1
|
Computational modeling of unphosphorylated CtrA: Cori binding in the Caulobacter cell cycle. iScience 2021; 24:103413. [PMID: 34901785 PMCID: PMC8640480 DOI: 10.1016/j.isci.2021.103413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/17/2021] [Accepted: 11/05/2021] [Indexed: 02/04/2023] Open
Abstract
In the alphaproteobacterium, Caulobacter crescentus, phosphorylated CtrA (CtrA∼P), a master regulatory protein, binds directly to the chromosome origin (Cori) to inhibit DNA replication. Using a mathematical model of CtrA binding at Cori site [d], we provide computational evidence that CtrAU can displace CtrA∼P from Cori at the G1-S transition. Investigation of this interaction within a detailed model of the C. crescentus cell cycle suggests that CckA phosphatase may clear Cori of CtrA∼P by altering the [CtrAU]/[CtrA∼P] ratio rather than by completely depleting CtrA∼P. Model analysis reveals that the mechanism allows for a speedier transition into S phase, stabilizes the timing of chromosome replication under fluctuating rates of CtrA proteolysis, and may contribute to the viability of numerous mutant strains. Overall, these results suggest that CtrAU enhances the robustness of chromosome replication. More generally, our proposed regulation of CtrA:Cori dynamics may represent a novel motif for molecular signaling in cell physiology.
Collapse
|
2
|
Omnus DJ, Fink MJ, Szwedo K, Jonas K. The Lon protease temporally restricts polar cell differentiation events during the Caulobacter cell cycle. eLife 2021; 10:73875. [PMID: 34693909 PMCID: PMC8545394 DOI: 10.7554/elife.73875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 01/16/2023] Open
Abstract
The highly conserved protease Lon has important regulatory and protein quality control functions in cells from the three domains of life. Despite many years of research on Lon, only a few specific protein substrates are known in most organisms. Here, we used a quantitative proteomics approach to identify novel substrates of Lon in the dimorphic bacterium Caulobacter crescentus. We focused our study on proteins involved in polar cell differentiation and investigated the developmental regulator StaR and the flagella hook length regulator FliK as specific Lon substrates in detail. We show that Lon recognizes these proteins at their C-termini, and that Lon-dependent degradation ensures their temporally restricted accumulation in the cell cycle phase when their function is needed. Disruption of this precise temporal regulation of StaR and FliK levels in a Δlon mutant contributes to defects in stalk biogenesis and motility, respectively, revealing a critical role of Lon in coordinating developmental processes with cell cycle progression. Our work underscores the importance of Lon in the regulation of complex temporally controlled processes by adjusting the concentrations of critical regulatory proteins. Furthermore, this study includes the first characterization of FliK in C. crescentus and uncovers a dual role of the C-terminal amino acids of FliK in protein function and degradation.
Collapse
Affiliation(s)
- Deike J Omnus
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Matthias J Fink
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Klaudia Szwedo
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Menikpurage IP, Woo K, Mera PE. Transcriptional Activity of the Bacterial Replication Initiator DnaA. Front Microbiol 2021; 12:662317. [PMID: 34140937 PMCID: PMC8203912 DOI: 10.3389/fmicb.2021.662317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
In bacteria, DnaA is the most conserved DNA replication initiator protein. DnaA is a DNA binding protein that is part of the AAA+ ATPase family. In addition to initiating chromosome replication, DnaA can also function as a transcription factor either as an activator or repressor. The first gene identified to be regulated by DnaA at the transcriptional levels was dnaA. DnaA has been shown to regulate genes involved in a variety of cellular events including those that trigger sporulation, DNA repair, and cell cycle regulation. DnaA's dual functions (replication initiator and transcription factor) is a potential mechanism for DnaA to temporally coordinate diverse cellular events with the onset of chromosome replication. This strategy of using chromosome replication initiator proteins as regulators of gene expression has also been observed in archaea and eukaryotes. In this mini review, we focus on our current understanding of DnaA's transcriptional activity in various bacterial species.
