1
|
Ma T, Li X, Montalbán-López M, Wu X, Zheng Z, Mu D. Effect of the Membrane Insertase YidC on the Capacity of Lactococcus lactis to Secret Recombinant Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23320-23332. [PMID: 39382634 DOI: 10.1021/acs.jafc.4c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Lactococcus lactis is a crucial food-grade cell factory for secreting valuable peptides and proteins primarily via the Sec-dependent pathway. YidC, a membrane insertase, facilitates protein insertion into the lipid membrane for the translocation. However, the mechanistic details of how YidC affects protein secretion in L. lactis remain elusive. This study investigates the effects of deleting yidC1/yidC2 on L. lactis phenotypes and protein secretion. Compared to the original strain, deleting yidC2 significantly decreased the relative biomass, electroporation efficiency, and F-ATP activity by 25%, 47%, and 33%, respectively, and weakened growth and stress resistance, whereas deleting yidC1 had a minimal impact. The absence of either yidC1 or yidC2 reduced target proteins secretion. Meanwhile, there is a considerable alteration in the transcription levels of genes involved in the secretion pathway, with secY transcription increasing over 135-fold. Our results provide a theoretical foundation for further improving target protein secretion and investigating the YidC function.
Collapse
Affiliation(s)
- Tiange Ma
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Xingjiang Li
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
- Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China
| | - Manuel Montalbán-López
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Xuefeng Wu
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Dongdong Mu
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
- Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China
| |
Collapse
|
2
|
Ma C, Mei C, Liu J, Li H, Jiao M, Hu H, Zhang Y, Xiong J, He Y, Wei W, Yang H, Chen H. Effect of baicalin on eradicating biofilms of bovine milk derived Acinetobacter lwoffii. BMC Vet Res 2024; 20:212. [PMID: 38764041 PMCID: PMC11103975 DOI: 10.1186/s12917-024-04015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Acinetobacter lwoffii (A.lwoffii) is a serious zoonotic pathogen that has been identified as a cause of infections such as meningitis, bacteremia and pneumonia. In recent years, the infection rate and detection rate of A.lwoffii is increasing, especially in the breeding industry. Due to the presence of biofilms, it is difficult to eradicate and has become a potential super drug-resistant bacteria. Therefore, eradication of preformed biofilm is an alternative therapeutic action to control A.lwoffii infection. The present study aimed to clarify that baicalin could eradicate A.lwoffii biofilm in dairy cows, and to explore the mechanism of baicalin eradicating A.lwoffii. RESULTS The results showed that compared to the control group, the 4 MIC of baicalin significantly eradicated the preformed biofilm, and the effect was stable at this concentration, the number of viable bacteria in the biofilm was decreased by 0.67 Log10CFU/mL. The total fluorescence intensity of biofilm bacteria decreased significantly, with a reduction rate of 67.0%. There were 833 differentially expressed genes (367 up-regulated and 466 down-regulated), whose functions mainly focused on oxidative phosphorylation, biofilm regulation system and trehalose synthesis. Molecular docking analysis predicted 11 groups of target proteins that were well combined with baicalin, and the content of trehalose decreased significantly after the biofilm of A.lwoffii was treated with baicalin. CONCLUSIONS The present study evaluated the antibiofilm potential of baicalin against A.lwoffii. Baicalin revealed strong antibiofilm potential against A.lwoffii. Baicalin induced biofilm eradication may be related to oxidative phosphorylation and TCSs. Moreover, the decrease of trehalose content may be related to biofilm eradication.
Collapse
Affiliation(s)
- Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Cui Mei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - JingJing Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Hui Li
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Min Jiao
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Huiming Hu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Yang Zhang
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Jing Xiong
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Wei Wei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
3
|
Puca V, Marinacci B, Pinti M, Di Cintio F, Sinjari B, Di Marcantonio MC, Mincione G, Acharya TR, Kaushik NK, Choi EH, Sallese M, Guarnieri S, Grande R, Perrotti V. Antimicrobial efficacy of direct air gas soft jet plasma for the in vitro reduction of oral bacterial biofilms. Sci Rep 2024; 14:10882. [PMID: 38740792 DOI: 10.1038/s41598-024-61438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
The aim of this study was to evaluate the antimicrobial efficacy of an air gas soft jet CAP for its potential use in removing oral biofilms, given that plasma-based technologies have emerged as promising methods in periodontology. Two types of biofilms were developed, one by Streptococcus mutans UA 159 bacterial strain and the other by a complex mixture of saliva microorganisms isolated from a patient with periodontitis. This latter biofilm was characterized via Next Generation Sequencing to determine the main bacterial phyla. The CAP source was applied at a distance of 6 mm for different time points. A statistically significant reduction of both CFU count and XTT was already detected after 60 s of CAP treatment. CLSM analysis supported CAP effectiveness in killing the microorganisms inside the biofilm and in reducing the thickness of the biofilm matrix. Cytotoxicity tests demonstrated the possible use of CAP without important side effects towards human gingival fibroblasts cell line. The current study showed that CAP treatment was able to significantly reduce preformed biofilms developed by both S. mutans and microorganisms isolated by a saliva sample. Further studies should be conducted on biofilms developed by additional saliva donors to support the potential of this innovative strategy to counteract oral pathogens responsible for periodontal diseases.
Collapse
Affiliation(s)
- Valentina Puca
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Beatrice Marinacci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Morena Pinti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Federica Di Cintio
- Department of Oral, Medical and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Bruna Sinjari
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Tirtha Raj Acharya
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Michele Sallese
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy.
