1
|
Maggio F, Rossi C, Serio A, Chaves-Lopez C, Casaccia M, Paparella A. Anti-biofilm mechanisms of action of essential oils by targeting genes involved in quorum sensing, motility, adhesion, and virulence: A review. Int J Food Microbiol 2025; 426:110874. [PMID: 39244811 DOI: 10.1016/j.ijfoodmicro.2024.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Biofilms are a critical factor for food safety, causing important economic losses. Among the novel strategies for controlling biofilms, essential oils (EOs) can represent an environmentally friendly approach, able to act both on early and mature stages of biofilm formation. This review reports the anti-biofilm mechanisms of action of EOs against five pathogenic bacterial species known for their biofilm-forming ability. These mechanisms include disturbing the expression of genes related to quorum sensing (QS), motility, adhesion, and virulence. Biofilms and QS are interconnected processes, and EOs interfere with the communication system (e.g. regulating the expression of agrBDCA, luxR, luxS, and pqsA genes), thus influencing biofilm formation. In addition, QS is an important mechanism that regulates gene expression related to bacterial survival, virulence, and pathogenicity. Similarly, EOs also influence the expression of many virulence genes. Moreover, EOs exert their effects modulating the genes associated with bacterial adhesion and motility, for example those involved in curli (csg), fimbriae (fim, lpf), and flagella (fla, fli, flh, and mot) production, as well as the ica genes responsible for synthetizing polysaccharide intercellular adhesin. This review provides a comprehensive framework on the topic for a better understanding of EOs biofilm mechanisms of action.
Collapse
Affiliation(s)
- Francesca Maggio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Chiara Rossi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Clemencia Chaves-Lopez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Manila Casaccia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| |
Collapse
|
2
|
Combination immunotherapy with two attenuated Listeria strains carrying shuffled HPV-16 E6E7 protein causes tumor regression in a mouse tumor model. Sci Rep 2021; 11:13404. [PMID: 34183739 PMCID: PMC8238941 DOI: 10.1038/s41598-021-92875-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer continues to impose a heavy burden worldwide, and human papilloma virus (HPV) infection, especially persistent infection with type 16 (HPV-16), is known to be the primary etiological factor. Therapeutic vaccines are urgently needed because prophylactic vaccines are ineffective at clearing pre-existing HPV infection. Here, two recombinant Listeria strains (LMΔ-E6E7 & LIΔ-E6E7) with deletions of the actA and plcB genes, expressing the shuffled HPV-16 E6E7 protein were constructed. The strains were delivered into the spleen and liver by intravenous inoculation, induced antigen-specific cellular immunity and were eliminated completely from the internal organs several days later. Intravenously treating with single strain for three times, or with both strains alternately for three times significantly reduced the tumor size and prolonged the survival time of model mice. Combination immunotherapy with two strains seemed more effective than immunotherapy with single strain in that it enhanced the survival of the mice, and the LMΔ-E6E7-prime-LIΔ-E6E7-boost strategy showed significant stronger efficacy than single treatment with the LIΔ-E6E7 strain. The antitumor effect of this treatment might due to its ability to increase the proportion of CD8+ T cells and reduce the proportion of T regulatory cells (Tregs) in the intratumoral milieu. This is the first report regarding Listeria ivanovii-based therapeutic vaccine candidate against cervical cancer. Most importantly we are the first to confirm that combination therapy with two different recombinant Listeria strains has a more satisfactory antitumor effect than administration of a single strain. Thus, we propose a novel prime-boost treatment strategy.
Collapse
|
3
|
Merla C, Corbella M, Batisti Biffignandi G, Gaiarsa S, Castelli M, Andreoli G, Fabbi M, Mariani B, Sassera D, Marone P, Cambieri P. Epidemiological Characterization of Listeria monocytogenes Infections in Pavia Province in 2017 Reveals the Presence of Multiple Concurrently Circulating Strains. Foodborne Pathog Dis 2021; 18:267-275. [PMID: 33493413 DOI: 10.1089/fpd.2020.2849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Consumption of raw food, especially smoked fish, meat, soft cheeses, and vegetables, contaminated with Listeria monocytogenes can cause listeriosis, which can be invasive in pregnant women, elderly, and immunocompromised and diabetic patients. Through June to November of 2017, 11 patients developed invasive listeriosis in a small area of northern Italy. In the same period, 15 food samples (ready-to-eat seafood, raw vegetables, cheese samples, and salami) collected during the routine screening programs in the same area were found to be contaminated with L. monocytogenes. We characterized the isolates to determine the relatedness of L. monocytogenes strains isolated from patients and isolates from food samples and food-processing plants. Whole genome sequencing analysis showed that multiple L. monocytogenes strains were circulating in the area and no association was found between clinical and food isolates.
