1
|
Young C, Lee M, Ge Z, Shin J, Bursulaya B, Sorensen D, Saud A, Sridharan A, Gonick A, Phi N, Nguyen K, Bhalli S, Hiranandani J, Miller JH. Anatomy of a hotspot: Cisplatin hotspots in the tdk gene of Escherichia coli. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 39387394 DOI: 10.1002/em.22635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
We previously reported that certain sub-regions of the thyA gene of Escherichia coli are more mutable than others when many different mutagens and mutators are analyzed (Mashiach et al., Mutation Research Fundamental Molecular Mechansims of Mutagenesis, 821: 111702, 2021). In this study, we focus on a single mutagen, cisplatin and verify that mutations occur preferentially at specific 3 bp sequences, but only when they appear in certain subregions of the gene. Moreover, we show that hotspots for some premutational lesions are camouflaged by the preferential repair effected by the uvrA,B,C-encoded excision repair system, even when they appear on the same strand. We do this by using a novel reporter gene in E. coli, the tdk gene that codes for thymidine deoxykinase, and we describe some of the advantages of utilizing this detection system.
Collapse
Affiliation(s)
- Courtney Young
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Mackenzie Lee
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Zoe Ge
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Jeana Shin
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Bella Bursulaya
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Dana Sorensen
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Arnav Saud
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Ananya Sridharan
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Ava Gonick
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Nhu Phi
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Kelly Nguyen
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Shawal Bhalli
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Jyotsna Hiranandani
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
2
|
Wang G, Li Q, Zhang Z, Yin X, Wang B, Yang X. Recent progress in adaptive laboratory evolution of industrial microorganisms. J Ind Microbiol Biotechnol 2023; 50:kuac023. [PMID: 36323428 PMCID: PMC9936214 DOI: 10.1093/jimb/kuac023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/24/2022] [Indexed: 01/12/2023]
Abstract
Adaptive laboratory evolution (ALE) is a technique for the selection of strains with better phenotypes by long-term culture under a specific selection pressure or growth environment. Because ALE does not require detailed knowledge of a variety of complex and interactive metabolic networks, and only needs to simulate natural environmental conditions in the laboratory to design a selection pressure, it has the advantages of broad adaptability, strong practicability, and more convenient transformation of strains. In addition, ALE provides a powerful method for studying the evolutionary forces that change the phenotype, performance, and stability of strains, resulting in more productive industrial strains with beneficial mutations. In recent years, ALE has been widely used in the activation of specific microbial metabolic pathways and phenotypic optimization, the efficient utilization of specific substrates, the optimization of tolerance to toxic substance, and the biosynthesis of target products, which is more conducive to the production of industrial strains with excellent phenotypic characteristics. In this paper, typical examples of ALE applications in the development of industrial strains and the research progress of this technology are reviewed, followed by a discussion of its development prospects.
Collapse
Affiliation(s)
- Guanglu Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Qian Li
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou, Henan 450000, People's Republic of China
| | - Xianzhong Yin
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou, Henan 450000, People's Republic of China
| | - Bingyang Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Xuepeng Yang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
3
|
Yaramada L, Singh S, Ge Z, Shin J, Mashiach D, Miller JH. The antiretroviral agents azidothymidine, stavudine, and didanosine have the identical mutational fingerprint in the rpoB region of Escherichia coli. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:329-335. [PMID: 36066544 DOI: 10.1002/em.22507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
We looked at the mutational fingerprints of three antiretroviral (anti-HIV) agents, azidothymidine (AZT), stavudine (STAV), and didanosine (DIDA) in the rpoB system of Escherichia coli and compared them with each other and with the fingerprints of trimethoprim and of spontaneous mutations in a wild-type and a mutT background. All three agents gave virtually identical fingerprints in the wild-type background, causing only A:T→C:G changes at 3 of the 12 A:T→C:G possible sites among the total of 92 possible base substitution mutations, even though AZT and STAV are thymidine analogs but DIDA is an adenosine analog. As all three agents are reverse transcriptase inhibitors, and act as chain blockers, the common fingerprint may be a property of chain blocking agents.