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Vittoria Perrotti
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
- UdA-TechLab, Research Center, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
4
|
Vega LA, Sansón-Iglesias M, Mukherjee P, Buchan K, Morrison G, Hohlt AE, Flores AR. LiaR-dependent gene expression contributes to antimicrobial responses in group A Streptococcus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588141. [PMID: 38617309 PMCID: PMC11014544 DOI: 10.1101/2024.04.04.588141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The ability to sense and respond to host defenses is essential for pathogen survival. Some mechanisms involve two-component systems (TCS) that respond to host molecules, such as antimicrobial peptides (AMPs) and activate specific gene regulatory pathways to aid in survival. Alongside TCSs, bacteria coordinate cell division proteins, chaperones, cell wall sortases and secretory translocons at discrete locations within the cytoplasmic membrane, referred to as functional membrane microdomains (FMMs). In Group A Streptococcus (GAS), the FMM or "ExPortal" coordinates protein secretion, cell wall synthesis and sensing of AMP-mediated cell envelope stress via the LiaFSR three-component system. Previously we showed GAS exposure to a subset of AMPs (α-defensins) activates the LiaFSR system by disrupting LiaF and LiaS co-localization in the ExPortal, leading to increased LiaR phosphorylation, expression of the transcriptional regulator SpxA2, and altered GAS virulence gene expression. The mechanisms by which LiaFSR integrates cell envelope stress with responses to AMP activity and virulence are not fully elucidated. Here, we show the LiaFSR regulon is comprised of genes encoding SpxA2 and three membrane-associated proteins: a PspC domain-containing protein (PCP), the lipoteichoic acid-modifying protein LafB and the membrane protein insertase YidC2. Our data show phosphorylated LiaR induces transcription of these genes via a conserved operator, whose disruption attenuates GAS virulence and increases susceptibility to AMPs in a manner primarily dependent on differential expression of SpxA2. Our work expands understanding of the LiaFSR regulatory network in GAS and identifies targets for further investigation of mechanisms of cell envelope stress tolerance contributing to GAS pathogenesis.
Collapse
|
5
|
Baidamshina DR, Trizna EY, Goncharova SS, Sorokin AV, Lavlinskaya MS, Melnik AP, Gafarova LF, Kharitonova MA, Ostolopovskaya OV, Artyukhov VG, Sokolova EA, Holyavka MG, Bogachev MI, Kayumov AR, Zelenikhin PV. The Effect of Ficin Immobilized on Carboxymethyl Chitosan on Biofilms of Oral Pathogens. Int J Mol Sci 2023; 24:16090. [PMID: 38003281 PMCID: PMC10671066 DOI: 10.3390/ijms242216090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
In the last decade, Ficin, a proteolytic enzyme extracted from the latex sap of the wild fig tree, has been widely investigated as a promising tool for the treatment of microbial biofilms, wound healing, and oral care. Here we report the antibiofilm properties of the enzyme immobilized on soluble carboxymethyl chitosan (CMCh) and CMCh itself. Ficin was immobilized on CMCh with molecular weights of either 200, 350 or 600 kDa. Among them, the carrier with a molecular weight of 200 kDa bound the maximum amount of enzyme, binding up to 49% of the total protein compared to 19-32% of the total protein bound to other CMChs. Treatment with pure CMCh led to the destruction of biofilms formed by Streptococcus salivarius, Streptococcus gordonii, Streptococcus mutans, and Candida albicans, while no apparent effect on Staphylococcus aureus was observed. A soluble Ficin was less efficient in the destruction of the biofilms formed by Streptococcus sobrinus and S. gordonii. By contrast, treatment with CMCh200-immobilized Ficin led to a significant reduction of the biofilms of the primary colonizers S. gordonii and S. mutans. In model biofilms obtained by the inoculation of swabs from teeth of healthy volunteers, the destruction of the biofilm by both soluble and immobilized Ficin was observed, although the degree of the destruction varied between artificial plaque samples. Nevertheless, combined treatment of oral Streptococci biofilm by enzyme and chlorhexidine for 3 h led to a significant decrease in the viability of biofilm-embedded cells, compared to solely chlorhexidine application. This suggests that the use of either soluble or immobilized Ficin would allow decreasing the amount and/or concentration of the antiseptics required for oral care or improving the efficiency of oral cavity sanitization.