Collapse
Affiliation(s)
- Cristina Merla
- UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Scuola di Specializzazione in Microbiologia e Virologia, Università degli Studi di Pavia, Pavia, Italy
| | - Marta Corbella
- UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gherard Batisti Biffignandi
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| | - Stefano Gaiarsa
- UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Castelli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani," Università di Pavia, Pavia, Italy.,Dipartimento di Bioscienze, Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Università degli Studi di Milano, Milan, Italy
| | - Giuseppina Andreoli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini," Sezione Diagnostica di Pavia, Pavia, Italy
| | - Massimo Fabbi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini," Sezione Diagnostica di Pavia, Pavia, Italy
| | - Bianca Mariani
- UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Davide Sassera
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani," Università di Pavia, Pavia, Italy
| | - Piero Marone
- UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Cambieri
- UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
4
|
Liu SJ, Tian SC, Zhang YW, Tang T, Zeng JM, Fan XY, Wang C. Heterologous Boosting With Listeria-Based Recombinant Strains in BCG-Primed Mice Improved Protection Against Pulmonary Mycobacterial Infection. Front Immunol 2020; 11:2036. [PMID: 32983151 PMCID: PMC7492678 DOI: 10.3389/fimmu.2020.02036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
While Baccillus Calmette-Guerin (BCG) is used worldwide, tuberculosis (TB) is still a global concern due to the poor efficacy of BCG. Novel vaccine candidates are therefore urgently required. In this study, two attenuated recombinant Listeria strains, LMΔ-msv and LIΔ-msv were constructed by deletion of actA and plcB and expression of a fusion protein consisting of T cell epitopes from four Mycobacterium tuberculosis (Mtb) antigens (Rv2460c, Rv2660c, Rv3875, and Rv3804c). The safety and immunogenicity of the two recombinant strains were evaluated in C57BL/6J mice. After intravenous immunization individually, both recombinant strains entered liver and spleen but eventually were eliminated from these organs after several days. Simultaneously, they induced antigen-specific cell-mediated immunity, indicating that the recombinant Listeria strains were immunogenic and safe in vivo. LMΔ-msv immunization induced stronger cellular immune responses than LIΔ-msv immunization, and when boosted with LIΔ-msv, antigen-specific IFN-γ CD8+ T cell responses were notably magnified. Furthermore, we evaluated the protection conferred by the vaccine candidates against mycobacterial infection via challenging the mice with 1 × 107 CFU of BCG. Especially, we tested the feasibility of application of them as heterologous BCG supplement vaccine by immunization of mice with BCG firstly, and boosted with LMΔ-msv and LIΔ-msv sequentially before challenging. Combination immune strategy (LMΔ-msv prime-LIΔ-msv boost) conferred comparable protection efficacy as BCG alone. More importantly, BCG-vaccinated mice acquired stronger resistance to Mycobacterial challenge when boosted with LMΔ-msv and LIΔ-msv sequentially. Our results inferred that heterologous immunization with Listeria-based recombinant strains boosted BCG-primed protection against pulmonary mycobacterial infection.
Collapse
Affiliation(s)
- Si-Jing Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Si-Cheng Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yun-Wen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Ju-Mei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Tang T, Wang C, Pu Q, Peng J, Liu S, Ren C, Jiang M, Tian Z. Vaccination of Mice with Listeria ivanovii Expressing the Truncated M Protein of Porcine Reproductive and Respiratory Syndrome Virus Induces both Antigen-Specific CD4+ and CD8+ T Cell-Mediated Immunity. J Mol Microbiol Biotechnol 2020; 29:74-82. [PMID: 32289779 DOI: 10.1159/000506686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/18/2020] [Indexed: 11/19/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), a serious disease of swine caused by the PRRS virus (PRRSV), had a severe economic impact worldwide. As commonly used PRRS vaccines, the attenuated or inactivated vaccines, provide unsatisfactory immune protection, a new PRRS vaccine is urgently needed. In this study, a part of the PRRSV ORF6 gene (from 253 to 519 bp) encoding the hydrophilic domain of PRRSV M protein was integrated into two Listeria strains via homologous recombination to generate two PRRS vaccine candidates, namely LI-M' and LM-ΔactAplcB-M'. Both candidate vaccines showed similar growth rate as their parent strains in culture media, but presented different bacterial loads in target organs. As the integrated heterogenous gene was not expressed, LM-ΔactAplcB-M' was excluded from the immunological test. In a mouse model, LI-M' provoked both CD4+ and CD8+ T cell-mediated immunity. In addition, LI-M' boosting dramatically enhanced CD8+ T cell-mediated immunity without affecting the response intensity of CD4+ T cell-mediated immunity. All of these data suggest that LI-M' is a promising PRRS vaccine candidate.
