1
|
Guerrero M. GG. Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a rod-shaped, Gram-positive soil bacterium that belongs to the phylum Firmicutes and the genus Bacillus. It is a spore-forming bacterium. During sporulation, it produces a wide range of crystalline proteins that are toxic to different orders of insects. Sporulation, structure assembly, and germination are essential stages in the cell cycle of B. thuringiensis. The majority of studies on these issues have focused on the model organism Bacillus subtilis, followed by Bacillus cereus and Bacillus anthracis. The machinery for sporulation and germination extrapolated to B. thuringiensis. However, in the light of recent findings concerning the role of the sporulation proteins (SPoVS), the germination receptors (Gr), and the cortical enzymes in Bt, the theory strengthened that conservation in sporulation, structure assembly, and germination programs drive the survival and success of B. thuringiensis in the environment and the insect host. In the present minireview, the latter pinpointed and reviewed.
Collapse
Affiliation(s)
- Gloria G. Guerrero M.
- Unidad Académica de Ciencias Biológicas, Laboratorio de Immunobiología, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Col. Agronomicas, Zacatecas 98066, Mexico
| |
Collapse
|
2
|
Akthar M, Shimokawa T, Wu Y, Arita T, Mizuta K, Isono Y, Maeda M, Ikeno S. Intermittent induction of LEA peptide by lactose enhances the expression of insecticidal proteins in Bacillus thuringiensis. FEBS Open Bio 2022; 12:1534-1541. [PMID: 35638574 PMCID: PMC9340782 DOI: 10.1002/2211-5463.13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Cry toxins from Bacillus thuringiensis (Bt) have been extensively applied in agriculture to substitute the use of chemical insecticides. We have previously reported the use of a coexpression system in which late embryogenesis abundant (LEA) peptides under the control of the lac promoter increase the expression of insecticidal proteins in Bt. The use of lactose to induce the expression of LEA peptides may be a desirable alternative to isopropyl β‐D‐thiogalactopyranoside, the most frequently used inducer for recombinant protein expression. In this study we investigated the use of lactose as an inducer for optimal protein expression. We observed enhanced insecticidal Cry protein expression by applying a simple technique based on intermittent induction, and then optimized concentration and the point of induction time from the 11th h to the 15th h. Our data suggest that intermittent induction of lactose might be a new technique for the enhancement of bacterial protein expression.
Collapse
Affiliation(s)
- Mahmuda Akthar
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan
| | - Tomoko Shimokawa
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan.,Kyushu Medical Co, LTD, Bioindustry Division, Hyakunen-kouen 1-1 Kurume, Fukuoka, Japan
| | - Yinghan Wu
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan
| | - Taichi Arita
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan
| | - Kazuhiro Mizuta
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan
| | - Yuria Isono
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan
| | - Minoru Maeda
- Kyushu Medical Co, LTD, Bioindustry Division, Hyakunen-kouen 1-1 Kurume, Fukuoka, Japan
| | - Shinya Ikeno
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
3
|
An operator-based expression toolkit for Bacillus subtilis enables fine-tuning of gene expression and biosynthetic pathway regulation. Proc Natl Acad Sci U S A 2022; 119:e2119980119. [PMID: 35263224 PMCID: PMC8931375 DOI: 10.1073/pnas.2119980119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A gene regulatory system is an important tool for the engineering of biosynthetic pathways of organisms. Here, we report the development of an inducible-ON/OFF regulatory system using a malO operator as a key element. We identified and modulated sequence, position, numbers, and spacing distance of malO operators, generating a series of activating or repressive promoters with tunable strength. The stringency and robustness are both guaranteed in this system, a maximal induction factor of 790-fold was achieved, and nine proteins from different organisms were expressed with high yields. This system can be utilized as a gene switch, promoter enhancer, or metabolic valve in synthetic biology applications. This operator-based engineering strategy can be employed for developing similar regulatory systems in different microorganisms. Genetic elements are key components of metabolic engineering and synthetic biological applications, allowing the development of organisms as biosensors and for manufacturing valuable chemicals and protein products. In contrast to the gram-negative model bacterium Escherichia coli, the gram-positive model bacterium Bacillus subtilis lacks such elements with precise and flexible characteristics, which is a great barrier to employing B. subtilis for laboratory studies and industrial applications. Here, we report the development of a malO-based genetic toolbox that is derived from the operator box in the malA promoter, enabling gene regulation via compatible “ON” and “OFF” switches. This engineered toolbox combines promoter-based mutagenesis and host-specific metabolic engineering of transactivation components upon maltose induction to achieve stringent, robust, and homogeneous gene regulation in B. subtilis. We further demonstrate the synthetic biological applications of the toolbox by utilizing these genetic elements as a gene switch, a promoter enhancer, and an ON-OFF dual-control device in biosynthetic pathway optimization. Collectively, this regulatory system provides a comprehensive genetic toolbox for controlling the expression of genes in biosynthetic pathways and regulatory networks to optimize the production of valuable chemicals and proteins in B. subtilis.