Collapse
Affiliation(s)
- Diana R. Baidamshina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Elena Yu. Trizna
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Svetlana S. Goncharova
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
| | - Andrey V. Sorokin
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 299053 Sevastopol, Russia
| | - Maria S. Lavlinskaya
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 299053 Sevastopol, Russia
| | - Anastasia P. Melnik
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Leysan F. Gafarova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Maya A. Kharitonova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Olga V. Ostolopovskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Valeriy G. Artyukhov
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
| | - Evgenia A. Sokolova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Marina G. Holyavka
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 299053 Sevastopol, Russia
| | - Mikhail I. Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 197022 St. Petersburg, Russia;
| | - Airat R. Kayumov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
- Interdepartment Research Laboratory, Kazan State Academy of Veterinary Medicine Named after N. E. Bauman, 420029 Kazan, Russia
| | - Pavel V. Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| |
Collapse
|
6
|
Drouin P, da Silva ÉB, Tremblay J, Chevaux E, Apper E, Castex M. Inoculation with Lentilactobacillus buchneri alone or in combination with Lentilactobacillus hilgardii modifies gene expression, fermentation profile, and starch digestibility in high-moisture corn. Front Microbiol 2023; 14:1253588. [PMID: 37901805 PMCID: PMC10602787 DOI: 10.3389/fmicb.2023.1253588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Inoculants combining Lentilactobacillus buchneri and Lentilactobacillus hilgardii have been shown to improve the aerobic stability of high-moisture corn (HMC) and whole-plant corn silage, but the mode of action of this co-inoculation remains to be elucidated. This study used metatranscriptomics to evaluate the effects of inoculation with L. buchneri alone or combined with L. hilgardii on the bacterial community, gene expression, fermentation profile, and starch digestibility in HMC. High-moisture corn not inoculated (Control) or inoculated with L. buchneri NCIMB 40788 (LB) or L. buchneri NCIMB 40788 combined with L. hilgardii CNCM-I-4785 (Combo) was ensiled in mini silo bags for 30, 60, 120, and 180 days. The fermentation profile was evaluated at all time points. Metatranscriptomics was performed on samples collected on day 120. Combo had a greater alpha diversity richness index of contigs than LB and Control, and inoculation with Combo and LB modified the beta-diversity of contigs compared to Control. Out of 69 genes of interest, 20 were differentially expressed in LB compared to Control and 25 in Combo compared to Control. Of those differently expressed genes, 16 (10 of which were associated with carbohydrate metabolism and six with amino acid metabolism) were differently expressed in both LB and Combo compared to Control, and all those genes were upregulated in the inoculated silages. When we compared Combo and LB, we found seven genes expressed differently, four associated with carbohydrate metabolism and downregulated in Combo, and three associated with amino acid metabolism and upregulated in Combo. At day 120, the inoculated silages had more culturable lactic acid bacteria, higher Lactobacillus relative abundance, and lower Leuconostoc relative abundance than Control. The concentration of acetic acid remained low throughout ensiling in Control, but in LB and Combo, it increased up to day 60 and remained stable from day 60 to 180. The 1,2-propanediol was only detected in LB and Combo. Inoculation did not affect the concentration of starch, but starch digestibility was greater in Combo than in Control. Inoculation of HMC with Combo modified the gene expression and fermentation profile compared to Control and LB, improving starch digestibility compared to uninoculated HMC.
Collapse
Affiliation(s)
- Pascal Drouin
- Independent Researcher, Saint-Jean-sur-Richelieu, QC, Canada
| | | | - Julien Tremblay
- Energy, Mining, and Environment, National Research Council of Canada, Montréal, QC, Canada
| | | | | | | |
Collapse
|
7
|
Mishra S, van Aalst EJ, Wylie BJ, Brady LJ. Cardiolipin occupancy profiles of YidC paralogs reveal the significance of respective TM2 helix residues in determining paralog-specific phenotypes. Front Mol Biosci 2023; 10:1264454. [PMID: 37867558 PMCID: PMC10588454 DOI: 10.3389/fmolb.2023.1264454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
YidC belongs to an evolutionarily conserved family of insertases, YidC/Oxa1/Alb3, in bacteria, mitochondria, and chloroplasts, respectively. Unlike Gram-negative bacteria, Gram-positives including Streptococcus mutans harbor two paralogs of YidC. The mechanism for paralog-specific phenotypes of bacterial YidC1 versus YidC2 has been partially attributed to the differences in their cytoplasmic domains. However, we previously identified a W138R gain-of-function mutation in the YidC1 transmembrane helix 2. YidC1W138R mostly phenocopied YidC2, yet the mechanism remained unknown. Primary sequence comparison of streptococcal YidCs led us to identify and mutate the YidC1W138 analog, YidC2S152 to W/A, which resulted in a loss of YidC2- and acquisition of YidC1-like phenotype. The predicted lipid-facing side chains of YidC1W138/YidC2S152 led us to propose a role for membrane phospholipids in specific-residue dependent phenotypes of S. mutans YidC paralogs. Cardiolipin (CL), a prevalent phospholipid in the S. mutans cytoplasmic membrane during acid stress, is encoded by a single gene, cls. We show a concerted mechanism for cardiolipin and YidC2 under acid stress based on similarly increased promoter activities and similar elimination phenotypes. Using coarse grain molecular dynamics simulations with the Martini2.2 Forcefield, YidC1 and YidC2 wild-type and mutant interactions with CL were assessed in silico. We observed substantially increased CL interaction in dimeric versus monomeric proteins, and variable CL occupancy in YidC1 and YidC2 mutant constructs that mimicked characteristics of the other wild-type paralog. Hence, paralog-specific amino acid- CL interactions contribute to YidC1 and YidC2-associated phenotypes that can be exchanged by point mutation at positions 138 or 152, respectively.
Collapse
Affiliation(s)
- Surabhi Mishra
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Evan J. van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Marimuthu SCV, Murugesan J, Babkiewicz E, Maszczyk P, Sankaranarayanan M, Thangamariappan E, Rosy JC, Ram Kumar Pandian S, Kunjiappan S, Balakrishnan V, Sundar K. Pharmacoinformatics-Based Approach for Uncovering the Quorum-Quenching Activity of Phytocompounds against the Oral Pathogen, Streptococcus mutans. Molecules 2023; 28:5514. [PMID: 37513386 PMCID: PMC10383507 DOI: 10.3390/molecules28145514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Streptococcus mutans, a gram-positive oral pathogen, is the primary causative agent of dental caries. Biofilm formation, a critical characteristic of S. mutans, is regulated by quorum sensing (QS). This study aimed to utilize pharmacoinformatics techniques to screen and identify effective phytochemicals that can target specific proteins involved in the quorum sensing pathway of S. mutans. A computational approach involving homology modeling, model validation, molecular docking, and molecular dynamics (MD) simulation was employed. The 3D structures of the quorum sensing target proteins, namely SecA, SMU1784c, OppC, YidC2, CiaR, SpaR, and LepC, were modeled using SWISS-MODEL and validated using a Ramachandran plot. Metabolites from Azadirachta indica (Neem), Morinda citrifolia (Noni), and Salvadora persica (Miswak) were docked against these proteins using AutoDockTools. MD simulations were conducted to assess stable interactions between the highest-scoring ligands and the target proteins. Additionally, the ADMET properties of the ligands were evaluated using SwissADME and pkCSM tools. The results demonstrated that campesterol, meliantrol, stigmasterol, isofucosterol, and ursolic acid exhibited the strongest binding affinity for CiaR, LepC, OppC, SpaR, and Yidc2, respectively. Furthermore, citrostadienol showed the highest binding affinity for both SMU1784c and SecA. Notably, specific amino acid residues, including ASP86, ARG182, ILE179, GLU143, ASP237, PRO101, and VAL84 from CiaR, LepC, OppC, SecA, SMU1784c, SpaR, and YidC2, respectively, exhibited significant interactions with their respective ligands. While the docking study indicated favorable binding energies, the MD simulations and ADMET studies underscored the substantial binding affinity and stability of the ligands with the target proteins. However, further in vitro studies are necessary to validate the efficacy of these top hits against S. mutans.