Collapse
Affiliation(s)
- Inoka P Menikpurage
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kristin Woo
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Paola E Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
4
|
When the metabolism meets the cell cycle in bacteria. Curr Opin Microbiol 2021; 60:104-113. [PMID: 33677348 DOI: 10.1016/j.mib.2021.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Nutrients availability is the sinews of the war for single microbial cells, driving growth and cell cycle progression. Therefore, coordinating cellular processes with nutrients availability is crucial, not only to survive upon famine or fluctuating conditions but also to rapidly thrive and colonize plentiful environments. While metabolism is traditionally seen as a set of chemical reactions taking place in cells to extract energy and produce building blocks from available nutrients, numerous connections between metabolic pathways and cell cycle phases have been documented. The few regulatory systems described at the molecular levels show that regulation is mediated either by a second messenger molecule or by a metabolite and/or a metabolic enzyme. In the latter case, a secondary moonlighting regulatory function evolved independently of the primary catalytic function of the enzyme. In this review, we summarize our current understanding of the complex cross-talks between metabolism and cell cycle in bacteria.
Collapse
|
5
|
Gross MH, Konieczny I. Polyphosphate induces the proteolysis of ADP-bound fraction of initiator to inhibit DNA replication initiation upon stress in Escherichia coli. Nucleic Acids Res 2020; 48:5457-5466. [PMID: 32282902 PMCID: PMC7261185 DOI: 10.1093/nar/gkaa217] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/29/2022] Open
Abstract
The decision whether to replicate DNA is crucial for cell survival, not only to proliferate in favorable conditions, but also to adopt to environmental changes. When a bacteria encounters stress, e.g. starvation, it launches the stringent response, to arrest cell proliferation and to promote survival. During the stringent response a vast amount of polymer composed of phosphate residues, i.e. inorganic polyphosphate (PolyP) is synthesized from ATP. Despite extensive research on PolyP, we still lack the full understanding of the PolyP role during stress. It is also elusive what is the mechanism of DNA replication initiation arrest in starved Escherichia coli cells. Here, we show that during stringent response PolyP activates Lon protease to degrade selectively the replication initiaton protein DnaA bound to ADP, but not ATP. In contrast to DnaA-ADP, the DnaA-ATP does not interact with PolyP, but binds to dnaA promoter to block dnaA transcription. The systems controlling the ratio of nucleotide states of DnaA continue to convert DnaA-ATP to DnaA-ADP, which is proteolysed by Lon, thereby resulting in the DNA replication initiation arrest. The uncovered regulatory mechanism interlocks the PolyP-dependent protease activation with the ATP/ADP cycle of dual-functioning protein essential for bacterial cell proliferation.
Collapse
Affiliation(s)
- Marta H Gross
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Igor Konieczny
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
6
|
Frandi A, Collier J. HdaB: a novel and conserved DnaA-related protein that targets the RIDA process to stimulate replication initiation. Nucleic Acids Res 2020; 48:2412-2423. [PMID: 31875223 PMCID: PMC7049699 DOI: 10.1093/nar/gkz1193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/03/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Exquisite control of the DnaA initiator is critical to ensure that bacteria initiate chromosome replication in a cell cycle-coordinated manner. In many bacteria, the DnaA-related and replisome-associated Hda/HdaA protein interacts with DnaA to trigger the Regulatory Inactivation of DnaA (RIDA) and prevent over-initiation events. In the Caulobacter crescentus Alphaproteobacterium, the RIDA process also targets DnaA for its rapid proteolysis by Lon. The impact of the RIDA process on adaptation of bacteria to changing environments remains unexplored. Here, we identify a novel and conserved DnaA-related protein, named HdaB, and show that homologs from three different Alphaproteobacteria can inhibit the RIDA process, leading to over-initiation and cell death when expressed in actively growing C. crescentus cells. We further show that HdaB interacts with HdaA in vivo, most likely titrating HdaA away from DnaA. Strikingly, we find that HdaB accumulates mainly during stationary phase and that it shortens the lag phase upon exit from stationary phase. Altogether, these findings suggest that expression of hdaB during stationary phase prepares cells to restart the replication of their chromosome as soon as conditions improve, a situation often met by free-living or facultative intracellular Alphaproteobacteria.