Collapse
Affiliation(s)
- Tian Tang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China,
| | - Chuan Wang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Qikang Pu
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Sijing Liu
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Chenyan Ren
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Mingjuan Jiang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Jarvis NA, O'Bryan CA, Ricke SC, Johnson MG, Crandall PG. A review of minimal and defined media for growth of Listeria monocytogenes. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Regulatory sequences of the porcine THBD gene facilitate endothelial-specific expression of bioactive human thrombomodulin in single- and multitransgenic pigs. Transplantation 2014; 97:138-47. [PMID: 24150517 DOI: 10.1097/tp.0b013e3182a95cbc] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Among other mismatches between human and pig, incompatibilities in the blood coagulation systems hamper the xenotransplantation of vascularized organs. The provision of the porcine endothelium with human thrombomodulin (hTM) is hypothesized to overcome the impaired activation of protein C by a heterodimer consisting of human thrombin and porcine TM. METHODS We evaluated regulatory regions of the THBD gene, optimized vectors for transgene expression, and generated hTM expressing pigs by somatic cell nuclear transfer. Genetically modified pigs were characterized at the molecular, cellular, histological, and physiological levels. RESULTS A 7.6-kb fragment containing the entire upstream region of the porcine THBD gene was found to drive a high expression in a porcine endothelial cell line and was therefore used to control hTM expression in transgenic pigs. The abundance of hTM was restricted to the endothelium, according to the predicted pattern, and the transgene expression of hTM was stably inherited to the offspring. When endothelial cells from pigs carrying the hTM transgene--either alone or in combination with an aGalTKO and a transgene encoding the human CD46-were tested in a coagulation assay with human whole blood, the clotting time was increased three- to four-fold (P<0.001) compared to wild-type and aGalTKO/CD46 transgenic endothelial cells. This, for the first time, demonstrated the anticoagulant properties of hTM on porcine endothelial cells in a human whole blood assay. CONCLUSIONS The biological efficacy of hTM suggests that the (multi-)transgenic donor pigs described here have the potential to overcome coagulation incompatibilities in pig-to-primate xenotransplantation.
Collapse
|
8
|
Deshayes C, Bielecka MK, Cain RJ, Scortti M, de las Heras A, Pietras Z, Luisi BF, Núñez Miguel R, Vázquez-Boland JA. Allosteric mutants show that PrfA activation is dispensable for vacuole escape but required for efficient spread and Listeria survival in vivo. Mol Microbiol 2012; 85:461-77. [PMID: 22646689 PMCID: PMC3443378 DOI: 10.1111/j.1365-2958.2012.08121.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transcriptional regulator PrfA controls key virulence determinants of the facultative intracellular pathogen Listeria monocytogenes. PrfA-dependent gene expression is strongly induced within host cells. While the basis of this activation is unknown, the structural homology of PrfA with the cAMP receptor protein (Crp) and the finding of constitutively activated PrfA* mutants suggests it may involve ligand-induced allostery. Here, we report the identification of a solvent-accessible cavity within the PrfA N-terminal domain that may accommodate an activating ligand. The pocket occupies a similar position to the cAMP binding site in Crp but lacks the cyclic nucleotide-anchoring motif and has its entrance on the opposite side of the β-barrel. Site-directed mutations in this pocket impaired intracellular PrfA-dependent gene activation without causing extensive structural/functional alterations to PrfA. Two substitutions, L48F and Y63W, almost completely abolished intracellular virulence gene induction and thus displayed the expected phenotype for allosteric activation-deficient PrfA mutations. Neither PrfA(allo) substitution affected vacuole escape and initial intracellular growth of L. monocytogenes in epithelial cells and macrophages but caused defective cell-to-cell spread and strong attenuation in mice. Our data support the hypothesis that PrfA is allosterically activated during intracellular infection and identify the probable binding site for the effector ligand. They also indicate that PrfA allosteric activation is not required for early intracellular survival but is essential for full Listeria virulence and colonization of host tissues.