Collapse
Affiliation(s)
- Lekha Yaramada
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Sunjum Singh
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Zoe Ge
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Jeana Shin
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Daniel Mashiach
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| | - Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
4
|
Bleisch R, Freitag L, Ihadjadene Y, Sprenger U, Steingröwer J, Walther T, Krujatz F. Strain Development in Microalgal Biotechnology-Random Mutagenesis Techniques. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070961. [PMID: 35888051 PMCID: PMC9315690 DOI: 10.3390/life12070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Microalgal biomass and metabolites can be used as a renewable source of nutrition, pharmaceuticals and energy to maintain or improve the quality of human life. Microalgae’s high volumetric productivity and low impact on the environment make them a promising raw material in terms of both ecology and economics. To optimize biotechnological processes with microalgae, improving the productivity and robustness of the cell factories is a major step towards economically viable bioprocesses. This review provides an overview of random mutagenesis techniques that are applied to microalgal cell factories, with a particular focus on physical and chemical mutagens, mutagenesis conditions and mutant characteristics.
Collapse
Affiliation(s)
- Richard Bleisch
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Leander Freitag
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Yob Ihadjadene
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Una Sprenger
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Juliane Steingröwer
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Thomas Walther
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Felix Krujatz
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
- Biotopa gGmbH—Center for Applied Aquaculture & Bioeconomy, 01454 Radeberg, Germany
- Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, 02763 Zittau, Germany
- Correspondence:
| |
Collapse
|
5
|
Marciano DC, Wang C, Hsu TK, Bourquard T, Atri B, Nehring RB, Abel NS, Bowling EA, Chen TJ, Lurie PD, Katsonis P, Rosenberg SM, Herman C, Lichtarge O. Evolutionary action of mutations reveals antimicrobial resistance genes in Escherichia coli. Nat Commun 2022; 13:3189. [PMID: 35680894 PMCID: PMC9184624 DOI: 10.1038/s41467-022-30889-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
Since antibiotic development lags, we search for potential drug targets through directed evolution experiments. A challenge is that many resistance genes hide in a noisy mutational background as mutator clones emerge in the adaptive population. Here, to overcome this noise, we quantify the impact of mutations through evolutionary action (EA). After sequencing ciprofloxacin or colistin resistance strains grown under different mutational regimes, we find that an elevated sum of the evolutionary action of mutations in a gene identifies known resistance drivers. This EA integration approach also suggests new antibiotic resistance genes which are then shown to provide a fitness advantage in competition experiments. Moreover, EA integration analysis of clinical and environmental isolates of antibiotic resistant of E. coli identifies gene drivers of resistance where a standard approach fails. Together these results inform the genetic basis of de novo colistin resistance and support the robust discovery of phenotype-driving genes via the evolutionary action of genetic perturbations in fitness landscapes.
Collapse
Affiliation(s)
- David C Marciano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Chen Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Teng-Kuei Hsu
- The Verna and Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benu Atri
- Structural and Computational Biology & Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Clara Analytics Inc., 451 El Camino Real #201, Santa Clara, CA, 95050, USA
| | - Ralf B Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- The Verna and Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicholas S Abel
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elizabeth A Bowling
- The Verna and Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Taylor J Chen
- Integrative Molecular & Biomedical Biosciences Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pamela D Lurie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- The Verna and Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Integrative Molecular & Biomedical Biosciences Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Structural and Computational Biology & Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Zheng Y, Hong K, Wang B, Liu D, Chen T, Wang Z. Genetic Diversity for Accelerating Microbial Adaptive Laboratory Evolution. ACS Synth Biol 2021; 10:1574-1586. [PMID: 34129323 DOI: 10.1021/acssynbio.0c00589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adaptive laboratory evolution (ALE) is a widely used and highly effective tool for improving microbial phenotypes and investigating the evolutionary roots of biological phenomena. Serving as the raw materials of evolution, mutations have been extensively utilized to increase the chances of engineering molecules or microbes with tailor-made functions. The generation of genetic diversity is therefore a core technology for accelerating ALE, and a high-quality mutant library is crucial to its success. Because of its importance, technologies for generating genetic diversity have undergone rapid development in recent years. Here, we review the existing techniques for the construction of mutant libraries, briefly introduce their mechanisms and applications, discuss ongoing and emerging efforts to apply engineering technologies in the construction of mutant libraries, and suggest future perspectives for library construction.