Collapse
Affiliation(s)
| | - Jayaprabhakaran Murugesan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland
- Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani 333031, India
| | | | - Joseph Christina Rosy
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | | | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Vanavil Balakrishnan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Krishnan Sundar
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| |
Collapse
|
9
|
Zhao D, Wang J, Wang H, Zhu X, Han C, Liu A. The Transcription Regulator GntR/HutC Regulates Biofilm Formation, Motility and Stress Tolerance in Lysobacter capsici X2-3. Curr Microbiol 2023; 80:281. [PMID: 37439829 DOI: 10.1007/s00284-023-03390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Lysobacter capsici X2-3, a plant growth-promoting rhizobacteria (PGPR), was isolated from wheat rhizosphere and has inhibitory effects against a wide range of pathogens. One important characteristic of L. capsici is its ability to produce diverse antibiotics and lytic enzymes. The GntR family of transcription factors is a common transcription factor superfamily in bacteria that has fundamental roles in bacterial metabolism regulation. However, the GntR family transcription factor in Lysobacter has not been identified. In this study, to obtain an understanding of the GntR/HutC gene function in L. capsici X2-3, a random Tn5-insertion mutant library of X2-3 was constructed to select genes showing pleiotropic effects on phenotype. We identified a Tn5 mutant with an insertion in LC4356 that showed reduced biofilm levels, and sequence analysis indicated that the inserted gene encodes a GntR/HutC family transcription regulator. Furthermore, the LC4356 mutant showed reduced extracellular polysaccharide (EPS) production, diminished twitching motility and decreased survival under UV radiation and high-temperature. The RT‒qPCR results indicated that the pentose phosphate pathway-related genes G6PDH, 6PGL and PGDH were upregulated in the LC4356 mutant. Thus, since L. capsici is an efficient biocontrol agent for crop protection, our findings provide fundamental insights into GntR/HutC and will be worthwhile to improve PGPR biocontrol efficacy.
Collapse
Affiliation(s)
- Dan Zhao
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Jing Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Hong Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaoping Zhu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Chao Han
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Aixin Liu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
10
|
Zheng T, Jing M, Gong T, Yan J, Wang X, Xu M, Zhou X, Zeng J, Li Y. Regulatory mechanisms of exopolysaccharide synthesis and biofilm formation in Streptococcus mutans. J Oral Microbiol 2023; 15:2225257. [PMID: 37346997 PMCID: PMC10281425 DOI: 10.1080/20002297.2023.2225257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Background Dental caries is a chronic, multifactorial and biofilm-mediated oral bacterial infection affecting almost every age group and every geographical region. Streptococcus mutans is considered an important pathogen responsible for the initiation and development of dental caries. It produces exopolysaccharides in situ to promote the colonization of cariogenic bacteria and coordinate dental biofilm development. Objective The understanding of the regulatory mechanism of S. mutans biofilm formation can provide a theoretical basis for the prevention and treatment of caries. Design At present, an increasing number of studies have identified many regulatory systems in S. mutans that regulate biofilm formation, including second messengers (e.g. c-di-AMP, Ap4A), transcription factors (e.g. EpsR, RcrR, StsR, AhrC, FruR), two-component systems (e.g. CovR, VicR), small RNA (including sRNA0426, srn92532, and srn133489), acetylation modifications (e.g. ActG), CRISPR-associated proteins (e.g. Cas3), PTS systems (e.g. EIIAB), quorum-sensing signaling system (e.g. LuxS), enzymes (including Dex, YidC, CopZ, EzrA, lmrB, SprV, RecA, PdxR, MurI) and small-molecule metabolites. Results This review summarizes the recent progress in the molecular regulatory mechanisms of exopolysaccharides synthesis and biofilm formation in S. mutans.