Collapse
Affiliation(s)
- Caroline Deshayes
- Centres for Infectious Diseases and Immunity, Infection & Evolution, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Luo Z, Li Z, Chen K, Liu R, Li X, Cao H, Zheng SJ. Engagement of heterogeneous nuclear ribonucleoprotein M with listeriolysin O induces type I interferon expression and restricts Listeria monocytogenes growth in host cells. Immunobiology 2012; 217:972-81. [PMID: 22317749 DOI: 10.1016/j.imbio.2012.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 11/25/2011] [Accepted: 01/06/2012] [Indexed: 10/14/2022]
Abstract
Listeriolysin O (LLO) is a key virulence factor secreted by the Gram-positive, facultative intracellular pathogen Listeria monocytogenes (LM). Its role in host cell response is still not very clear. Using pull-down assay, mass spectrometry analysis and immunoprecipitation approaches, we found that LLO interacted with heterogeneous nuclear ribonucleoprotein M (hnRNPM), a member of RNA splicing complex apparatus, and the binding domain of LLO for hnRNP M was located between amino acids 26 and 176. Knockdown of hnRNP M inhibited LLO-induced activation of IFN-α, IFN-β and AP-1 promoters and enhanced LM growth in host cells. Thus, engagement of hnRNP M with LLO induces type I interferon expression and restricts LM growth in host cells, suggesting a critical role of hnRNP M in LLO-induced immune responses in host cells. These findings will contribute to further understandings of the molecular mechanisms underlying the host defense against LM infection.
Collapse
Affiliation(s)
- Zheng Luo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Lucas Stelling CR, Orsi RH, Wiedmann M. Complementation of Listeria monocytogenes null mutants with selected Listeria seeligeri virulence genes suggests functional adaptation of Hly and PrfA and considerable diversification of prfA regulation in L. seeligeri. Appl Environ Microbiol 2010; 76:5124-39. [PMID: 20543041 PMCID: PMC2916458 DOI: 10.1128/aem.03107-09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 05/30/2010] [Indexed: 11/20/2022] Open
Abstract
While Listeria seeligeri and L. monocytogenes contain the main Listeria virulence gene cluster, only L. monocytogenes is considered an intracellular pathogen. Initial evolutionary analyses showed that the virulence genes prfA, hly, and plcA are conserved in L. seeligeri, with specific Hly and PrfA amino acid residues showing evidence for positive selection in L. seeligeri. Our data also show that temperature-dependent transcript patterns for prfA, which encodes a transcriptional regulator of virulence genes, differed between L. monocytogenes and L. seeligeri. To further investigate the divergence of virulence gene function and regulation, L. seeligeri prfA (prfA(LS)), hly (hly(LS)), and plcA (plcA(LS)), as well as prfA(LS) constructs with different prfA promoter regions, were introduced into appropriate L. monocytogenes null mutants. Only when prfA(LS) was under the control of the L. monocytogenes prfA promoters (P1- and P2prfA) (P1P2(LM) prfA(LS)) was prfA(LS) able to fully complement the Delta prfA(LM) deletion. hly(LS) introduced into an L. monocytogenes background under its native promoter showed transcript levels similar to those of hly(LM) and was able to partially restore L. monocytogenes wild-type-level hemolysis and intracellular growth, even though Hly(LM) and Hly(LS) showed distinct patterns of cell- and supernatant-associated hemolytic activities. Our data indicate that (i) regulation of prfA expression differs between L. monocytogenes and L. seeligeri, although hly transcription is temperature dependent in both species, and (ii) PrfA and Hly functions are largely, but not fully, conserved between L. seeligeri and L. monocytogenes. Virulence gene homologues and their expression thus appear to have adapted to distinct but possibly related functions in these two species.
