1
|
Zarazúa-Osorio B, Srivastava P, Marathe A, Zahid SH, Fujita M. Autoregulation of the Master Regulator Spo0A Controls Cell-Fate Decisions in Bacillus subtilis. Mol Microbiol 2025; 123:305-329. [PMID: 39812382 DOI: 10.1111/mmi.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Spo0A in Bacillus subtilis is activated by phosphorylation (Spo0A~P) upon starvation and differentially controls a set of genes involved in biofilm formation and sporulation. The spo0A gene is transcribed by two distinct promoters, a σA-recognized upstream promoter Pv during growth, and a σH-recognized downstream promoter Ps during starvation, and appears to be autoregulated by four Spo0A~P binding sites (0A1-4 boxes) localized between two promoters. However, the autoregulatory mechanisms and their impact on differentiation remain elusive. Here, we determined the relative affinity of Spo0A~P for each 0A box and dissected each promoter in combination with the systematic 0A box mutations. The data revealed that (1) the Pv and Ps promoters are on and off, respectively, under nutrient-rich conditions without Spo0A~P, (2) the Ps promoter is activated by first 0A3 and then 0A1 during early starvation with low Spo0A~P, (3) during later starvation with high Spo0A~P, the Pv promoter is repressed by first 0A1 and then 0A2 and 0A4, and (4) during prolonged starvation, both promoters are silenced by all 0A boxes with very high Spo0A~P. Our results indicate that the autoregulation of spo0A is one of the key determinants to achieve a developmental increase in Spo0A~P, leading to a temporal window for entry into biofilm formation or sporulation.
Collapse
Affiliation(s)
| | - Priyanka Srivastava
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Anuradha Marathe
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Syeda Hira Zahid
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Soriano-Peña EY, Luna-Bulbarela A, Cristiano-Fajardo SA, Galindo E, Serrano-Carreón L. Modulation of the Sporulation Dynamics in the Plant-Probiotic Bacillus velezensis 83 via Carbon and Quorum-Sensing Metabolites. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10482-w. [PMID: 40009330 DOI: 10.1007/s12602-025-10482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Spore-forming Bacilli, such as the plant-associated Bacillus velezensis strains, are widely used as probiotics, known for their safety and substantial health benefits for both animal and plant species. Through differentiation pathways mediated by quorum-sensing metabolites (QSMs), these bacteria develop multiple isogenic subpopulations with distinct phenotypes and ecological functions, including motile cells, matrix-producing/cannibalistic cells, competent cells, spores, and others. However, the heterogeneity in Bacillus populations is a significant limitation for the development of spore-based probiotics, as nutrients supplied during fermentation are consumed through non-target pathways. One of these pathways is the generation of overflow metabolites (OMs), including acetoin and 2,3-butanediol. This study elucidates, using a 23 full factorial experimental design, the individual effects of OMs, QSMs, and their interactions on the sporulation dynamics and subpopulation distribution of B. velezensis 83. The results showed that OMs play a relevant role as external reserves of carbon and energy during in vitro nutrient limitation scenarios, significantly affecting sporulation dynamics. OMs improve sporulation efficiency and reduce cell autolysis, but they also decrease cellular synchronization and extend the period of spore formation. Although QSMs significantly increase sporulation synchronization, the desynchronization caused by OMs cannot be mitigated even with the addition of autoinducer QSM pro-sporulation molecules, including competence and sporulation stimulating factor "CSF" and cyclic lipopeptides. Indeed, the interaction effect between OMs and QSMs displays antagonism on sporulation efficiency. Modulating the levels of OMs and QSMs is a potential strategy for regulating the distribution of subpopulations within Bacillus cultures.
Collapse
Affiliation(s)
- Esmeralda Yazmín Soriano-Peña
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, C.P.62210, Cuernavaca, Morelos, México
| | - Agustín Luna-Bulbarela
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, C.P.62210, Cuernavaca, Morelos, México
| | - Sergio Andrés Cristiano-Fajardo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, C.P.62210, Cuernavaca, Morelos, México
| | - Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, C.P.62210, Cuernavaca, Morelos, México.
| | - Leobardo Serrano-Carreón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, C.P.62210, Cuernavaca, Morelos, México.