Collapse
|
4
|
Identification and Functional Characterization of Two Homologous SpoVS Proteins Involved in Sporulation of Bacillus thuringiensis. Microbiol Spectr 2021; 9:e0088121. [PMID: 34612699 PMCID: PMC8510167 DOI: 10.1128/spectrum.00881-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Sporulation is an important part of the life cycle of Bacillus thuringiensis and the basis for the production of parasporal crystals. This study identifies and characterizes two homologous spoVS genes (spoVS1 and spoVS2) in B. thuringiensis, both of whose expression is dependent on the σH factor. The disruption of spoVS1 and spoVS2 resulted in defective B. thuringiensis sporulation. Similar to Bacillus subtilis, B. thuringiensis strain HD(ΔspoVS1) mutants showed delayed formation of the polar septa, decreased sporulation efficiency, and blocked spore release. Different from B. subtilis, B. thuringiensis HD(ΔspoVS1) mutants had disporic septa and failed to complete engulfment in some cells. Moreover, HD(ΔspoVS2) mutants had delayed spore release. The effect of spoVS1 deletion on polar septum delay and sporulation efficiency could be compensated by spoVS2. β-Galactosidase activity analysis showed that the expression of pro-sigE and spoIIE decreased to different degrees in the HD(ΔspoVS1) and HD(ΔspoVS2) mutants. The different effects of the two mutations on the expression of sporulation genes led to decreases in Cry1Ac production of different levels. IMPORTANCE There is only one spoVS gene in B. subtilis, and its effects on sporulation have been reported. In this study, two homologous spoVS genes were found and identified in B. thuringiensis. The different effects on sporulation and parasporal crystal protein production in B. thuringiensis and their relationship were investigated. We found that these two homologous spoVS genes are highly conserved in the Bacillus cereus group, and therefore, the functional characterization of SpoVS is helpful to better understand the sporulation processes of members of the Bacillus cereus group.
Collapse
|
5
|
Magnus N, Weise T, Piechulla B. Carbon Catabolite Repression Regulates the Production of the Unique Volatile Sodorifen of Serratia plymuthica 4Rx13. Front Microbiol 2017; 8:2522. [PMID: 29312220 PMCID: PMC5742105 DOI: 10.3389/fmicb.2017.02522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are capable of synthesizing a plethora of secondary metabolites including the long-overlooked volatile organic compounds. Little knowledge has been accumulated regarding the regulation of the biosynthesis of such mVOCs. The emission of the unique compound sodorifen of Serratia plymuthica isolates was significantly reduced in minimal medium with glucose, while succinate elevated sodorifen release. The hypothesis of carbon catabolite repression (CCR) acting as a major control entity on the synthesis of mVOCs was proven by genetic evidence. Central components of the typical CCR of Gram-negative bacteria such as the adenylate cyclase (CYA), the cAMP binding receptor protein (CRP), and the catabolite responsive element (CRE) were removed by insertional mutagenesis. CYA, CRP, CRE1 mutants revealed a lower sodorifen release. Moreover, the emission potential of other S. plymuthica isolates was also evaluated.