Collapse
Affiliation(s)
- Ting Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiling Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mai Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Avraham M, Steinberg D, Barak T, Shalish M, Feldman M, Sionov RV. Improved Anti-Biofilm Effect against the Oral Cariogenic Streptococcus mutans by Combined Triclosan/CBD Treatment. Biomedicines 2023; 11:biomedicines11020521. [PMID: 36831057 PMCID: PMC9953046 DOI: 10.3390/biomedicines11020521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Streptococcus mutans is a Gram-positive bacterium highly associated with dental caries, and it has a strong biofilm-forming ability, especially in a sugar-rich environment. Many strategies have been undertaken to prevent dental caries by targeting these bacteria. Recently, we observed that a sustained-release varnish containing triclosan and cannabidiol (CBD) was more efficient than each compound alone in preventing biofilm formation by the fungus Candida albicans, which is frequently involved in oral infections together with S. mutans. It was therefore inquiring to study the effect of this drug combination on S. mutans. We observed that the combined treatment of triclosan and CBD had stronger anti-bacterial and anti-biofilm activity than each compound alone, thus enabling the use of lower concentrations of each drug to achieve the desired effect. The combined drug treatment led to an increase in the SYTO 9low, propidium iodide (PI)high bacterial population as analyzed by flow cytometry, indicative for bacteria with disrupted membrane. Both triclosan and CBD induced membrane hyperpolarization, although there was no additive effect on this parameter. HR-SEM images of CBD-treated bacteria show the appearance of elongated and swollen bacteria with several irregular septa structures, and upon combined treatment with triclosan, the bacteria took on a swollen ellipse and sometimes oval morphology. Increased biofilm formation was observed at sub-MIC concentrations of each compound alone, while combining the drugs at these sub-MIC concentrations, the biofilm formation was prevented. The inhibition of biofilm formation was confirmed by CV biomass staining, MTT metabolic activity, HR-SEM and live/dead together with exopolysaccharide (EPS) staining visualized by spinning disk confocal microscopy. Importantly, the concentrations required for the anti-bacterial and anti-biofilm activities toward S. mutans were non-toxic to the normal Vero epithelial cells. In conclusion, the data obtained in this study propose a beneficial role of combined triclosan/CBD treatment for potential protection against dental caries.
Collapse
Affiliation(s)
- Maayan Avraham
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Division of Biotechnology, Strauss Campus, Hadassah Academic College, Jerusalem 9514223, Israel
| | - Doron Steinberg
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Tamar Barak
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Hadassah Medical Center, Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Miriam Shalish
- Hadassah Medical Center, Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Mark Feldman
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Vogt Sionov
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Correspondence:
| |
Collapse
|
12
|
Kreth J, Merritt J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular ecological studies. FEMS Microbiol Rev 2023; 47:fuac052. [PMID: 36564013 PMCID: PMC9936263 DOI: 10.1093/femsre/fuac052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
A more comprehensive understanding of oral diseases like caries and periodontitis is dependent on an intimate understanding of the microbial ecological processes that are responsible for disease development. With this review, we provide a comprehensive overview of relevant molecular ecology techniques that have played critical roles in the current understanding of human oral biofilm development, interspecies interactions, and microbiome biogeography. The primary focus is on relevant technologies and examples available in the oral microbiology literature. However, most, if not all, of the described technologies should be readily adaptable for studies of microbiomes from other mucosal sites in the body. Therefore, this review is intended to serve as a reference guide used by microbiome researchers as they inevitably transition into molecular mechanistic studies of the many significant phenotypes observed clinically.
Collapse
Affiliation(s)
- Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, MRB433, 3181 SW Sam Jackson Park Rd., #L595, Portland, OR 97239, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, MRB433, 3181 SW Sam Jackson Park Rd., #L595, Portland, OR 97239, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
13
|
Gupta MK, Singh R, Rangan L. Phytochemical screening, antibacterial, anti-biofilm and quorum sensing inhibiting activity of Alpinia nigra leaf extract against infectious pathogen Pseudomonas aeruginosa PAO1. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
An open-source computational tool for measuring bacterial biofilm morphology and growth kinetics upon one-sided exposure to an antimicrobial source. Sci Rep 2022; 12:16125. [PMID: 36167741 PMCID: PMC9515175 DOI: 10.1038/s41598-022-20275-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Bacillus subtilis biofilms are well known for their complex and highly adaptive morphology. Indeed, their phenotypical diversity and intra-biofilm heterogeneity make this gram-positive bacterium the subject of many scientific papers on the structure of biofilms. The “robustness” of biofilms is a term often used to describe their level of susceptibility to antimicrobial agents and various mechanical and molecular inhibition/eradication methods. In this paper, we use computational analytics to quantify Bacillus subtilis morphological response to proximity to an antimicrobial source, in the form of the antiseptic chlorhexidine. Chlorhexidine droplets, placed in proximity to Bacillus subtilis macrocolonies at different distances result in morphological changes, quantified using Python-based code, which we have made publicly available. Our results quantify peripheral and inner core deformation as well as differences in cellular viability of the two regions. The results reveal that the inner core, which is often characterized by the presence of wrinkled formations in the macrocolony, is more preserved than the periphery. Furthermore, the paper describes a crescent-shaped colony morphology which occurs when the distance from the chlorhexidine source is 0.5 cm, as well as changes observed in the growth substrate of macrocolonies exposed to chlorhexidine.
Collapse
|
15
|
Chen R, Du M, Liu C. Strategies for dispersion of cariogenic biofilms: applications and mechanisms. Front Microbiol 2022; 13:981203. [PMID: 36134140 PMCID: PMC9484479 DOI: 10.3389/fmicb.2022.981203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022] Open
Abstract
Bacteria residing within biofilms are more resistant to drugs than planktonic bacteria. They can thus play a significant role in the onset of chronic infections. Dispersion of biofilms is a promising avenue for the treatment of biofilm-associated diseases, such as dental caries. In this review, we summarize strategies for dispersion of cariogenic biofilms, including biofilm environment, signaling pathways, biological therapies, and nanovehicle-based adjuvant strategies. The mechanisms behind these strategies have been discussed from the components of oral biofilm. In the future, these strategies may provide great opportunities for the clinical treatment of dental diseases. Graphical Abstract.