Collapse
Affiliation(s)
- Yangyang Zheng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Kunqiang Hong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Baowei Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dingyu Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhiwen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Mashiach D, Bacasen EM, Singh S, Kao T, Yaramada L, Mishail D, Singh S, Miller JH. Enhanced characterization of the thyA system for mutational analysis in Escherichia coli: Defining mutationally "hot" regions of the gene. Mutat Res 2021; 823:111754. [PMID: 34091127 DOI: 10.1016/j.mrfmmm.2021.111754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 11/19/2022]
Abstract
We have extensively characterized base substitution mutations in the 795 base pair (bp) long E. coli thyA gene to define as many of the base substitution mutational sites that inactivate the gene as possible. The resulting catalog of mutational sites constitutes a system with up to 5 times as many sites for monitoring each of the six base substitution mutations as the widely used rpoB/Rifr system. We have defined 75 sites for the G:C -> A:T transition, 68 sites for the G:C -> T:A transversion, 53 sites for the G:C -> C:G transversion, 49 sites for the A:T -> G:C transition, 39 sites for the A:T -> T:A transversion, and 59 sites for the A:T -> C:G transversion. The system is thus comprised of 343 base substitution mutations at 232 different base pairs, all of which can be sequenced with a single primer pair. This allows for the examination of mutational spectra using a more detailed probe of known mutations, while still allowing one to compare the number of repeated occurrences at specific sites. We have examined several mutagens and mutators with this system, and show its utility by looking at the spectrum of cisplatin, that has a single hotspot, underscoring the value of having as large an array of sites as possible at which one can monitor repeat occurrences. To test for regions of the gene that might be hotspots for a number of mutagens, or "hot" (mutaphilic) regions, we have looked at the ratio of mutations per set of an equal number of mutational sites throughout the gene. The resulting graphs suggest that there are "hot" regions at intervals, and this may reflect aspects of secondary structures, of the higher order structure of the chromosome, or perhaps the nucleoid structure of the chromosome plus histone-like protein complexes.
Collapse
Affiliation(s)
- Daniel Mashiach
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Erin Mae Bacasen
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Sunjum Singh
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Timothy Kao
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Lekha Yaramada
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Daniel Mishail
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Summer Singh
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States.
| |
Collapse
|
8
|
Wannier TM, Ciaccia PN, Ellington AD, Filsinger GT, Isaacs FJ, Javanmardi K, Jones MA, Kunjapur AM, Nyerges A, Pal C, Schubert MG, Church GM. Recombineering and MAGE. NATURE REVIEWS. METHODS PRIMERS 2021; 1:7. [PMID: 35540496 PMCID: PMC9083505 DOI: 10.1038/s43586-020-00006-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Recombination-mediated genetic engineering, also known as recombineering, is the genomic incorporation of homologous single-stranded or double-stranded DNA into bacterial genomes. Recombineering and its derivative methods have radically improved genome engineering capabilities, perhaps none more so than multiplex automated genome engineering (MAGE). MAGE is representative of a set of highly multiplexed single-stranded DNA-mediated technologies. First described in Escherichia coli, both MAGE and recombineering are being rapidly translated into diverse prokaryotes and even into eukaryotic cells. Together, this modern set of tools offers the promise of radically improving the scope and throughput of experimental biology by providing powerful new methods to ease the genetic manipulation of model and non-model organisms. In this Primer, we describe recombineering and MAGE, their optimal use, their diverse applications and methods for pairing them with other genetic editing tools. We then look forward to the future of genetic engineering.
