errors, defects in error correction mechanisms and many other causes. The elevated mutation rates are helpful to organisms to adapt to sudden and unforeseen threats to survival. At the same time hypermutability also leads to the generation of many deleterious mutations which offset its adaptive value and therefore disadvantageous. Nevertheless, it is very common in nature, especially among clinical isolates of pathogens. Hypermutability is inherited by indirect (second order) selection along with the beneficial mutations generated. At large population sizes and high mutation rates many cells in the population could concurrently acquire beneficial mutations of varying adaptive (fitness) values. These lineages compete with the ancestral cells and also among themselves for fixation. The one with the 'fittest' mutation gets fixed ultimately while the others are lost. This has been called 'clonal interference' which puts a speed limit on adaptation. The original clonal interference hypothesis has been modified recently. Nonheritable (transient) hypermtability conferring significant adaptive benefits also occur during stress response although its molecular basis remains controversial. The adaptive benefits of heritable hypermutability are discussed with emphasis on host-pathogen interactions.
Collapse
|
24
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
25
|
Impact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:13659-64. [PMID: 21808005 DOI: 10.1073/pnas.1104681108] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basic ideas about the constancy and randomness of mutagenesis that drives evolution were challenged by the discovery of mutation pathways activated by stress responses. These pathways could promote evolution specifically when cells are maladapted to their environment (i.e., are stressed). However, the clearest example--a general stress-response-controlled switch to error-prone DNA break (double-strand break, DSB) repair--was suggested to be peculiar to an Escherichia coli F' conjugative plasmid, not generally significant, and to occur by an alternative stress-independent mechanism. Moreover, mechanisms of spontaneous mutation in E. coli remain obscure. First, we demonstrate that this same mechanism occurs in chromosomes of starving F(-) E. coli. I-SceI endonuclease-induced chromosomal DSBs increase mutation 50-fold, dependent upon general/starvation- and DNA-damage-stress responses, DinB error-prone DNA polymerase, and DSB-repair proteins. Second, DSB repair is also mutagenic if the RpoS general-stress-response activator is expressed in unstressed cells, illustrating a stress-response-controlled switch to mutagenic repair. Third, DSB survival is not improved by RpoS or DinB, indicating that mutagenesis is not an inescapable byproduct of repair. Importantly, fourth, fully half of spontaneous frame-shift and base-substitution mutation during starvation also requires the same stress-response, DSB-repair, and DinB proteins. These data indicate that DSB-repair-dependent stress-induced mutation, driven by spontaneous DNA breaks, is a pathway that cells usually use and a major source of spontaneous mutation. These data also rule out major alternative models for the mechanism. Mechanisms that couple mutagenesis to stress responses can allow cells to evolve rapidly and responsively to their environment.
Collapse
|
26
|
Sladewski TE, Hetrick KM, Foster PL. Escherichia coli Rep DNA helicase and error-prone DNA polymerase IV interact physically and functionally. Mol Microbiol 2011; 80:524-41. [PMID: 21320186 DOI: 10.1111/j.1365-2958.2011.07590.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Escherichia coli DNA polymerase IV, encoded by the dinB gene, is a member of the Y family of specialized DNA polymerases. Pol IV is capable of synthesizing past DNA lesions and may help to restart stalled replication forks. However, Pol IV is error-prone, contributing to both DNA damage-induced and stress-induced (adaptive) mutations. Here we demonstrate that Pol IV interacts in vitro with Rep DNA helicase and that this interaction enhances Rep's helicase activity. In addition, Pol IV polymerase activity is stimulated by interacting with Rep, and Pol IV β clamp-binding motif appears to be required for this stimulation. However, neither Rep's helicase activity nor its ability to bind DNA is required for it to stimulate Pol IV's polymerase activity. The interaction between Rep and Pol IV is biologically significant in vivo as Rep enhances Pol IV's mutagenic activity in stationary-phase cells. These data indicate a new role for Rep in contributing to Pol IV-dependent adaptive mutation. This functional interaction also provides new insight into how the cell might control or target Pol IV's mutagenic activity.
Collapse
|
27
|
The SMC-like protein complex SbcCD enhances DNA polymerase IV-dependent spontaneous mutation in Escherichia coli. J Bacteriol 2010; 193:660-9. [PMID: 21131491 DOI: 10.1128/jb.01166-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Escherichia coli, RpoS, the general stress response sigma factor, regulates the activity of the specialized DNA polymerase DNA polymerase IV (Pol IV) both in stationary-phase and in exponential-phase cells. Because during exponential phase dinB, the gene encoding Pol IV, is transcribed independently of RpoS, RpoS must regulate Pol IV activity in growing cells indirectly via one or more intermediate factors. The results presented here show that one of these intermediate factors is SbcCD, an SMC-like protein and an ATP-dependent nuclease. By initiating or participating in double-strand break repair, SbcCD may provide DNA substrates for Pol IV polymerase activity.
Collapse
|