| |
Collapse
|
3
|
Fu Y, Liu X, Su Z, Wang P, Guo Q, Ma P. Arabinose Plays an Important Role in Regulating the Growth and Sporulation of Bacillus subtilis NCD-2. Int J Mol Sci 2023; 24:17472. [PMID: 38139303 PMCID: PMC10744016 DOI: 10.3390/ijms242417472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
A microbial fungicide developed from Bacillus subtilis NCD-2 has been registered for suppressing verticillium wilt in crops in China. Spores are the main ingredient of this fungicide and play a crucial role in suppressing plant disease. Therefore, increasing the number of spores of strain NCD-2 during fermentation is important for reducing the cost of the fungicide. In this study, five kinds of carbon sources were found to promote the metabolism of strain NCD-2 revealed via Biolog Phenotype MicroArray (PM) technology. L-arabinose showed the strongest ability to promote the growth and sporulation of strain NCD-2. L-arabinose increased the bacterial concentration and the sporulation efficiency of strain NCD-2 by 2.04 times and 1.99 times compared with D-glucose, respectively. Moreover, L-arabinose significantly decreased the autolysis of strain NCD-2. Genes associated with arabinose metabolism, sporulation, spore resistance to heat, and spore coat formation were significantly up-regulated, and genes associated with sporulation-delaying protein were significantly down-regulated under L-arabinose treatment. The deletion of msmX, which is involved in arabinose transport in the Bacillus genus, decreased growth and sporulation by 53.71% and 86.46% compared with wild-type strain NCD-2, respectively. Complementing the mutant strain by importing an intact msmX gene restored the strain's growth and sporulation.
Collapse
Affiliation(s)
- Yifan Fu
- College of Plant Protection, Agricultural University of Hebei, Baoding 071000, China;
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Xiaomeng Liu
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Zhenhe Su
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Peipei Wang
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Qinggang Guo
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Ping Ma
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| |
Collapse
|
4
|
Abstract
The ability of the anaerobic gastrointestinal pathogen Clostridioides difficile to survive outside the host relies on the formation of dormant endospores. Spore formation is contingent on the activation of a conserved transcription factor, Spo0A, by phosphorylation. Multiple kinases and phosphatases regulate Spo0A activity in other spore-forming organisms; however, these factors are not well conserved in C. difficile. Previously, we discovered that deletion of a predicted histidine kinase, CD1492, increases sporulation, indicating that CD1492 inhibits C. difficile spore formation. In this study, we investigate the functions of additional predicted orphan histidine kinases CD2492, CD1579, and CD1949, which are hypothesized to regulate Spo0A phosphorylation. Disruption of CD2492 also increased sporulation frequency, similarly to the CD1492 mutant and in contrast to a previous study. A CD1492 CD2492 mutant phenocopied the sporulation and gene expression patterns of the single mutants, suggesting that these proteins function in the same genetic pathway to repress sporulation. Deletion of CD1579 variably increased sporulation frequency; however, knockdown of CD1949 expression did not influence sporulation. We provide evidence that CD1492, CD2492, and CD1579 function as phosphatases, as mutation of the conserved histidine residue for phosphate transfer abolished CD2492 function, and expression of the CD1492 or CD2492 histidine site-directed mutants or the wild-type CD1579 allele in a parent strain resulted in a dominant-negative hypersporulation phenotype. Altogether, at least three predicted histidine kinases, CD1492, CD2492, and CD1579 (herein, PtpA, PtpB and PtpC), repress C. difficile sporulation initiation by regulating activity of Spo0A. IMPORTANCE The formation of inactive spores is critical for the long-term survival of the gastrointestinal pathogen Clostridioides difficile. The onset of sporulation is controlled by the master regulator of sporulation, Spo0A, which is activated by phosphorylation. Multiple kinases and phosphatases control Spo0A phosphorylation; however, this regulatory pathway is not defined in C. difficile. We show that two predicted histidine kinase proteins, CD1492 (PtpA) and CD2492 (PtpB), function in the same regulatory pathway to repress sporulation by preventing Spo0A phosphorylation. We show that another predicted histidine kinase protein, CD1579 (PtpC), also represses sporulation and present evidence that a fourth predicted histidine kinase protein, CD1949, does not impact sporulation. These results support the idea that C. difficile inhibits sporulation initiation through multiple phosphatases.