Collapse
Affiliation(s)
- Antonio Frandi
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
7
|
Nowaczyk-Cieszewska M, Zyla-Uklejewicz D, Noszka M, Jaworski P, Mielke T, Zawilak-Pawlik AM. The role of Helicobacter pylori DnaA domain I in orisome assembly on a bipartite origin of chromosome replication. Mol Microbiol 2019; 113:338-355. [PMID: 31715026 DOI: 10.1111/mmi.14423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022]
Abstract
The main roles of the DnaA protein are to bind the origin of chromosome replication (oriC), to unwind DNA and to provide a hub for the step-wise assembly of a replisome. DnaA is composed of four domains, with each playing a distinct functional role in the orisome assembly. Out of the four domains, the role of domain I is the least understood and appears to be the most species-specific. To better characterise Helicobacter pylori DnaA domain I, we have constructed a series of DnaA variants and studied their interactions with H. pylori bipartite oriC. We show that domain I is responsible for the stabilisation and organisation of DnaA-oriC complexes and provides cooperativity in DnaA-DNA interactions. Domain I mediates cross-interactions between oriC subcomplexes, which indicates that domain I is important for long-distance DnaA interactions and is essential for orisosme assembly on bipartite origins. HobA, which interacts with domain I, increases the DnaA binding to bipartite oriC; however, it does not stimulate but rather inhibits DNA unwinding. This suggests that HobA helps DnaA to bind oriC, but an unknown factor triggers DNA unwinding. Together, our results indicate that domain I self-interaction is important for the DnaA assembly on bipartite H. pylori oriC.
Collapse
Affiliation(s)
- Malgorzata Nowaczyk-Cieszewska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Dorota Zyla-Uklejewicz
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Mateusz Noszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Pawel Jaworski
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anna Magdalena Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Jiang X, Zhang L, An J, Wang M, Teng M, Guo Q, Li X. Caulobacter crescentus β sliding clamp employs a noncanonical regulatory model of DNA replication. FEBS J 2019; 287:2292-2311. [PMID: 31725950 DOI: 10.1111/febs.15138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/23/2019] [Accepted: 11/12/2019] [Indexed: 01/19/2023]
Abstract
The eubacterial β sliding clamp (DnaN) plays a crucial role in DNA metabolism through direct interactions with DNA, polymerases, and a variety of protein factors. A canonical protein-DnaN interaction has been identified in Escherichia coli and some other species, during which protein partners are tethered into the conserved canonical hydrophobic crevice of DnaN via the consensus β-binding motif. Caulobacter crescentus is an excellent research model for use in the investigation of DNA replication and cell-cycle regulation due to its unique asymmetric cell division pattern with restricted replication initiation; however, little is known about the specific features of C. crescentus DnaN (CcDnaN). Here, we report a significant divergence in the association of CcDnaN with proteins based on docking analysis and crystal structures that show that the β-binding motifs of its protein partners bind a novel pocket instead of the canonical site. Pull-down and isothermal titration calorimetry results revealed that mutations within the novel pocket disrupt protein-CcDnaN interactions. It was also shown by replication and regulatory inactivation of DnaA assays that mediation of protein interaction by the novel pocket is closely related to the performance of CcDnaN during replication and the DnaN-mediated regulation process. Moreover, assessments of clamp competition showed that DNA does not compete with protein partners when binding to the novel pocket. Overall, our structural and biochemical analyses provide strong evidence that CcDnaN employs a noncanonical protein association pattern.