Collapse
Affiliation(s)
- Nancy Magnus
- Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Teresa Weise
- EuroImmun, Medizinische Labordiagnostik AG, Lübeck, Germany
| | - Birgit Piechulla
- Institute for Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Gupta M, Nayyar N, Chawla M, Sitaraman R, Bhatnagar R, Banerjee N. The Chromosomal parDE2 Toxin-Antitoxin System of Mycobacterium tuberculosis H37Rv: Genetic and Functional Characterization. Front Microbiol 2016; 7:886. [PMID: 27379032 PMCID: PMC4906023 DOI: 10.3389/fmicb.2016.00886] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/25/2016] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis H37Rv escapes host-generated stresses by entering a dormant persistent state. Activation of toxin-antitoxin modules is one of the mechanisms known to trigger such a state with low metabolic activity. M. tuberculosis harbors a large number of TA systems mostly located within discernible genomic islands. We have investigated the parDE2 operon of M. tuberculosis H37Rv encoding MParE2 toxin and MParD2 antitoxin proteins. The parDE2 locus was transcriptionally active from growth phase till late stationary phase in M. tuberculosis. A functional promoter located upstream of parD2 GTG start-site was identified by 5'-RACE and lacZ reporter assay. The MParD2 protein transcriptionally regulated the P parDE2 promoter by interacting through Arg16 and Ser15 residues located in the N-terminus. In Escherichia coli, ectopic expression of MParE2 inhibited growth in early stages, with a drastic reduction in colony forming units. Live-dead analysis revealed that the reduction was not due to cell death alone but due to formation of viable but non-culturable cells (VBNCs) also. The toxic activity of the protein, identified in the C-terminal residues Glu98 and Arg102, was neutralized by the antitoxin MParD2, both in vivo and in vitro. MParE2 inhibited mycobacterial DNA gyrase and interacted with the GyrB subunit without affecting its ATPase activity. Introduction of parE2 gene in the heterologous M. smegmatis host prevented growth and colony formation by the transformed cells. An M. smegmatis strain containing the parDE2 operon also switched to a non-culturable phenotype in response to oxidative stress. Loss in colony-forming ability of a major part of the MParE2 expressing cells suggests its potential role in dormancy, a cellular strategy for adaptation to environmental stresses. Our study has laid the foundation for future investigations to explore the physiological significance of parDE2 operon in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Biotechnology, TERI University, NewDelhi, India; Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru UniversityNew Delhi, India
| | - Nishtha Nayyar
- Institute of Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences Bangalore, India
| | - Meenakshi Chawla
- Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| | | | - Rakesh Bhatnagar
- Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| | - Nirupama Banerjee
- Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| |
Collapse
|
7
|
Tripathi D, Kant S, Garg R, Bhatnagar R. Low expression level of glnA1 accounts for absence of cell wall associated poly-l-glutamate/glutamine in Mycobacterium smegmatis. Biochem Biophys Res Commun 2015; 458:240-5. [PMID: 25637529 DOI: 10.1016/j.bbrc.2015.01.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 01/17/2015] [Indexed: 11/28/2022]
Abstract
Cell wall associated poly-l-glutamine (PLG) layer synthesis is directly linked to glutamine synthetase (GS) encoded by glnA1 in tuberculosis causing mycobacteria. Avirulent Mycobacterium smegmatis (M. smegmatis) despite of having a glnA1 homolog lacks cell wall associated PLG layer. In the present study, we complemented a ΔglnA1 mutant of Mycobacterium bovis (lack PLG in cell wall) with M. smegmatis glnA1 cloned under M. bovis glnA1 promoter. PLG synthesis was restored in the cell wall of complemented strain. The complemented strain also showed increased resistance to physical stresses such as lysozyme, SDS and increased survival in THP-1 macrophages in comparison to the knockout. Further, in β-galactosidase reporter assay M. smegmatis glnA1 promoter showed ten times less activity as compared to M. bovis glnA1 promoter. GACT-8-11 → TGAC mutations in the M. smegmatis glnA1 promoter restored its activity by 60% as compared to the activity of glnA1 promoter of M. bovis. This mutation also showed increased GS expression and produced cell wall associated PLG in M. smegmatis. The results of this study demonstrate that glnA1 promoter of M. smegmatis accounts for low expression level of GS and apparently responsible for absence of cell wall associated PLG layer.
Collapse
Affiliation(s)
- Deeksha Tripathi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sashi Kant
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Rajni Garg
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
8
|
Deng C, Peng Q, Song F, Lereclus D. Regulation of cry gene expression in Bacillus thuringiensis. Toxins (Basel) 2014; 6:2194-209. [PMID: 25055802 PMCID: PMC4113751 DOI: 10.3390/toxins6072194] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 02/02/2023] Open
Abstract
Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcriptional, metabolic and post-translational levels.
Collapse
Affiliation(s)
- Chao Deng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Didier Lereclus
- INRA, UMR1319 Micalis, La Minière, Guyancourt 78280, France.
| |
Collapse
|