Collapse
|
5
|
Bacillus subtilis Histidine Kinase KinC Activates Biofilm Formation by Controlling Heterogeneity of Single-Cell Responses. mBio 2022; 13:e0169421. [PMID: 35012345 PMCID: PMC8749435 DOI: 10.1128/mbio.01694-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, biofilm and sporulation pathways are both controlled by a master regulator, Spo0A, which is activated by phosphorylation via a phosphorelay-a cascade of phosphotransfer reactions commencing with autophosphorylation of histidine kinases KinA, KinB, KinC, KinD, and KinE. However, it is unclear how the kinases, despite acting via the same regulator, Spo0A, differentially regulate downstream pathways, i.e., how KinA mainly activates sporulation genes and KinC mainly activates biofilm genes. In this work, we found that KinC also downregulates sporulation genes, suggesting that KinC has a negative effect on Spo0A activity. To explain this effect, with a mathematical model of the phosphorelay, we revealed that unlike KinA, which always activates Spo0A, KinC has distinct effects on Spo0A at different growth stages: during fast growth, KinC acts as a phosphate source and activates Spo0A, whereas during slow growth, KinC becomes a phosphate sink and contributes to decreasing Spo0A activity. However, under these conditions, KinC can still increase the population-mean biofilm matrix production activity. In a population, individual cells grow at different rates, and KinC would increase the Spo0A activity in the fast-growing cells but reduce the Spo0A activity in the slow-growing cells. This mechanism reduces single-cell heterogeneity of Spo0A activity, thereby increasing the fraction of cells that activate biofilm matrix production. Thus, KinC activates biofilm formation by controlling the fraction of cells activating biofilm gene expression. IMPORTANCE In many bacterial and eukaryotic systems, multiple cell fate decisions are activated by a single master regulator. Typically, the activities of the regulators are controlled posttranslationally in response to different environmental stimuli. The mechanisms underlying the ability of these regulators to control multiple outcomes are not understood in many systems. By investigating the regulation of Bacillus subtilis master regulator Spo0A, we show that sensor kinases can use a novel mechanism to control cell fate decisions. By acting as a phosphate source or sink, kinases can interact with one another and provide accurate regulation of the phosphorylation level. Moreover, this mechanism affects the cell-to-cell heterogeneity of the transcription factor activity and eventually determines the fraction of different cell types in the population. These results demonstrate the importance of intercellular heterogeneity for understanding the effects of genetic perturbations on cell fate decisions. Such effects can be applicable to a wide range of cellular systems.
Collapse
|
6
|
Yi Z, Zhang T, Xie J, Zhu Z, Luo S, Zhou K, Zhou P, Chen W, Zhao X, Sun Y, Xia L, Ding X. iTRAQ analysis reveals the effect of gabD and sucA gene knockouts on lysine metabolism and crystal protein formation in Bacillus thuringiensis. Environ Microbiol 2021; 23:2230-2243. [PMID: 33331075 DOI: 10.1111/1462-2920.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/08/2020] [Indexed: 11/27/2022]
Abstract
Lysine metabolism plays an important role in the formation of the insecticidal crystal proteins of Bacillus thuringiensis (Bt). The genes lam, gabD and sucA encode three key enzymes of the lysine metabolic pathway in Bt4.0718. The lam gene mainly affects the cell growth at stable period, negligibly affected sporulation and insecticidal crystal protein (ICP) production. While, the deletion mutant strains of the gabD and sucA genes showed that the growth, sporulation and crystal protein formation were inhibited, cells became slender, and insecticidal activity was significantly reduced. iTRAQ proteomics and qRT-PCR used to analyse the differentially expressed protein (DEP) between the two mutant strains and the wild type strain. The functions of DEPs were visualized and statistically classified, which affect bacterial growth and metabolism by regulating biological metabolism pathways: the major carbon metabolism pathways, amino acid metabolism, oxidative phosphorylation pathways, nucleic acid metabolism, fatty acid synthesis and peptidoglycan synthesis. The gabD and sucA genes in lysine metabolic pathway are closely related to the sporulation and crystal proteins formation. The effects of DEPs and functional genes on basic cellular metabolic pathways were studied to provide new strategies for the construction of highly virulent insecticidal strains, the targeted transformation of functional genes.