Collapse
Affiliation(s)
| | - Renato H. Orsi
- Graduate Field of Microbiology, Department of Food Science, Cornell University, Ithaca, New York 14853
| | - Martin Wiedmann
- Graduate Field of Microbiology, Department of Food Science, Cornell University, Ithaca, New York 14853
| |
Collapse
|
11
|
Oevermann A, Zurbriggen A, Vandevelde M. Rhombencephalitis Caused by Listeria monocytogenes in Humans and Ruminants: A Zoonosis on the Rise? Interdiscip Perspect Infect Dis 2010; 2010:632513. [PMID: 20204066 PMCID: PMC2829626 DOI: 10.1155/2010/632513] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/25/2009] [Indexed: 02/05/2023] Open
Abstract
Listeriosis is an emerging zoonotic infection of humans and ruminants worldwide caused by Listeria monocytogenes (LM). In both host species, CNS disease accounts for the high mortality associated with listeriosis and includes rhombencephalitis, whose neuropathology is strikingly similar in humans and ruminants. This review discusses the current knowledge about listeric encephalitis, and involved host and bacterial factors. There is an urgent need to study the molecular mechanisms of neuropathogenesis, which are poorly understood. Such studies will provide a basis for the development of new therapeutic strategies that aim to prevent LM from invading the brain and spread within the CNS.
Collapse
Affiliation(s)
- Anna Oevermann
- Neurocenter, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Andreas Zurbriggen
- Neurocenter, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Marc Vandevelde
- Division of Clinical Neurology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
12
|
Pushkareva VI, Ermolaeva SA. Listeria monocytogenes virulence factor Listeriolysin O favors bacterial growth in co-culture with the ciliate Tetrahymena pyriformis, causes protozoan encystment and promotes bacterial survival inside cysts. BMC Microbiol 2010; 10:26. [PMID: 20109168 PMCID: PMC2827469 DOI: 10.1186/1471-2180-10-26] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 01/28/2010] [Indexed: 11/26/2022] Open
Abstract
Background The gram-positive pathogenic bacterium Listeria monocytogenes is widely spread in the nature. L. monocytogenes was reported to be isolated from soil, water, sewage and sludge. Listeriolysin O (LLO) is a L. monocytogenes major virulence factor. In the course of infection in mammals, LLO is required for intracellular survival and apoptosis induction in lymphocytes. In this study, we explored the potential of LLO to promote interactions between L. monocytogenes and the ubiquitous inhabitant of natural ecosystems bacteriovorous free-living ciliate Tetrahymena pyriformis. Results Wild type L. monocytogenes reduced T. pyriformis trophozoite counts and stimulated encystment. The effects were observed starting from 48 h of co-incubation. On the day 14, trophozoites were eliminated from the co-culture while about 5 × 104 cells/ml remained in the axenic T. pyriformis culture. The deficient in the LLO-encoding hly gene L. monocytogenes strain failed to cause mortality among protozoa and to trigger protozoan encystment. Replenishment of the hly gene in the mutant strain restored toxicity towards protozoa and induction of protozoan encystment. The saprophytic non-haemolytic species L. innocua transformed with the LLO-expressing plasmid caused extensive mortality and encystment in ciliates. During the first week of co-incubation, LLO-producing L. monocytogenes demonstrated higher growth rates in association with T. pyriformis than the LLO-deficient isogenic strain. At latter stages of co-incubation bacterial counts were similar for both strains. T. pyriformis cysts infected with wild type L. monocytogenes caused listerial infection in guinea pigs upon ocular and oral inoculation. The infection was proved by bacterial plating from the internal organs. Conclusions The L. monocytogenes virulence factor LLO promotes bacterial survival and growth in the presence of bacteriovorous ciliate T. pyriformis. LLO is responsible for L. monocytogenes toxicity for protozoa and induction of protozoan encystment. L. monocytogenes entrapped in cysts remained viable and virulent. In whole, LLO activity seems to support bacterial survival in the natural habitat outside of a host.