Collapse
Affiliation(s)
- Xuguang Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.,Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, China
| | - Linjuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.,Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, China
| | - Jiancheng An
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Mingxing Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.,Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.,Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, China
| | - Qiong Guo
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.,Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.,Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
9
|
Ozaki S. Regulation of replication initiation: lessons from Caulobacter crescentus. Genes Genet Syst 2019; 94:183-196. [PMID: 31495806 DOI: 10.1266/ggs.19-00011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chromosome replication is a fundamental process in all domains of life. To accurately transmit genetic material to offspring, the initiation of chromosome replication is tightly regulated to ensure that it occurs only once in each cell division cycle. In the model bacterium Caulobacter crescentus, the CtrA response regulator inhibits the origin of replication at the pre-replication stage. Inactivation of CtrA permits the universal DnaA initiator to form an initiation complex at the origin, leading to replication initiation. Subsequently, the initiation complex is inactivated to prevent extra initiation. Whereas DNA replication occurs periodically in exponentially growing cells, replication initiation is blocked under various stress conditions to halt cell cycle progression until the normal condition is restored or the cells adapt to the stress. Thus, regulating the initiation complex plays an important role in not only driving cell cycle progression, but also maintaining cell integrity under stress. Multiple regulatory signaling pathways controlling CtrA and DnaA have been identified and recent studies have advanced our knowledge of the underlying mechanistic and molecular processes. This review focuses on how bacterial cells control replication initiation, highlighting the latest findings that have emerged from studies in C. crescentus.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
10
|
Leonard AC, Rao P, Kadam RP, Grimwade JE. Changing Perspectives on the Role of DnaA-ATP in Orisome Function and Timing Regulation. Front Microbiol 2019; 10:2009. [PMID: 31555240 PMCID: PMC6727663 DOI: 10.3389/fmicb.2019.02009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/16/2019] [Indexed: 01/20/2023] Open
Abstract
Bacteria, like all cells, must precisely duplicate their genomes before they divide. Regulation of this critical process focuses on forming a pre-replicative nucleoprotein complex, termed the orisome. Orisomes perform two essential mechanical tasks that configure the unique chromosomal replication origin, oriC to start a new round of chromosome replication: (1) unwinding origin DNA and (2) assisting with loading of the replicative DNA helicase on exposed single strands. In Escherichia coli, a necessary orisome component is the ATP-bound form of the bacterial initiator protein, DnaA. DnaA-ATP differs from DnaA-ADP in its ability to oligomerize into helical filaments, and in its ability to access a subset of low affinity recognition sites in the E. coli replication origin. The helical filaments have been proposed to play a role in both of the key mechanical tasks, but recent studies raise new questions about whether they are mandatory for orisome activity. It was recently shown that a version of E. coli oriC (oriCallADP), whose multiple low affinity DnaA recognition sites bind DnaA-ATP and DnaA-ADP similarly, was fully occupied and unwound by DnaA-ADP in vitro, and in vivo suppressed the lethality of DnaA mutants defective in ATP binding and ATP-specific oligomerization. However, despite their functional equivalency, orisomes assembled on oriCallADP were unable to trigger chromosome replication at the correct cell cycle time and displayed a hyper-initiation phenotype. Here we present a new perspective on DnaA-ATP, and suggest that in E. coli, DnaA-ATP is not required for mechanical functions, but rather is needed for site recognition and occupation, so that initiation timing is coupled to DnaA-ATP levels. We also discuss how other bacterial types may utilize DnaA-ATP and DnaA-ADP, and whether the high diversity of replication origins in the bacterial world reflects different regulatory strategies for how DnaA-ATP is used to control orisome assembly.