Collapse
|
16
|
HONGBO Z, HASEBE A, ALAM A, YUNQING L, HOSHIKA S, YAMAUTI M, SANO H. Antibacterial potential of colloidal platinum nanoparticles against Streptococcus mutans . Dent Mater J 2022; 41:368-375. [DOI: 10.4012/dmj.2021-203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhang HONGBO
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Akira HASEBE
- Department of Oral Molecular Microbiology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University
| | - Arefin ALAM
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Liu YUNQING
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Shuhei HOSHIKA
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Monica YAMAUTI
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Hidehiko SANO
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| |
Collapse
|
17
|
Biswas S, Dhaked HPS, Keightley A, Biswas I. Involvement of ClpE ATPase in Physiology of Streptococcus mutans. Microbiol Spectr 2021; 9:e0163021. [PMID: 34851151 PMCID: PMC8635124 DOI: 10.1128/spectrum.01630-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
Streptococcus mutans, a dental pathogen, harbors at least three Clp ATPases (ClpC, ClpE, and ClpX) that form complexes with ClpP protease and participate in regulated proteolysis. Among these, the function of ClpE ATPase is poorly understood. We have utilized an isogenic clpE-deficient strain derived from S. mutans UA159 and evaluated the role of ClpE in cellular physiology. We found that loss of ClpE leads to increased susceptibility against thiol stress but not to oxidative and thermal stress. Furthermore, we found that the mutant displays altered tolerance against some antibiotics and altered biofilm formation. We performed a label-free proteomic analysis by comparing the mutant with the wild-type UA159 strain under nonstressed conditions and found that ClpE modulates a relatively limited proteome in the cell compared to the proteomes modulated by ClpX and ClpP. Nevertheless, we found that ClpE deficiency leads to an overabundance of some cell wall synthesis enzymes, ribosomal proteins, and an unknown protease encoded by SMU.2153. Our proteomic data strongly support some of the stress-related phenotypes that we observed. Our study emphasizes the significance of ClpE in the physiology of S. mutans. IMPORTANCE When bacteria encounter environmental stresses, the expression of various proteins collectively known as heat shock proteins is induced. These heat shock proteins are necessary for cell survival specifically under conditions that induce protein denaturation. A subset of heat shock proteins known as the Clp proteolytic complex is required for the degradation of the misfolded proteins in the cell. The Clp proteolytic complex contains an ATPase and a protease. A specific Clp ATPase, ClpE, is uniquely present in Gram-positive bacteria, including streptococci. Here, we have studied the functional role of the ClpE protein in Streptococcus mutans, a dental pathogen. Our results suggest that ClpE is required for survival under certain antibiotic exposure and stress conditions but not others. Our results demonstrate that loss of ClpE leads to a significantly altered cellular proteome, and the analysis of those changes suggests that ClpE's functions in S. mutans are different from its functions in other Gram-positive bacteria.
Collapse
Affiliation(s)
- Saswati Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hemendra Pal Singh Dhaked
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Andrew Keightley
- Department of Ophthalmology, University of Missouri School of Medicine, Kansas City, Missouri, USA
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
18
|
Liu Z, Li L, Fang Z, Lee Y, Zhao J, Zhang H, Chen W, Li H, Lu W. Integration of Transcriptome and Metabolome Reveals the Genes and Metabolites Involved in Bifidobacterium bifidum Biofilm Formation. Int J Mol Sci 2021; 22:ijms22147596. [PMID: 34299216 PMCID: PMC8304991 DOI: 10.3390/ijms22147596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
Bifidobacterium bifidum strains, an important component of probiotic foods, can form biofilms on abiotic surfaces, leading to increased self-resistance. However, little is known about the molecular mechanism of B. bifidum biofilm formation. A time series transcriptome sequencing and untargeted metabolomics analysis of both B. bifidum biofilm and planktonic cells was performed to identify key genes and metabolites involved in biofilm formation. Two hundred thirty-five nonredundant differentially expressed genes (DEGs) (including vanY, pstS, degP, groS, infC, groL, yajC, tadB and sigA) and 219 nonredundant differentially expressed metabolites (including L-threonine, L-cystine, L-tyrosine, ascorbic acid, niacinamide, butyric acid and sphinganine) were identified. Thirteen pathways were identified during the integration of both transcriptomics and metabolomics data, including ABC transporters; quorum sensing; two-component system; oxidative phosphorylation; cysteine and methionine metabolism; glutathione metabolism; glycine, serine and threonine metabolism; and valine, leucine and isoleucine biosynthesis. The DEGs that relate to the integration pathways included asd, atpB, degP, folC, ilvE, metC, pheA, pstS, pyrE, serB, ulaE, yajC and zwf. The differentially accumulated metabolites included L-cystine, L-serine, L-threonine, L-tyrosine, methylmalonate, monodehydroascorbate, nicotinamide, orthophosphate, spermine and tocopherol. These results indicate that quorum sensing, two-component system and amino acid metabolism are essential during B. bifidum biofilm formation.