Collapse
Affiliation(s)
- Valentina I Pushkareva
- Gamaleya Research Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow, Russia
| | | |
Collapse
|
13
|
Pyruvate carboxylase plays a crucial role in carbon metabolism of extra- and intracellularly replicating Listeria monocytogenes. J Bacteriol 2010; 192:1774-84. [PMID: 20097852 DOI: 10.1128/jb.01132-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human pathogen L. monocytogenes is a facultatively intracellular bacterium that survives and replicates in the cytosol of many mammalian cells. The listerial metabolism, especially under intracellular conditions, is still poorly understood. Recent studies analyzed the carbon metabolism of L. monocytogenes by the (13)C isotopologue perturbation method in a defined minimal medium containing [U-(13)C(6)]glucose. It was shown that these bacteria produce oxaloacetate mainly by carboxylation of pyruvate due to an incomplete tricarboxylic acid cycle. Here, we report that a pycA insertion mutant defective in pyruvate carboxylase (PYC) still grows, albeit at a reduced rate, in brain heart infusion (BHI) medium but is unable to multiply in a defined minimal medium with glucose or glycerol as a carbon source. Aspartate and glutamate of the pycA mutant, in contrast to the wild-type strain, remain unlabeled when [U-(13)C(6)]glucose is added to BHI, indicating that the PYC-catalyzed carboxylation of pyruvate is the predominant reaction leading to oxaloacetate in L. monocytogenes. The pycA mutant is also unable to replicate in mammalian cells and exhibits high virulence attenuation in the mouse sepsis model.
Collapse
|
14
|
Freitag NE, Port GC, Miner MD. Listeria monocytogenes - from saprophyte to intracellular pathogen. Nat Rev Microbiol 2009; 7:623-8. [PMID: 19648949 DOI: 10.1038/nrmicro2171] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Listeria monocytogenes is a bacterium that lives in the soil as a saprophyte but is capable of making the transition into a pathogen following its ingestion by susceptible humans or animals. Recent studies suggest that L. monocytogenes mediates its saprophyte-to-cytosolic-parasite transition through the careful modulation of the activity of a virulence regulatory protein known as PrfA, using a range of environmental cues that include available carbon sources. In this Progress article we describe the regulation of PrfA and its role in the L. monocytogenes transition from the saprophytic stage to the virulent intracellular stage.
Collapse
Affiliation(s)
- Nancy E Freitag
- Department of Microbiology and Immunology (MC790), University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, Illinois 606127344, USA.
| | | | | |
Collapse
|
15
|
Stoll R, Mertins S, Joseph B, Müller-Altrock S, Goebel W. Modulation of PrfA activity in Listeria monocytogenes upon growth in different culture media. MICROBIOLOGY-SGM 2009; 154:3856-3876. [PMID: 19047753 DOI: 10.1099/mic.0.2008/018283-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PrfA is the major transcriptional activator of most virulence genes of Listeria monocytogenes. Its activity is modulated by a variety of culture conditions. Here, we studied the PrfA activity in the L. monocytogenes wild-type strain EGD and an isogenic prfA deletion mutant (EGDDeltaprfA) carrying multiple copies of the wild-type prfA or the mutant prfA* gene (strains EGDDeltaprfApPrfA and EGDDeltaprfApPrfA*) in response to growth in brain heart infusion (BHI), Luria-Bertani broth (LB) or a defined minimal medium (MM) supplemented with one of the three phosphotransferase system (PTS) carbohydrates, glucose, mannose and cellobiose, or the non-PTS carbon source glycerol. Low PrfA activity was observed in the wild-type strain in BHI and LB with all of these carbon sources, while PrfA activity was high in minimal medium in the presence of glycerol. EGDDeltaprfApPrfA*, expressing a large amount of PrfA* protein, showed high PrfA activity under all growth conditions. In contrast, strain EGDDeltaprfApPrfA, expressing an equally high amount of PrfA protein, showed high PrfA activity only when cultured in BHI, and not in LB or MM (in the presence of any of the carbon sources). A ptsH mutant (lacking a functional HPr) was able to grow in BHI but not in LB or MM, regardless of which of the four carbon sources was added, suggesting that in LB and MM the uptake of the used PTS carbohydrates and the catabolism of glycerol are fully dependent on the functional common PTS pathway. The BHI culture medium, in contrast, apparently contains carbon sources (supporting listerial growth) which are taken up and metabolized by L. monocytogenes independently of the common PTS pathway. The growth rates of L. monocytogenes were strongly reduced in the presence of large amounts of PrfA (or PrfA*) protein when growing in MM, but were less reduced in LB and only slightly reduced in BHI. The expression of the genes encoding the PTS permeases of L. monocytogenes was determined in the listerial strains under the applied growth conditions. The data obtained further support the hypothesis that PrfA activity correlates with the expression level and the phosphorylation state of specific PTS permeases.