Collapse
Affiliation(s)
- Alan C Leonard
- Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| | - Prassanna Rao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Rohit P Kadam
- Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| | - Julia E Grimwade
- Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
11
|
Reyes-Lamothe R, Sherratt DJ. The bacterial cell cycle, chromosome inheritance and cell growth. Nat Rev Microbiol 2019; 17:467-478. [DOI: 10.1038/s41579-019-0212-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Multilayered control of chromosome replication in Caulobacter crescentus. Biochem Soc Trans 2019; 47:187-196. [PMID: 30626709 PMCID: PMC6393856 DOI: 10.1042/bst20180460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022]
Abstract
The environmental Alphaproteobacterium Caulobacter crescentus is a classical model to study the regulation of the bacterial cell cycle. It divides asymmetrically, giving a stalked cell that immediately enters S phase and a swarmer cell that stays in the G1 phase until it differentiates into a stalked cell. Its genome consists in a single circular chromosome whose replication is tightly regulated so that it happens only in stalked cells and only once per cell cycle. Imbalances in chromosomal copy numbers are the most often highly deleterious, if not lethal. This review highlights recent discoveries on pathways that control chromosome replication when Caulobacter is exposed to optimal or less optimal growth conditions. Most of these pathways target two proteins that bind directly onto the chromosomal origin: the highly conserved DnaA initiator of DNA replication and the CtrA response regulator that is found in most Alphaproteobacteria The concerted inactivation and proteolysis of CtrA during the swarmer-to-stalked cell transition license cells to enter S phase, while a replisome-associated Regulated Inactivation and proteolysis of DnaA (RIDA) process ensures that initiation starts only once per cell cycle. When Caulobacter is stressed, it turns on control systems that delay the G1-to-S phase transition or the elongation of DNA replication, most probably increasing its fitness and adaptation capacities.
Collapse
|
13
|
Liu J, Zeinert R, Francis L, Chien P. Lon recognition of the replication initiator DnaA requires a bipartite degron. Mol Microbiol 2018; 111:176-186. [PMID: 30288816 DOI: 10.1111/mmi.14146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2018] [Indexed: 12/17/2022]
Abstract
DnaA initiates chromosome replication in bacteria. In Caulobacter crescentus, the Lon protease degrades DnaA to coordinate replication with nutrient availability and to halt the cell cycle during acute stress. Here, we characterize the mechanism of DnaA recognition by Lon. We find that the folded state of DnaA appears crucial for its degradation, in contrast to the well-known role of Lon in degrading misfolded proteins. We fail to identify a single degradation motif (degron) sufficient for DnaA degradation, rather we show that both the ATPase domain and a species-specific N-terminal motif are important for productive Lon degradation of full-length DnaA. Mutations in either of these determinants disrupt DnaA degradation in vitro and in vivo. However, analysis of truncation products reveals that appending other extensions to the ATPase domain is sufficient to trigger degradation, suggesting plasticity in Lon recognition. Our final working model is that Lon engages DnaA through at least two elements, one of which anchors DnaA to Lon and the other acting as an initiation site for degradation.
Collapse
Affiliation(s)
- Jing Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA, 01002, USA.,Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA, 01002, USA
| | - Rilee Zeinert
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA, 01002, USA.,Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA, 01002, USA
| | - Laura Francis
- Department of Biology, University of Massachusetts Amherst, MA, 01002, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA, 01002, USA.,Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA, 01002, USA
| |
Collapse
|
14
|
Felletti M, Omnus DJ, Jonas K. Regulation of the replication initiator DnaA in Caulobacter crescentus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:697-705. [PMID: 29382570 DOI: 10.1016/j.bbagrm.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/10/2018] [Indexed: 11/18/2022]
Abstract
The decision to initiate DNA replication is a critical step in the cell cycle of all organisms. In nearly all bacteria, replication initiation requires the activity of the conserved replication initiation protein DnaA. Due to its central role in cell cycle progression, DnaA activity must be precisely regulated. This review summarizes the current state of DnaA regulation in the asymmetrically dividing α-proteobacterium Caulobacter crescentus, an important model for bacterial cell cycle studies. Mechanisms will be discussed that regulate DnaA activity and abundance under optimal conditions and in coordination with the asymmetric Caulobacter cell cycle. Furthermore, we highlight recent findings of how regulated DnaA synthesis and degradation collaborate to adjust DnaA abundance under stress conditions. The mechanisms described provide important examples of how DNA replication is regulated in an α-proteobacterium and thus represent an important starting point for the study of DNA replication in many other bacteria. This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier.
