1
|
Fromm SA, O'Connor KM, Purdy M, Bhatt PR, Loughran G, Atkins JF, Jomaa A, Mattei S. The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services. Nat Commun 2023; 14:1095. [PMID: 36841832 PMCID: PMC9968351 DOI: 10.1038/s41467-023-36742-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Our understanding of protein synthesis has been conceptualised around the structure and function of the bacterial ribosome. This complex macromolecular machine is the target of important antimicrobial drugs, an integral line of defence against infectious diseases. Here, we describe how open access to cryo-electron microscopy facilities combined with bespoke user support enabled structural determination of the translating ribosome from Escherichia coli at 1.55 Å resolution. The obtained structures allow for direct determination of the rRNA sequence to identify ribosome polymorphism sites in the E. coli strain used in this study and enable interpretation of the ribosomal active and peripheral sites at unprecedented resolution. This includes scarcely populated chimeric hybrid states of the ribosome engaged in several tRNA translocation steps resolved at ~2 Å resolution. The current map not only improves our understanding of protein synthesis but also allows for more precise structure-based drug design of antibiotics to tackle rising bacterial resistance.
Collapse
Affiliation(s)
- Simon A Fromm
- EMBL Imaging Centre, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Kate M O'Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - Michael Purdy
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland. .,MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Ahmad Jomaa
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, USA. .,Centre for Cell and Membrane Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Simone Mattei
- EMBL Imaging Centre, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany. .,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
2
|
Naganathan A, Culver GM. Interdependency and Redundancy Add Complexity and Resilience to Biogenesis of Bacterial Ribosomes. Annu Rev Microbiol 2022; 76:193-210. [PMID: 35609945 DOI: 10.1146/annurev-micro-041020-121806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pace and efficiency of ribosomal subunit production directly impact the fitness of bacteria. Biogenesis demands more than just the union of ribosomal components, including RNA and proteins, to form this functional ribonucleoprotein particle. Extra-ribosomal protein factors play a fundamental role in the efficiency and efficacy of ribosomal subunit biogenesis. A paucity of data on intermediate steps, multiple and overlapping pathways, and the puzzling number of functions that extra-ribosomal proteins appear to play in vivo make unraveling the formation of this macromolecular assemblage difficult. In this review, we outline with examples the multinodal landscape of factor-assisted mechanisms that influence ribosome synthesis in bacteria. We discuss in detail late-stage events that mediate correct ribosome formation and the transition to translation initiation and thereby ensure high-fidelity protein synthesis.
Collapse
Affiliation(s)
- Anusha Naganathan
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| |
Collapse
|
3
|
Naganathan A, Keltz R, Lyon H, Culver GM. Uncovering a delicate balance between endonuclease RNase III and ribosomal protein S15 in E. coli ribosome assembly. Biochimie 2021; 191:104-117. [PMID: 34508826 DOI: 10.1016/j.biochi.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
The bacterial ribosomal protein S15 is located in the platform, a functional region of the 30S ribosomal subunit. While S15 is critical for in vitro formation of E. coli small subunits (SSUs), it is dispensable for in vivo biogenesis and growth. In this work, a novel synergistic interaction between rpsO, the gene that encodes S15, and rnc (the gene that encodes RNase III), was uncovered in E. coli. RNase III catalyzes processing of precursor ribosomal RNA (rRNA) transcripts and thus is involved in functional ribosome subunit maturation. Strains lacking S15 (ΔrpsO), RNase III (Δrnc) or both genes were examined to understand the relationship between these two factors and the impact of this double deletion on rRNA processing and SSU maturation. The double deletion of rpsO and rnc partially alleviates the observed cold sensitivity of ΔrpsO alone. A novel 16S rRNA precursor (17S∗ rRNA) that is detected in free 30S subunits of Δrnc is incorporated in 70S-like ribosomes in the double deletion. The stable accumulation of 17S∗ rRNA suggests that timing of processing events is closely coupled with SSU formation events in vivo. The double deletion has a suppressive effect on the cell elongation phenotype of ΔrpsO. The alteration of the phenotypes associated with S15 loss, due to the absence of RNase III, indicates that pre-rRNA processing and improvement of growth, relative to that observed for ΔrpsO, are connected. The characterization of the functional link between the two factors illustrates that there are redundancies and compensatory pathways for SSU maturation.