Collapse
Affiliation(s)
- Regina Stoll
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, D-97074 Würzburg, Germany
| | - Sonja Mertins
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, D-97074 Würzburg, Germany
| | - Biju Joseph
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, D-97074 Würzburg, Germany
| | | | - Werner Goebel
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
16
|
Miner MD, Port GC, Freitag NE. Functional impact of mutational activation on the Listeria monocytogenes central virulence regulator PrfA. MICROBIOLOGY-SGM 2008; 154:3579-3589. [PMID: 18957610 DOI: 10.1099/mic.0.2008/021063-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transcriptional activator PrfA is required for the expression of virulence factors necessary for Listeria monocytogenes pathogenesis. PrfA is believed to become activated following L. monocytogenes entry into the cytosol of infected host cells, resulting in the induction of target genes whose products are required for bacterial intracellular growth and cell-to-cell spread. Several mutations have been identified that appear to lock PrfA into its highly activated cytosolic form (known as prfA* mutations). In this study PrfA and five PrfA* mutant proteins exhibiting differing degrees of activity were purified and analysed to define the influences of the mutations on distinct aspects of PrfA activity. Based on limited proteolytic digestion, conformational changes were detected for the PrfA* mutant proteins in comparison to wild-type PrfA. For all but one mutant (PrfA Y63C), the DNA binding affinity as measured by electophoretic mobility shift assay appeared to directly correlate with levels of PrfA mutational activation, such that the high-activity mutants exhibited the largest increases in DNA binding affinity and moderately activated mutants exhibited more moderate increases. Surprisingly, the ability of PrfA and PrfA* mutants to form dimers in solution appeared to inversely correlate with levels of PrfA-dependent gene expression. Based on comparisons of protein activity and structural similarities with PrfA family members Crp and CooA, the prfA* mutations modify distinct aspects of PrfA activity that include DNA binding and protein-protein interactions.
Collapse
Affiliation(s)
- Maurine D Miner
- Seattle Biomedical Research Institute, Seattle, WA, USA.,Program in Pathobiology, University of Washington, Seattle, WA, USA
| | - Gary C Port
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.,Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Nancy E Freitag
- Seattle Biomedical Research Institute, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA.,Program in Pathobiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Abstract
Listeria monocytogenes is able to efficiently utilize glycerol as a carbon source. In a defined minimal medium, the growth rate (during balanced growth) in the presence of glycerol is similar to that in the presence of glucose or cellobiose. Comparative transcriptome analyses of L. monocytogenes showed high-level transcriptional upregulation of the genes known to be involved in glycerol uptake and metabolism (glpFK and glpD) in the presence of glycerol (compared to that in the presence of glucose and/or cellobiose). Levels of expression of the genes encoding a second putative glycerol uptake facilitator (GlpF(2)) and a second putative glycerol kinase (GlpK(2)) were less enhanced under these conditions. GlpK(1) but not GlpK(2) was essential for glycerol catabolism in L. monocytogenes under extracellular conditions, while the loss of GlpK(1) affected replication in Caco-2 cells less than did the loss of GlpK(2) and GlpD. Additional genes whose transcription levels were higher in the presence of glycerol than in the presence of glucose and cellobiose included those for two dihydroxyacetone (Dha) kinases and many genes that are under carbon catabolite repression control. Transcriptional downregulation in the presence of glycerol (compared to those in the presence glucose and cellobiose) was observed for several genes and operons that are positively regulated by glucose, including genes involved in glycolysis, N metabolism, and the biosynthesis of branched-chain amino acids. The highest level of transcriptional upregulation was observed for all PrfA-dependent genes during early and late logarithmic growth in glycerol. Under these conditions, a low level of HPr-Ser-P and a high level of HPr-His-P were present in the cells, suggesting that all enzyme IIA (EIIA) (or EIIB) components of the phosphotransferase system (PTS) permeases expressed will be phosphorylated. These and other data suggest that the phosphorylation state of PTS permeases correlates with PrfA activity.
Collapse
|
18
|
Rebuffo-Scheer CA, Dietrich J, Wenning M, Scherer S. Identification of five Listeria species based on infrared spectra (FTIR) using macrosamples is superior to a microsample approach. Anal Bioanal Chem 2008; 390:1629-35. [DOI: 10.1007/s00216-008-1834-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 12/30/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
|
19
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|