Collapse
Affiliation(s)
- Michele Felletti
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Deike J Omnus
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
15
|
Grimwade JE, Leonard AC. Targeting the Bacterial Orisome in the Search for New Antibiotics. Front Microbiol 2017; 8:2352. [PMID: 29230207 PMCID: PMC5712111 DOI: 10.3389/fmicb.2017.02352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/15/2017] [Indexed: 01/25/2023] Open
Abstract
There is an urgent need for new antibiotics to combat drug resistant bacteria. Existing antibiotics act on only a small number of proteins and pathways in bacterial cells, and it seems logical that expansion of the target set could lead to development of novel antimicrobial agents. One essential process, not yet exploited for antibiotic discovery, is the initiation stage of chromosome replication, mediated by the bacterial orisome. In all bacteria, orisomes assemble when the initiator protein, DnaA, as well as accessory proteins, bind to a DNA scaffold called the origin of replication (oriC). Orisomes perform the essential tasks of unwinding oriC and loading the replicative helicase, and orisome assembly is tightly regulated in the cell cycle to ensure chromosome replication begins only once. Only a few bacterial orisomes have been fully characterized, and while this lack of information complicates identification of all features that could be targeted, examination of assembly stages and orisome regulatory mechanisms may provide direction for some effective inhibitory strategies. In this perspective, we review current knowledge about orisome assembly and regulation, and identify potential targets that, when inhibited pharmacologically, would prevent bacterial chromosome replication.
Collapse
Affiliation(s)
- Julia E Grimwade
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
16
|
Zawilak-Pawlik A, Nowaczyk M, Zakrzewska-Czerwińska J. The Role of the N-Terminal Domains of Bacterial Initiator DnaA in the Assembly and Regulation of the Bacterial Replication Initiation Complex. Genes (Basel) 2017; 8:genes8050136. [PMID: 28489024 PMCID: PMC5448010 DOI: 10.3390/genes8050136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022] Open
Abstract
The primary role of the bacterial protein DnaA is to initiate chromosomal replication. The DnaA protein binds to DNA at the origin of chromosomal replication (oriC) and assembles into a filament that unwinds double-stranded DNA. Through interaction with various other proteins, DnaA also controls the frequency and/or timing of chromosomal replication at the initiation step. Escherichia coli DnaA also recruits DnaB helicase, which is present in unwound single-stranded DNA and in turn recruits other protein machinery for replication. Additionally, DnaA regulates the expression of certain genes in E. coli and a few other species. Acting as a multifunctional factor, DnaA is composed of four domains that have distinct, mutually dependent roles. For example, C-terminal domain IV interacts with double-stranded DnaA boxes. Domain III drives ATP-dependent oligomerization, allowing the protein to form a filament that unwinds DNA and subsequently binds to and stabilizes single-stranded DNA in the initial replication bubble; this domain also interacts with multiple proteins that control oligomerization. Domain II constitutes a flexible linker between C-terminal domains III–IV and N-terminal domain I, which mediates intermolecular interactions between DnaA and binds to other proteins that affect DnaA activity and/or formation of the initiation complex. Of these four domains, the role of the N-terminus (domains I–II) in the assembly of the initiation complex is the least understood and appears to be the most species-dependent region of the protein. Thus, in this review, we focus on the function of the N-terminus of DnaA in orisome formation and the regulation of its activity in the initiation complex in different bacteria.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wroclaw 53-114, Poland.
| | - Małgorzata Nowaczyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wroclaw 53-114, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wroclaw 53-114, Poland.