Collapse
Affiliation(s)
- Zixian Yi
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Tong Zhang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Junyan Xie
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Sisi Luo
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Kexuan Zhou
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Pengji Zhou
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Wenhui Chen
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xiaoli Zhao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
7
|
Tu Z, R. Abhyankar W, N. Swarge B, van der Wel N, Kramer G, Brul S, J. de Koning L. Artificial Sporulation Induction (ASI) by kinA Overexpression Affects the Proteomes and Properties of Bacillus subtilis Spores. Int J Mol Sci 2020; 21:ijms21124315. [PMID: 32560401 PMCID: PMC7352945 DOI: 10.3390/ijms21124315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
To facilitate more accurate spore proteomic analysis, the current study focuses on inducing homogeneous sporulation by overexpressing kinA and assesses the effect of synchronized sporulation initiation on spore resistance, structures, the germination behavior at single-spore level and the proteome. The results indicate that, in our set up, the sporulation by overexpressing kinA can generate a spore yield of 70% within 8 h. The procedure increases spore wet heat resistance and thickness of the spore coat and cortex layers, whilst delaying the time to spore phase-darkening and burst after addition of germinant. The proteome analysis reveals that the upregulated proteins in the kinA induced spores, compared to spores without kinA induction, as well as the 'wildtype' spores, are mostly involved in spore formation. The downregulated proteins mostly belong to the categories of coping with stress, carbon and nitrogen metabolism, as well as the regulation of sporulation. Thus, while kinA overexpression enhances synchronicity in sporulation initiation, it also has profound effects on the central equilibrium of spore formation and spore germination, through modulation of the spore molecular composition and stress resistance physiology.
Collapse
Affiliation(s)
- Zhiwei Tu
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (W.R.A.); (B.N.S.)
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (G.K.); (L.J.d.K.)
| | - Wishwas R. Abhyankar
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (W.R.A.); (B.N.S.)
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (G.K.); (L.J.d.K.)
| | - Bhagyashree N. Swarge
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (W.R.A.); (B.N.S.)
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (G.K.); (L.J.d.K.)
| | - Nicole van der Wel
- Department of Medical Biology, Electron Microscopy Centre Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, 1100 DD Amsterdam, The Netherlands;
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (G.K.); (L.J.d.K.)
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (W.R.A.); (B.N.S.)
- Correspondence: ; Tel.: +31-20-525-7079 (ext. 6970)
| | - Leo J. de Koning
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (G.K.); (L.J.d.K.)
| |
Collapse
|
8
|
Kowallis KA, Duvall SW, Zhao W, Childers WS. Manipulation of Bacterial Signaling Using Engineered Histidine Kinases. Methods Mol Biol 2020; 2077:141-163. [PMID: 31707657 DOI: 10.1007/978-1-4939-9884-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two-component systems allow bacteria to respond to changes in environmental or cytosolic conditions through autophosphorylation of a histidine kinase (HK) and subsequent transfer of the phosphate group to its downstream cognate response regulator (RR). The RR then elicits a cellular response, commonly through regulation of transcription. Engineering two-component system signaling networks provides a strategy to study bacterial signaling mechanisms related to bacterial cell survival, symbiosis, and virulence, and to develop sensory devices in synthetic biology. Here we focus on the principles for engineering the HK to identify unknown signal inputs, test signal transmission mechanisms, design small molecule sensors, and rewire two-component signaling networks.
Collapse
Affiliation(s)
| | - Samuel W Duvall
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Zhao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA. .,Chevron Science Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Castillo-Hair SM, Fujita M, Igoshin OA, Tabor JJ. An Engineered B. subtilis Inducible Promoter System with over 10 000-Fold Dynamic Range. ACS Synth Biol 2019; 8:1673-1678. [PMID: 31181163 DOI: 10.1021/acssynbio.8b00469] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacillus subtilis is the leading model Gram-positive bacterium, and a widely used chassis for industrial protein production. However, B. subtilis research is limited by a lack of inducible promoter systems with low leakiness and high dynamic range. Here, we engineer an inducible promoter system based on the T7 RNA Polymerase (T7 RNAP), the lactose repressor LacI, and the chimeric promoter PT7lac, integrated as a single copy in the B. subtilis genome. In the absence of IPTG, LacI strongly represses T7 RNAP and PT7lac and minimizes leakiness. Addition of IPTG derepresses PT7lac and simultaneously induces expression of T7RNAP, which results in very high output expression. Using green fluorescent and β-galactosidase reporter proteins, we estimate that this LacI-T7 system can regulate expression with a dynamic range of over 10 000, by far the largest reported for an inducible B. subtilis promoter system. Furthermore, LacI-T7 responds to similar IPTG concentrations and with similar kinetics as the widely used Phy-spank IPTG-inducible system, which we show has a dynamic range of at most 300 in a similar genetic context. Due to its superior performance, our LacI-T7 system should have broad applications in fundamental B. subtilis biology studies and biotechnology.