Collapse
Affiliation(s)
- Timothy M. Wannier
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Peter N. Ciaccia
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Gabriel T. Filsinger
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard University, Cambridge, MA, USA
| | - Farren J. Isaacs
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Michaela A. Jones
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Aditya M. Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Akos Nyerges
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Csaba Pal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Max G. Schubert
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
9
|
Fernandez K, D'Souza S, Ahn JJ, Singh S, Bacasen EM, Mashiach D, Mishail D, Kao T, Thai J, Hwang S, Yaramada L, Miller JH. Mutations induced by Bleomycin, 4-nitroquinoline-1-oxide, and hydrogen peroxide in the rpoB gene of Escherichia coli: Perspective on Mutational Hotspots. Mutat Res 2020; 821:111702. [PMID: 32422468 DOI: 10.1016/j.mrfmmm.2020.111702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/05/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
We report the mutational spectra in a segment of the E. coli rpoB gene of bleomycin (BLEO), 4-nitroquinoline-1-oxide (NQO), and hydrogen peroxide (H2O2). We compare these spectra with those of other mutagens and repair deficient strains in the same rpoB system, and review the key elements determining mutational hotspots and outline the questions that remain unanswered. We consider three tiers of hotspots that derive from 1) the nature of the sequence change at a specific base, 2) the direct nearest neighbors and 3) some aspect of the larger sequence context or the local 3D-structure of segments of DNA. This latter tier can have a profound effect on mutation frequencies, even among sites with identical nearest neighbor sequences. BLEO is dependent on the SOS-induced translesion Pol V for mutagenesis, and has a dramatic hotspot at a single mutational site in rpoB. NQO is not dependent on any of the translesion polymerases, in contrast to findings with plasmids treated in vitro and transformed into E. coli. The rpoB system allows one to monitor both G:C -> A:T transitions and G:C -> T:A transversions at the same site in 11 cases, each site having the identical sequence context for each of the two mutations. The combined preference for G:C -> A:T transitions at these sites is 20-fold. Several of the favored sites for hydrogen peroxide mutagenesis are not seen in the spectra of BLEO and NQO mutations, indicating that mutagenesis from reactive oxygen species is not a major cause of BLEO or NQO mutagenesis, but rather specific adducts. The variance in mutation rates at sites with identical nearest neighbors suggests that the local structure of different DNA segments is an important factor in mutational hotspots.
Collapse
Affiliation(s)
- Kristen Fernandez
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Sara D'Souza
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Jenny J Ahn
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Summer Singh
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Erin Mae Bacasen
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Daniel Mashiach
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Daniel Mishail
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Timothy Kao
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Jasmine Thai
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Spring Hwang
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Lekha Yaramada
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, and the David Geffen School of Medicine, Los Angeles, CA 90095, United States.
| |
Collapse
|
10
|
Sass P, Sosnowski P, Podolak-Popinigis J, Górnikiewicz B, Kamińska J, Deptuła M, Nowicka E, Wardowska A, Ruczyński J, Rekowski P, Rogujski P, Filipowicz N, Mieczkowska A, Peszyńska-Sularz G, Janus Ł, Skowron P, Czupryn A, Mucha P, Piotrowski A, Rodziewicz-Motowidło S, Pikuła M, Sachadyn P. Epigenetic inhibitor zebularine activates ear pinna wound closure in the mouse. EBioMedicine 2019; 46:317-329. [PMID: 31303499 PMCID: PMC6710911 DOI: 10.1016/j.ebiom.2019.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Most studies on regenerative medicine focus on cell-based therapies and transplantations. Small-molecule therapeutics, though proved effective in different medical conditions, have not been extensively investigated in regenerative research. It is known that healing potential decreases with development and developmental changes are driven by epigenetic mechanisms, which suggests epigenetic repression of regenerative capacity. METHODS We applied zebularine, a nucleoside inhibitor of DNA methyltransferases, to stimulate the regenerative response in a model of ear pinna injury in mice. FINDINGS We observed the regeneration of complex tissue that was manifested as improved ear hole repair in mice that received intraperitoneal injections of zebularine. Six weeks after injury, the mean hole area decreased by 83.2 ± 9.4% in zebularine-treated and by 43.6 ± 15.4% in control mice (p < 10-30). Combined delivery of zebularine and retinoic acid potentiated and accelerated this effect, resulting in complete ear hole closure within three weeks after injury. We found a decrease in DNA methylation and transcriptional activation of neurodevelopmental and pluripotency genes in the regenerating tissues. INTERPRETATION This study is the first to demonstrate an effective induction of complex tissue regeneration in adult mammals using zebularine. We showed that the synergistic action of an epigenetic drug (zebularine) and a transcriptional activator (retinoic acid) could be effectively utilized to induce the regenerative response, thus delineating a novel pharmacological strategy for regeneration. The strategy was effective in the model of ear pinna regeneration in mice, but zebularine acts on different cell types, therefore, a similar approach can be tested in other tissues and organs.