Collapse
Affiliation(s)
- Zongmin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.L.); (L.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.); (H.L.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lingzhi Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.L.); (L.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.); (H.L.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.L.); (L.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.); (H.L.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuankun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.L.); (L.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.); (H.L.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.L.); (L.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.); (H.L.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.L.); (L.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.); (H.L.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.L.); (L.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.); (H.L.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.L.); (L.L.); (Z.F.); (J.Z.); (H.Z.); (W.C.); (H.L.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-85197302
| |
Collapse
|
19
|
Protein Interactomes of Streptococcus mutans YidC1 and YidC2 Membrane Protein Insertases Suggest SRP Pathway-Independent- and -Dependent Functions, Respectively. mSphere 2021; 6:6/2/e01308-20. [PMID: 33658280 PMCID: PMC8546722 DOI: 10.1128/msphere.01308-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Virulence properties of cariogenic Streptococcus mutans depend on integral membrane proteins. Bacterial cotranslational protein trafficking involves the signal recognition particle (SRP) pathway components Ffh and FtsY, the SecYEG translocon, and YidC chaperone/insertases. Unlike Escherichia coli, S. mutans survives loss of the SRP pathway and has two yidC paralogs. This study characterized YidC1 and YidC2 interactomes to clarify respective functions alone and in concert with the SRP and/or Sec translocon. Western blots of formaldehyde cross-linked or untreated S. mutans lysates were reacted with anti-Ffh, anti-FtsY, anti-YidC1, or anti-YidC2 antibodies followed by mass spectrometry (MS) analysis of gel-shifted bands. Cross-linked lysates of wild-type and ΔyidC2 strains were reacted with anti-YidC2-coupled Dynabeads, and cocaptured proteins were identified by MS. Last, YidC1 and YidC2 C-terminal tail-captured proteins were subjected to two-dimensional (2D) difference gel electrophoresis and MS analysis. Direct interactions of putative YidC1 and YidC2 binding partners were confirmed by bacterial two-hybrid assay. Our results suggest YidC2 works preferentially with the SRP pathway, while YidC1 is preferred for SRP-independent Sec translocon-mediated translocation. YidC1 and YidC2 autonomous pathways were also apparent. Two-hybrid assay identified interactions between holotranslocon components SecYEG/YajC and YidC1. Both YidC1 and YidC2 interacted with Ffh, FtsY, and chaperones DnaK and RopA. Putative membrane-localized substrates HlyX, LemA, and SMU_591c interacted with both YidC1 and YidC2. Identification of several Rgp proteins in the YidC1 interactome suggested its involvement in bacitracin resistance, which was decreased in ΔyidC1 and SRP-deficient mutants. Collectively, YidC1 and YidC2 interactome analyses has further distinguished these paralogs in the Gram-positive bacterium S. mutans. IMPORTANCEStreptococcus mutans is a prevalent oral pathogen and major causative agent of tooth decay. Many proteins that enable this bacterium to thrive in its environmental niche and cause disease are embedded in its cytoplasmic membrane. The machinery that transports proteins into bacterial membranes differs between Gram-negative and Gram-positive organisms, an important difference being the presence of multiple YidC paralogs in Gram-positive bacteria. Characterization of a protein’s interactome can help define its physiological role. Herein, we characterized the interactomes of S. mutans YidC1 and YidC2. Results demonstrated substantial overlap between their interactomes but also revealed several differences in their direct protein binding partners. Membrane transport machinery components were identified in the context of a large network of proteins involved in replication, transcription, translation, and cell division/cell shape. This information contributes to our understanding of protein transport in Gram-positive bacteria in general and informs our understanding of S. mutans pathogenesis.
Collapse
|
20
|
Transcriptome Analysis Reveals the Genes Involved in Bifidobacterium Longum FGSZY16M3 Biofilm Formation. Microorganisms 2021; 9:microorganisms9020385. [PMID: 33672820 PMCID: PMC7917626 DOI: 10.3390/microorganisms9020385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Biofilm formation has evolved as an adaptive strategy for bacteria to cope with harsh environmental conditions. Currently, little is known about the molecular mechanisms of biofilm formation in bifidobacteria. A time series transcriptome sequencing analysis of both biofilm and planktonic cells of Bifidobacterium longum FGSZY16M3 was performed to identify candidate genes involved in biofilm formation. Protein–protein interaction network analysis of 1296 differentially expressed genes during biofilm formation yielded 15 clusters of highly interconnected nodes, indicating that genes related to the SOS response (dnaK, groS, guaB, ruvA, recA, radA, recN, recF, pstA, and sufD) associated with the early stage of biofilm formation. Genes involved in extracellular polymeric substances were upregulated (epsH, epsK, efp, frr, pheT, rfbA, rfbJ, rfbP, rpmF, secY and yidC) in the stage of biofilm maturation. To further investigate the genes related to biofilm formation, weighted gene co-expression network analysis (WGCNA) was performed with 2032 transcript genes, leading to the identification of nine WGCNA modules and 133 genes associated with response to stress, regulation of gene expression, quorum sensing, and two-component system. These results indicate that biofilm formation in B. longum is a multifactorial process, involving stress response, structural development, and regulatory processes.
Collapse
|
21
|
Gloag ES, Fabbri S, Wozniak DJ, Stoodley P. Biofilm mechanics: Implications in infection and survival. Biofilm 2020; 2:100017. [PMID: 33447803 PMCID: PMC7798440 DOI: 10.1016/j.bioflm.2019.100017] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
It has long been recognized that biofilms are viscoelastic materials, however the importance of this attribute to the survival and persistence of these microbial communities is yet to be fully realized. Here we review work, which focuses on understanding biofilm mechanics and put this knowledge in the context of biofilm survival, particularly for biofilm-associated infections. We note that biofilm viscoelasticity may be an evolved property of these communities, and that the production of multiple extracellular polymeric slime components may be a way to ensure the development of biofilms with complex viscoelastic properties. We discuss viscoelasticity facilitating biofilm survival in the context of promoting the formation of larger and stronger biofilms when exposed to shear forces, promoting fluid-like behavior of the biofilm and subsequent biofilm expansion by viscous flow, and enabling resistance to both mechanical and chemical methods of clearance. We conclude that biofilm viscoelasticity contributes to the virulence of chronic biofilm infections.