Collapse
Affiliation(s)
| | - Roxanne Keltz
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Hiram Lyon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, NY, USA; Center for RNA Biology, University of Rochester, Rochester, NY, USA; Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
4
|
Majumdar S, Acharya A, Tomar SK, Prakash B. Disrupting domain-domain interactions is indispensable for EngA-ribosome interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:289-303. [PMID: 27979707 DOI: 10.1016/j.bbapap.2016.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/06/2016] [Accepted: 12/10/2016] [Indexed: 11/24/2022]
Abstract
EngA consists of two tandem GTPase-domains-GD1 and GD2-followed by a KH-domain. EngA was considered to be a 50S assembly factor since it was shown to bind 50S and its deletion leads to the accumulation of immature 45S ribosomal subunits. Subsequently, we demonstrated an additional ribosome bound state of EngA bound to 50S, 30S, and 70S. While the former (50S binding) is achieved upon GTP binding at both GD1 and GD2, the latter is formed upon GTP hydrolysis at GD1, which is believed to trigger a large conformational change in the protein. The present study brings out two key aspects of EngA regulation: First, that distinctly stabilized GD1-KH interfaces allows EngA to exist in different ribosome bound states, and second is the importance of these states to ribosome assembly. Our analyses suggest that distinct inter-domain (GD-KH) interfaces are stabilized by interactions arising from unique sets of motifs, conserved across EngA homologues, and seem to be mechanistically linked to GTP/GDP binding. By experimentally measuring binding affinities for several interface mutants, we show that disrupting the interface interactions is necessary to realize EngA-ribosome binding. These findings are also supported by a recent cryo-EM structure of EngA bound to 50S, wherein the GD1-KH interface is completely disrupted leading to an 'extended' or 'open state' of the protein. Overall, it appears that the transition of EngA from a 'closed state' with GD1-KH forming a tight interface, to an 'open state' mediates interaction with ribosomal subunits.
Collapse
Affiliation(s)
- Soneya Majumdar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Abhishek Acharya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sushil Kumar Tomar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Balaji Prakash
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
5
|
Zhang X, Chen M, Liang Y, Xing Y, Yang L, Chen M, Comstock JC, Li Y, Yang L. Morphological and Physiological Responses of Sugarcane to Leifsonia xyli subsp. xyli Infection. PLANT DISEASE 2016; 100:2499-2506. [PMID: 30686166 DOI: 10.1094/pdis-10-15-1134-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ratoon stunt, caused by the bacterium Leifsonia xyli subsp. xyli, is one of the major sugarcane diseases worldwide. The objectives of this study were to determine the variation in morphology and DNA sequence of L. xyli subsp. xyli strains isolated in China, to compare the changes that occurred in vascular ultrastructure and levels of endogenous hormone abscisic acid (ABA), auxins (indoleacetic acid [IAA]), and gibberellic acids (GA3) in sugarcane stalks. Experiments were also conducted with two sugarcane varieties, 'ROC22' and 'Badila', in the greenhouse to understand the cytological and physiological mechanisms of L. xyli subsp. xyli-induced growth stunting. There were three treatments in the experiments: (i) healthy plants (L. xyli subsp. xyli-free plants), (ii) infected plants (L. xyli subsp. xyli-infected seedcanes treated with hot water, and (iii) infected plants (healthy seedcanes dipped in L. xyli subsp. xyli cell culture). The results showed that sequence coverage of a locally isolated strain, LxxGXBZ01, was 99.99%, and the average nucleotide identity between LxxGXBZ01 and the other well-characterized Brazilian isolate LxxCTCB07 was 93.61%. LxxGXBZ01 occurred in different sizes and shapes in xylem vessels of infected plants. In comparison with healthy stalks, the secondary walls of the vessel element in L. xyli subsp. xyli-infected stalks were degraded with uneven wall thickness, deformities, sticky substances, and electron-dense substances accumulated inside the cells. Compared with the healthy and hot-water treatments, the contents of IAA and GA3 were significantly lower, while that of ABA was significantly higher in the L. xyli subsp. xyli-infected stalks. The information obtained in this study will expand our understanding of ratoon stunt etiology and cytological and physiological bases of the disease manifestation.