Collapse
Affiliation(s)
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Center for Theoretical Biophysics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey J. Tabor
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
10
|
Brzozowski RS, Huber M, Burroughs AM, Graham G, Walker M, Alva SS, Aravind L, Eswara PJ. Deciphering the Role of a SLOG Superfamily Protein YpsA in Gram-Positive Bacteria. Front Microbiol 2019; 10:623. [PMID: 31024470 PMCID: PMC6459960 DOI: 10.3389/fmicb.2019.00623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/12/2019] [Indexed: 12/27/2022] Open
Abstract
Bacteria adapt to different environments by regulating cell division and several conditions that modulate cell division have been documented. Understanding how bacteria transduce environmental signals to control cell division is critical in understanding the global network of cell division regulation. In this article we describe a role for Bacillus subtilis YpsA, an uncharacterized protein of the SLOG superfamily of nucleotide and ligand-binding proteins, in cell division. We observed that YpsA provides protection against oxidative stress as cells lacking ypsA show increased susceptibility to hydrogen peroxide treatment. We found that the increased expression of ypsA leads to filamentation and disruption of the assembly of FtsZ, the tubulin-like essential protein that marks the sites of cell division in B. subtilis. We also showed that YpsA-mediated filamentation is linked to the growth rate. Using site-directed mutagenesis, we targeted several conserved residues and generated YpsA variants that are no longer able to inhibit cell division. Finally, we show that the role of YpsA is possibly conserved in Firmicutes, as overproduction of YpsA in Staphylococcus aureus also impairs cell division.
Collapse
Affiliation(s)
- Robert S Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Mirella Huber
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Gianni Graham
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Merryck Walker
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Sameeksha S Alva
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Prahathees J Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
11
|
Abstract
Spatial control of intracellular signaling relies on signaling proteins sensing their subcellular environment. In many cases, a large number of upstream signals are funneled to a master regulator of cellular behavior, but it remains unclear how individual proteins can rapidly integrate a complex array of signals within the appropriate spatial niche within the cell. As a model for how subcellular spatial information can control signaling activity, we have reconstituted the cell pole-specific control of the master regulator kinase/phosphatase CckA from the asymmetrically dividing bacterium Caulobacter crescentus CckA is active as a kinase only when it accumulates within a microdomain at the new cell pole, where it colocalizes with the pseudokinase DivL. Both proteins contain multiple PAS domains, a multifunctional class of sensory domains present across the kingdoms of life. Here, we show that CckA uses its PAS domains to integrate information from DivL and its own oligomerization state to control the balance of its kinase and phosphatase activities. We reconstituted the DivL-CckA complex on liposomes in vitro and found that DivL directly controls the CckA kinase/phosphatase switch, and that stimulation of either CckA catalytic activity depends on the second of its two PAS domains. We further show that CckA oligomerizes through a multidomain interaction that is critical for stimulation of kinase activity by DivL, while DivL stimulation of CckA phosphatase activity is independent of CckA homooligomerization. Our results broadly demonstrate how signaling factors can leverage information from their subcellular niche to drive spatiotemporal control of cell signaling.
Collapse
|
12
|
Abhyankar WR, Wen J, Swarge BN, Tu Z, de Boer R, Smelt JPPM, de Koning LJ, Manders E, de Koster CG, Brul S. Proteomics and microscopy tools for the study of antimicrobial resistance and germination mechanisms of bacterial spores. Food Microbiol 2018; 81:89-96. [PMID: 30910091 DOI: 10.1016/j.fm.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
Bacterial spores are ubiquitous in nature and can withstand both chemical and physical stresses. Spores can survive food preservation processes and upon outgrowth cause food spoilage as well as safety risks. The heterogeneous germination and outgrowth behavior of isogenic spore populations exacerbates this risk. A major unknown factor of spores is likely to be the inherently heterogeneous spore protein composition. The proteomics methods discussed here help in broadening the knowledge about spore structure and identification of putative target proteins from spores of different spore formers. Approaches to synchronize Bacillus subtilis spore formation, and to analyze spore proteins as well as the physiology of spore germination and outgrowth are also discussed. Live-imaging and fluorescence microscopy techniques discussed here allow analysis, at single cell level, of the 'germinosome', the process of spore germination itself, spore outgrowth and the spore intracellular pH dynamics. For the latter, a recently published improved pHluorin (IpHluorin) under control of the ptsG promoter is applicable. While the data obtained from such tools offers novel insight in the mechanisms of bacterial spore awakening, it may also be used to probe candidate antimicrobial compounds for inhibitory effects on spore germination and strengthen microbial risk assessment.