Collapse
Affiliation(s)
- Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | | | - Bartosz Górnikiewicz
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Jolanta Kamińska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Ewa Nowicka
- Department of Clinical Anatomy, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Anna Wardowska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Jarosław Ruczyński
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Piotr Rekowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Piotr Rogujski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Natalia Filipowicz
- Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Alina Mieczkowska
- Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Academic Laboratory Animal Centre, Research and Services Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | | | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Piotr Mucha
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | | | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| |
Collapse
|
11
|
The Antibiotic Trimethoprim Displays Strong Mutagenic Synergy with 2-Aminopurine. Antimicrob Agents Chemother 2019; 63:AAC.01577-18. [PMID: 30509944 DOI: 10.1128/aac.01577-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/23/2018] [Indexed: 11/20/2022] Open
Abstract
We show that trimethoprim (TMP), an antibiotic in current use, displays a strong synergistic effect on mutagenesis in Escherichia coli when paired with the base analog 2-aminopurine (2AP), resulting in a 35-fold increase in mutation frequencies in the rpoB-Rifr system. Combination therapies are often employed both as antibiotic treatments and in cancer chemotherapy. However, mutagenic effects of these combinations are rarely examined. An analysis of the mutational spectra of TMP, 2AP, and their combination indicates that together they trigger a response via an alteration in deoxynucleoside triphosphate (dNTP) ratios that neither compound alone can trigger. A similar, although less strong, response is seen with the frameshift mutagen ICR191 and 2AP. These results underscore the need for testing the effects on mutagenesis of combinations of antibiotics and chemotherapeutics.
Collapse
|
12
|
Miller JH. Mutagenesis: Interactions with a parallel universe. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:78-81. [PMID: 29807579 DOI: 10.1016/j.mrrev.2018.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 12/13/2022]
Abstract
Unexpected observations in mutagenesis research have led to a new perspective in this personal reflection based on years of studying mutagenesis. Many mutagens have been thought to operate via a single principal mechanism, with secondary effects usually resulting in only minor changes in the observed mutation frequencies and spectra. For example, we conceive of base analogs as resulting in direct mispairing as their main mechanism of mutagenesis. Recent studies now show that in fact even these simple mutagens can cause very large and unanticipated effects both in mutation frequencies and in the mutational spectra when used in certain pair-wise combinations. Here we characterize this leap in mutation frequencies as a transport to an alternate universe of mutagenesis.
Collapse
Affiliation(s)
- Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular, Biology Institute, and The David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Mutational Consequences of Ciprofloxacin in Escherichia coli. Antimicrob Agents Chemother 2016; 60:6165-72. [PMID: 27480851 DOI: 10.1128/aac.01415-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
We examined the mutagenic specificity of the widely used antibiotic ciprofloxacin (CPR), which displays weak to moderate mutagenic activity in several bacteria and generates short in-frame deletions in rpoB in Staphylococcus aureus To determine the spectrum of mutations in a system where any gene knockout would result in a recovered mutant, including frameshifts and both short and long deletions, we examined CPR-induced mutations in the thymidylate synthase-encoding thyA gene. Here, any mutation resulting in loss of thymidylate synthase activity generates trimethoprim (Trm) resistance. We found that deletions and insertions in all three reading frames predominated in the spectrum. They tend to be short deletions and cluster in two regions, one being a GC-rich region with potential extensive secondary structures. We also exploited the well-characterized rpoB-Rif(r) system in Escherichia coli to determine that cells grown in the presence of sublethal doses of CPR not only induced short in-frame deletions in rpoB, but also generated base substitution mutations resulting from induction of the SOS system. Some of the specific point mutations prominent in the spectrum of a strain that overproduces the dinB-encoded Pol IV were also present after growth in CPR. However, these mutations disappeared in CPR-treated dinB mutants, whereas the deletions remained. Moreover, CPR-induced deletions also occurred in a strain lacking all three SOS-induced polymerases. We discuss the implications of these findings for the consequences of overuse of CPR and other antibiotics.
Collapse
|