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, Wrocław 50-383, Poland.
| |
Collapse
|
17
|
Hallez R, Delaby M, Sanselicio S, Viollier PH. Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nat Rev Microbiol 2017; 15:137-148. [PMID: 28138140 DOI: 10.1038/nrmicro.2016.183] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The class Alphaproteobacteria includes Gram-negative free-living, symbiotic and obligate intracellular bacteria, as well as important plant, animal and human pathogens. Recent work has established the key antagonistic roles that phosphorylated guanosines, cyclic-di-GMP (c-di-GMP) and the alarmones guanosine tetraphosphate and guanosine pentaphosphate (collectively referred to as (p)ppGpp), have in the regulation of the cell cycle in these bacteria. In this Review, we discuss the insights that have been gained into the regulation of the initiation of DNA replication and cytokinesis by these second messengers, with a particular focus on the cell cycle of Caulobacter crescentus. We explore how the fluctuating levels of c-di-GMP and (p)ppGpp during the progression of the cell cycle and under conditions of stress control the synthesis and proteolysis of key regulators of the cell cycle. As these signals also promote bacterial interactions with host cells, the enzymes that control (p)ppGpp and c-di-GMP are attractive antibacterial targets.
Collapse
Affiliation(s)
- Régis Hallez
- Bacterial Cell cycle and Development (BCcD), Unité de recherche en biologie des micro-organismes (URBM), University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Marie Delaby
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefano Sanselicio
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland.,Present address: Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
18
|
Zawilak-Pawlik A, Zakrzewska-Czerwińska J. Recent Advances in Helicobacter pylori Replication: Possible Implications in Adaptation to a Pathogenic Lifestyle and Perspectives for Drug Design. Curr Top Microbiol Immunol 2017; 400:73-103. [PMID: 28124150 DOI: 10.1007/978-3-319-50520-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA replication is an important step in the life cycle of every cell that ensures the continuous flow of genetic information from one generation to the next. In all organisms, chromosome replication must be coordinated with overall cell growth. Helicobacter pylori growth strongly depends on its interaction with the host, particularly with the gastric epithelium. Moreover, H. pylori actively searches for an optimal microniche within a stomach, and it has been shown that not every microniche equally supports growth of this bacterium. We postulate that besides nutrients, H. pylori senses different, unknown signals, which presumably also affect chromosome replication to maintain H. pylori propagation at optimal ratio allowing H. pylori to establish a chronic, lifelong infection. Thus, H. pylori chromosome replication and particularly the regulation of this process might be considered important for bacterial pathogenesis. Here, we summarize our current knowledge of chromosome and plasmid replication in H. pylori and discuss the mechanisms responsible for regulating this key cellular process. The results of extensive studies conducted thus far allow us to propose common and unique traits in H. pylori chromosome replication. Interestingly, the repertoire of proteins involved in replication in H. pylori is significantly different to that in E. coli, strongly suggesting that novel factors are engaged in H. pylori chromosome replication and could represent attractive drug targets.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Ul. Joliot-Curie 14A, 50-383, Wrocław, Poland
| |
Collapse
|
19
|
Random versus Cell Cycle-Regulated Replication Initiation in Bacteria: Insights from Studying Vibrio cholerae Chromosome 2. Microbiol Mol Biol Rev 2016; 81:81/1/e00033-16. [PMID: 27903655 DOI: 10.1128/mmbr.00033-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial chromosomes initiate replication at a fixed time in the cell cycle, whereas there is generally no particular time for plasmid replication initiation or chromosomal replication initiation from integrated plasmids. In bacteria with divided genomes, the replication system of one of the chromosomes typically resembles that of bacteria with undivided genomes, whereas the remaining chromosomes have plasmid-like replication systems. For example, in Vibrio cholerae, a bacterium with two chromosomes (chromosome 1 [Chr1] and Chr2), the Chr1 system resembles that of the Escherichia coli chromosome, and the Chr2 system resembles that of iteron-based plasmids. However, Chr2 still initiates replication at a fixed time in the cell cycle and thus offers an opportunity to understand the molecular basis for the difference between random and cell cycle-regulated modes of replication. Here we review studies of replication control in Chr2 and compare it to those of plasmids and chromosomes. We argue that although the Chr2 control mechanisms in many ways are reminiscent of those of plasmids, they also appear to combine more regulatory features than are found on a typical plasmid, including some that are more typical of chromosomes. One of the regulatory mechanisms is especially novel, the coordinated timing of replication initiation of Chr1 and Chr2, providing the first example of communication between chromosomes for replication initiation.