Collapse
Affiliation(s)
- Xiaoqiu Zhang
- Agricultural College, State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi University, Nanning 530005, China
| | - Minghui Chen
- Agricultural College, State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi University, Nanning 530005, China
| | - Yongjian Liang
- Agricultural College, State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi University, Nanning 530005, China
| | - Yongxiu Xing
- Agricultural College, State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi University, Nanning 530005, China
| | - Litao Yang
- Agricultural College, State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi University, Nanning 530005, China
| | - Minghui Chen
- Ping Ding Shan University, Pingdingshan, Henan 46700, China
| | | | - Yangrui Li
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences; Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Litao Yang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences; Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
6
|
Heterologous Expression of Der Homologs in an Escherichia coli der Mutant and Their Functional Complementation. J Bacteriol 2016; 198:2284-96. [PMID: 27297882 DOI: 10.1128/jb.00384-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The unique Escherichia coli GTPase Der (double Era-like GTPase), which contains tandemly repeated GTP-binding domains, has been shown to play an essential role in 50S ribosomal subunit biogenesis. The depletion of Der results in the accumulation of precursors of 50S ribosomal subunits that are structurally unstable at low Mg(2+) concentrations. Der homologs are ubiquitously found in eubacteria. Conversely, very few are conserved in eukaryotes, and none is conserved in archaea. In the present study, to verify their conserved role in bacterial 50S ribosomal subunit biogenesis, we cloned Der homologs from two gammaproteobacteria, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium; two pathogenic bacteria, Staphylococcus aureus and Neisseria gonorrhoeae; and the extremophile Deinococcus radiodurans and then evaluated whether they could functionally complement the E. coli der-null phenotype. Only K. pneumoniae and S Typhimurium Der proteins enabled the E. coli der-null strain to grow under nonpermissive conditions. Sucrose density gradient experiments revealed that the expression of K. pneumoniae and S Typhimurium Der proteins rescued the structural instability of 50S ribosomal subunits, which was caused by E. coli Der depletion. To determine what allows their complementation, we constructed Der chimeras. We found that only Der chimeras harboring both the linker and long C-terminal regions could reverse the growth defects of the der-null strain. Our findings suggest that ubiquitously conserved essential GTPase Der is involved in 50S ribosomal subunit biosynthesis in various bacteria and that the linker and C-terminal regions may participate in species-specific recognition or interaction with the 50S ribosomal subunit. IMPORTANCE In Escherichia coli, Der (double Era-like GTPase) is an essential GTPase that is important for the production of mature 50S ribosomal subunits. However, to date, its precise role in ribosome biogenesis has not been clarified. In this study, we used five Der homologs from gammaproteobacteria, pathogenic bacteria, and an extremophile to elucidate their conserved function in 50S ribosomal subunit biogenesis. Among them, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium Der homologs implicated the participation of Der in ribosome assembly in E. coli Our results show that the linker and C-terminal regions of Der homologs are correlated with its functional complementation in E. coli der mutants, suggesting that they are involved in species-specific recognition or interaction with 50S ribosomal subunits.
Collapse
|
7
|
Functional Importance of Mobile Ribosomal Proteins. BIOMED RESEARCH INTERNATIONAL 2015; 2015:539238. [PMID: 26457300 PMCID: PMC4592705 DOI: 10.1155/2015/539238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/12/2015] [Indexed: 01/07/2023]
Abstract
Although the dynamic motions and peptidyl transferase activity seem to be embedded in the rRNAs, the ribosome contains more than 50 ribosomal proteins (r-proteins), whose functions remain largely elusive. Also, the precise forms of some of these r-proteins, as being part of the ribosome, are not structurally solved due to their high flexibility, which hinders the efforts in their functional elucidation. Owing to recent advances in cryo-electron microscopy, single-molecule techniques, and theoretical modeling, much has been learned about the dynamics of these r-proteins. Surprisingly, allosteric regulations have been found in between spatially separated components as distant as those in the opposite sides of the ribosome. Here, we focus on the functional roles and intricate regulations of the mobile L1 and L12 stalks and L9 and S1 proteins. Conformational flexibility also enables versatile functions for r-proteins beyond translation. The arrangement of r-proteins may be under evolutionary pressure that fine-tunes mass distributions for optimal structural dynamics and catalytic activity of the ribosome.