Collapse
Affiliation(s)
- W R Abhyankar
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J Wen
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B N Swarge
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Z Tu
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - R de Boer
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J P P M Smelt
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - L J de Koning
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - E Manders
- Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - C G de Koster
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - S Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Kiehler B, Haggett L, Fujita M. The PAS domains of the major sporulation kinase in Bacillus subtilis play a role in tetramer formation that is essential for the autokinase activity. Microbiologyopen 2017; 6. [PMID: 28449380 PMCID: PMC5552956 DOI: 10.1002/mbo3.481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/25/2017] [Accepted: 03/08/2017] [Indexed: 12/22/2022] Open
Abstract
Sporulation in Bacillus subtilis is induced upon starvation. In a widely accepted model, an N‐terminal “sensor” domain of the major sporulation kinase KinA recognizes a hypothetical starvation signal(s) and autophosphorylates a histidine residue to activate the master regulator Spo0A via a multicomponent phosphorelay. However, to date no confirmed signal has been found. Here, we demonstrated that PAS‐A, the most N‐terminal of the three PAS domains (PAS‐ABC), is dispensable for the activity, contrary to a previous report. Our data indicated that the autokinase activity is dependent on the formation of a functional tetramer, which is mediated by, at least, PAS‐B and PAS‐C. Additionally, we ruled out the previously proposed notion that NAD+/NADH ratio controls KinA activity through the PAS‐A domain by demonstrating that the cofactors show no effects on the kinase activity in vitro. In support of these data, we found that the cofactors exist in approximately 1000‐fold excess of KinA in the cell and the cofactors’ ratio does not change significantly during growth and sporulation, suggesting that changes in the cofactor ratio might not play a role in controlling KinA activity. These data may refute the widely‐held belief that the activity of KinA is regulated in response to an unknown starvation signal(s).
Collapse
Affiliation(s)
- Brittany Kiehler
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Lindsey Haggett
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
14
|
Multimerization of the Virulence-Enhancing Group A Streptococcus Transcription Factor RivR Is Required for Regulatory Activity. J Bacteriol 2016; 199:JB.00452-16. [PMID: 27795318 DOI: 10.1128/jb.00452-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/17/2016] [Indexed: 12/27/2022] Open
Abstract
Group A Streptococcus (GAS) (Streptococcus pyogenes) causes more than 700 million human infections each year. The significant morbidity and mortality rates associated with GAS infections are in part a consequence of the ability of this pathogen to coordinately regulate virulence factor expression during infection. RofA-like protein IV (RivR) is a member of the Mga-like family of transcriptional regulators, and previously we reported that RivR negatively regulates transcription of the hasA and grab virulence factor-encoding genes. Here, we determined that RivR inhibits the ability of GAS to survive and to replicate in human blood. To begin to assess the biochemical basis of RivR activity, we investigated its ability to form multimers, which is a characteristic of Mga-like proteins. We found that RivR forms both dimers and a higher-molecular-mass multimer, which we hypothesize is a tetramer. As cysteine residues are known to contribute to the ability of proteins to dimerize, we created a library of expression plasmids in which each of the four cysteines in RivR was converted to serine. While the C68S RivR protein was essentially unaffected in its ability to dimerize, the C32S and C377S proteins were attenuated, while the C470S protein completely lacked the ability to dimerize. Consistent with dimerization being required for regulatory activity, the C470S RivR protein was unable to repress hasA and grab gene expression in a rivR mutant. Thus, multimer formation is a prerequisite for RivR activity, which supports recent data obtained for other Mga-like family members, suggesting a common regulatory mechanism. IMPORTANCE The modulation of gene transcription is key to the ability of bacterial pathogens to infect hosts to cause disease. Here, we discovered that the group A Streptococcus transcription factor RivR negatively regulates the ability of this pathogen to survive in human blood, and we also began biochemical characterization of this protein. We determined that, in order for RivR to function, it must self-associate, forming both dimers (consisting of two RivR proteins) and higher-order complexes (consisting of more than two RivR proteins). This functional requirement for RivR is shared by other regulators in the same family of proteins, suggesting a common regulatory mechanism. Insight into how these transcription factors function may facilitate the development of novel therapeutic agents targeting their activity.