Collapse
|
20
|
Liu J, Francis LI, Jonas K, Laub MT, Chien P. ClpAP is an auxiliary protease for DnaA degradation in Caulobacter crescentus. Mol Microbiol 2016; 102:1075-1085. [PMID: 27667502 DOI: 10.1111/mmi.13537] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 11/28/2022]
Abstract
The Clp family of proteases is responsible for controlling both stress responses and normal growth. In Caulobacter crescentus, the ClpXP protease is essential and drives cell cycle progression through adaptor-mediated degradation. By contrast, the physiological role for the ClpAP protease is less well understood with only minor growth defects previously reported for ΔclpA cells. Here, we show that ClpAP plays an important role in controlling chromosome content and cell fitness during extended growth. Cells lacking ClpA accumulate aberrant numbers of chromosomes upon prolonged growth suggesting a defect in replication control. Levels of the replication initiator DnaA are elevated in ΔclpA cells and degradation of DnaA is more rapid in cells lacking the ClpA inhibitor ClpS. Consistent with this observation, ClpAP degrades DnaA in vitro while ClpS inhibits this degradation. In cells lacking Lon, the protease previously shown to degrade DnaA in Caulobacter, ClpA overexpression rescues defects in fitness and restores degradation of DnaA. Finally, we show that cells lacking ClpA are particularly sensitive to inappropriate increases in DnaA activity. Our work demonstrates an unexpected effect of ClpAP in directly regulating replication through degradation of DnaA and expands the functional role of ClpAP in Caulobacter.
Collapse
Affiliation(s)
- Jing Liu
- Molecular and Cellular Biology Graduate Program, Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Laura I Francis
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Kristina Jonas
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael T Laub
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter Chien
- Molecular and Cellular Biology Graduate Program, Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
21
|
Karlowicz A, Wegrzyn K, Dubiel A, Ropelewska M, Konieczny I. Proteolysis in plasmid DNA stable maintenance in bacterial cells. Plasmid 2016; 86:7-13. [PMID: 27252071 DOI: 10.1016/j.plasmid.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/12/2023]
Abstract
Plasmids, as extrachromosomal genetic elements, need to work out strategies that promote independent replication and stable maintenance in host bacterial cells. Their maintenance depends on constant formation and dissociation of nucleoprotein complexes formed on plasmid DNA. Plasmid replication initiation proteins (Rep) form specific complexes on direct repeats (iterons) localized within the plasmid replication origin. Formation of these complexes along with a strict control of Rep protein cellular concentration, quaternary structure, and activity, is essential for plasmid maintenance. Another important mechanism for maintenance of low-copy-number plasmids are the toxin-antitoxin (TA) post-segregational killing (psk) systems, which prevent plasmid loss from the bacterial cell population. In this mini review we discuss the importance of nucleoprotein complex processing by energy-dependent host proteases in plasmid DNA replication and plasmid type II toxin-antitoxin psk systems, and draw attention to the elusive role of DNA in this process.
Collapse
Affiliation(s)
- Anna Karlowicz
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Andrzej Dubiel
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Malgorzata Ropelewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
22
|
Cell cycle control in Alphaproteobacteria. Curr Opin Microbiol 2016; 30:107-113. [PMID: 26871482 DOI: 10.1016/j.mib.2016.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/22/2022]
Abstract
Alphaproteobacteria include many medically and environmentally important organisms. Despite the diversity of their niches and lifestyles, from free-living to host-associated, they usually rely on very similar mechanisms to control their cell cycles. Studies on Caulobacter crescentus still lay the foundation for understanding the molecular details of pathways regulating DNA replication and cell division and coordinating these two processes with other events of the cell cycle. This review highlights recent discoveries on the regulation and the mode of action of conserved global regulators and small molecules like c-di-GMP and (p)ppGpp, which play key roles in cell cycle control. It also describes several newly identified mechanisms that modulate cell cycle progression in response to stresses or environmental conditions.
Collapse
|