Collapse
|
8
|
Naganathan A, Wood MP, Moore SD. The large ribosomal subunit protein L9 enables the growth of EF-P deficient cells and enhances small subunit maturation. PLoS One 2015; 10:e0120060. [PMID: 25879934 PMCID: PMC4399890 DOI: 10.1371/journal.pone.0120060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/03/2015] [Indexed: 01/08/2023] Open
Abstract
The loss of the large ribosomal protein L9 causes a reduction in translation fidelity by an unknown mechanism. To identify pathways affected by L9, we identified mutants of E. coli that require L9 for fitness. In a prior study, we characterized L9-dependent mutations in the essential GTPase Der (EngA). Here, we describe a second class of L9-dependent mutations that either compromise or inactivate elongation factor P (EF-P, eIF5A in eukaryotes). Without L9, Δefp cells are practically inviable. Cell fractionation studies revealed that, in both the Der and EF-P mutant cases, L9's activity reduces immature 16S rRNA in 30S particles and partially restores the abundance of monosomes. Inspired by these findings, we discovered that L9 also enhances 16S maturation in wild-type cells. Surprisingly, although the amount of immature 16S in 30S particles was found to be elevated in ΔrplI cells, the amount in polysomes was low and inversely correlated with the immature 16S abundance. These findings provide an explanation for the observed fitness increases afforded by L9 in these mutants and reveal particular physiological conditions in which L9 becomes critical. Additionally, L9 may affect the partitioning of small subunits containing immature 16S rRNA.
Collapse
Affiliation(s)
- Anusha Naganathan
- The Burnett School of Biomedical Sciences, College of Medicine, The University of Central Florida, Orlando, FL, 32816, United States of America
| | - Matthew P. Wood
- Seattle Biomed, 307 Westlake Ave N, Suite 500, Seattle, WA, 98109, United States of America
- Department of Global Health, University of Washington, 1510 N.E. San Juan Road, Seattle, WA, 98195, United States of America
| | - Sean D. Moore
- The Burnett School of Biomedical Sciences, College of Medicine, The University of Central Florida, Orlando, FL, 32816, United States of America
- * E-mail:
| |
Collapse
|
9
|
Zhang X, Yan K, Zhang Y, Li N, Ma C, Li Z, Zhang Y, Feng B, Liu J, Sun Y, Xu Y, Lei J, Gao N. Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly. Nucleic Acids Res 2014; 42:13430-9. [PMID: 25389271 PMCID: PMC4245960 DOI: 10.1093/nar/gku1135] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Many ribosome-interacting GTPases, with proposed functions in ribosome biogenesis, are also implicated in the cellular regulatory coupling between ribosome assembly process and various growth control pathways. EngA is an essential GTPase in bacteria, and intriguingly, it contains two consecutive GTPase domains (GD), being one-of-a-kind among all known GTPases. EngA is required for the 50S subunit maturation. However, its molecular role remains elusive. Here, we present the structure of EngA bound to the 50S subunit. Our data show that EngA binds to the peptidyl transferase center (PTC) and induces dramatic conformational changes on the 50S subunit, which virtually returns the 50S subunit to a state similar to that of the late-stage 50S assembly intermediates. Very interestingly, our data show that the two GDs exhibit a pseudo-two-fold symmetry in the 50S-bound conformation. Our results indicate that EngA recognizes certain forms of the 50S assembly intermediates, and likely facilitates the conformational maturation of the PTC of the 23S rRNA in a direct manner. Furthermore, in a broad context, our data also suggest that EngA might be a sensor of the cellular GTP/GDP ratio, endowed with multiple conformational states, in response to fluctuations in cellular nucleotide pool, to facilitate and regulate ribosome assembly.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaige Yan
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yixiao Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ningning Li
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chengying Ma
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhifei Li
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Boya Feng
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Liu
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yadong Sun
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanji Xu
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|