Collapse
Affiliation(s)
- Erin S. Gloag
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Department of Orthopedics, The Ohio State University, Columbus, OH, 43210, USA
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
22
|
Chen X, Daliri EBM, Kim N, Kim JR, Yoo D, Oh DH. Microbial Etiology and Prevention of Dental Caries: Exploiting Natural Products to Inhibit Cariogenic Biofilms. Pathogens 2020; 9:E569. [PMID: 32674310 PMCID: PMC7400585 DOI: 10.3390/pathogens9070569] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Dental caries is one of the most common microbe-mediated oral diseases in human beings. At present, the accepted etiology of caries is based on a four-factor theory that includes oral microorganisms, oral environment, host, and time. Excessive exposure to dietary carbohydrates leads to the accumulation of acid-producing and acid-resistant microorganisms in the mouth. Dental caries is driven by dysbiosis of the dental biofilm adherent to the enamel surface. Effective preventive methods include inhibiting the cariogenic microorganisms, treatment with an anti-biofilm agent, and sugar intake control. The goal is to reduce the total amount of biofilm or the levels of specific pathogens. Natural products could be recommended for preventing dental caries, since they may possess fewer side effects in comparison with synthetic antimicrobials. Herein, the mechanisms of oral microbial community development and functional specialization are discussed. We highlight the application of widely explored natural products in the last five years for their ability to inhibit cariogenic microorganisms.
Collapse
Affiliation(s)
- Xiuqin Chen
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (N.K.)
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (N.K.)
| | - Namhyeon Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (N.K.)
| | - Jong-Rae Kim
- Hanmi Natural Nutrition Co., LTD 44-20, Tongil-ro 1888 beon-gil, Munsan, Paju, Gyeonggi 10808, Korea;
| | - Daesang Yoo
- H-FOOD, 108-66, 390 gil, Jingun Oh Nam-Ro, Nam Yang, Ju-Shi, Gyung Gi-Do 12041, Korea;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (N.K.)
| |
Collapse
|
23
|
The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates. Proc Natl Acad Sci U S A 2019; 116:25068-25077. [PMID: 31767757 DOI: 10.1073/pnas.1909017116] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extracellular DNA (eDNA) is a critical component of the extracellular matrix of bacterial biofilms that protects the resident bacteria from environmental hazards, which includes imparting significantly greater resistance to antibiotics and host immune effectors. eDNA is organized into a lattice-like structure, stabilized by the DNABII family of proteins, known to have high affinity and specificity for Holliday junctions (HJs). Accordingly, we demonstrated that the branched eDNA structures present within the biofilms formed by NTHI in the middle ear of the chinchilla in an experimental otitis media model, and in sputum samples recovered from cystic fibrosis patients that contain multiple mixed bacterial species, possess an HJ-like configuration. Next, we showed that the prototypic Escherichia coli HJ-specific DNA-binding protein RuvA could be functionally exchanged for DNABII proteins in the stabilization of biofilms formed by 3 diverse human pathogens, uropathogenic E. coli, nontypeable Haemophilus influenzae, and Staphylococcus epidermidis Importantly, while replacement of DNABII proteins within the NTHI biofilm matrix with RuvA was shown to retain similar mechanical properties when compared to the control NTHI biofilm structure, we also demonstrated that biofilm eDNA matrices stabilized by RuvA could be subsequently undermined upon addition of the HJ resolvase complex, RuvABC, which resulted in significant biofilm disruption. Collectively, our data suggested that nature has recapitulated a functional equivalent of the HJ recombination intermediate to maintain the structural integrity of bacterial biofilms.
Collapse
|
24
|
Mishra S, Crowley PJ, Wright KR, Palmer SR, Walker AR, Datta S, Brady J. Membrane proteomic analysis reveals overlapping and independent functions of Streptococcus mutans Ffh, YidC1, and YidC2. Mol Oral Microbiol 2019; 34:131-152. [PMID: 31034136 PMCID: PMC6625898 DOI: 10.1111/omi.12261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
A comparative proteomic analysis was utilized to evaluate similarities and differences in membrane samples derived from the cariogenic bacterium Streptococcus mutans, including the wild-type strain and four mutants devoid of protein translocation machinery components, specifically ∆ffh, ∆yidC1, ∆yidC2, or ∆ffh/yidC1. The purpose of this work was to determine the extent to which the encoded proteins operate individually or in concert with one another and to identify the potential substrates of the respective pathways. Ffh is the principal protein component of the signal recognition particle (SRP), while yidC1 and yidC2 are dual paralogs encoding members of the YidC/Oxa/Alb family of membrane-localized chaperone insertases. Our results suggest that the co-translational SRP pathway works in concert with either YidC1 or YidC2 specifically, or with no preference for paralog, in the insertion of most membrane-localized substrates. A few instances were identified in which the SRP pathway alone, or one of the YidCs alone, appeared to be most relevant. These data shed light on underlying reasons for differing phenotypic consequences of ffh, yidC1 or yidC2 deletion. Our data further suggest that many membrane proteins present in a ∆yidC2 background may be non-functional, that ∆yidC1 is better able to adapt physiologically to the loss of this paralog, that shared phenotypic properties of ∆ffh and ∆yidC2 mutants can stem from impacts on different proteins, and that independent binding to ribosomal proteins is not a primary functional activity of YidC2. Lastly, genomic mutations accumulate in a ∆yidC2 background coincident with phenotypic reversion, including an apparent W138R suppressor mutation within yidC1.
Collapse
Affiliation(s)
- Surabhi Mishra
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Paula J. Crowley
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Katherine R. Wright
- Division of Biosciences College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Sara R. Palmer
- Division of Biosciences College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Alejandro R. Walker
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Susmita Datta
- Department of Biostatistics, College of Public Health & Health Professions College of Medicine, University of Florida, 2004 Mowry Rd, P.O. Box 117450, Gainesville, FL 32611
| | - Jeannine Brady
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| |
Collapse
|