Collapse
|
15
|
Lecca P, Mura I, Re A, Barker GC, Ihekwaba AEC. Time Series Analysis of the Bacillus subtilis Sporulation Network Reveals Low Dimensional Chaotic Dynamics. Front Microbiol 2016; 7:1760. [PMID: 27872618 PMCID: PMC5097912 DOI: 10.3389/fmicb.2016.01760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/19/2016] [Indexed: 01/12/2023] Open
Abstract
Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering evidence for the chaotic behavior of the system, and by suggesting candidate molecules driving chaos in the system. The results of our chaos analysis can increase our understanding of the intricacies of the regulatory network under analysis, and suggest experimental work to refine our behavior of the mechanisms underlying B. subtilis sporulation initiation control.
Collapse
Affiliation(s)
- Paola Lecca
- Department of Mathematics, University of Trento Trento, Italy
| | - Ivan Mura
- Department of Industrial Engineering, Universidad de los Andes Bogotá, Colombia
| | - Angela Re
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Gary C Barker
- Gut Health and Food Safety, Institute of Food Research Norwich, UK
| | | |
Collapse
|
16
|
Narula J, Kuchina A, Zhang F, Fujita M, Süel GM, Igoshin OA. Slowdown of growth controls cellular differentiation. Mol Syst Biol 2016; 12:871. [PMID: 27216630 PMCID: PMC5289222 DOI: 10.15252/msb.20156691] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
How can changes in growth rate affect the regulatory networks behavior and the outcomes of cellular differentiation? We address this question by focusing on starvation response in sporulating Bacillus subtilis We show that the activity of sporulation master regulator Spo0A increases with decreasing cellular growth rate. Using a mathematical model of the phosphorelay-the network controlling Spo0A-we predict that this increase in Spo0A activity can be explained by the phosphorelay protein accumulation and lengthening of the period between chromosomal replication events caused by growth slowdown. As a result, only cells growing slower than a certain rate reach threshold Spo0A activity necessary for sporulation. This growth threshold model accurately predicts cell fates and explains the distribution of sporulation deferral times. We confirm our predictions experimentally and show that the concentration rather than activity of phosphorelay proteins is affected by the growth slowdown. We conclude that sensing the growth rates enables cells to indirectly detect starvation without the need for evaluating specific stress signals.
Collapse
Affiliation(s)
- Jatin Narula
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Anna Kuchina
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Fang Zhang
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Gürol M Süel
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
17
|
Widderich N, Rodrigues CDA, Commichau FM, Fischer KE, Ramirez-Guadiana FH, Rudner DZ, Bremer E. Salt-sensitivity of σ(H) and Spo0A prevents sporulation of Bacillus subtilis at high osmolarity avoiding death during cellular differentiation. Mol Microbiol 2016; 100:108-24. [PMID: 26712348 DOI: 10.1111/mmi.13304] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 01/15/2023]
Abstract
The spore-forming bacterium Bacillus subtilis frequently experiences high osmolarity as a result of desiccation in the soil. The formation of a highly desiccation-resistant endospore might serve as a logical osmostress escape route when vegetative growth is no longer possible. However, sporulation efficiency drastically decreases concomitant with an increase in the external salinity. Fluorescence microscopy of sporulation-specific promoter fusions to gfp revealed that high salinity blocks entry into the sporulation pathway at a very early stage. Specifically, we show that both Spo0A- and SigH-dependent transcription are impaired. Furthermore, we demonstrate that the association of SigH with core RNA polymerase is reduced under these conditions. Suppressors that modestly increase sporulation efficiency at high salinity map to the coding region of sigH and in the regulatory region of kinA, encoding one the sensor kinases that activates Spo0A. These findings led us to discover that B. subtilis cells that overproduce KinA can bypass the salt-imposed block in sporulation. Importantly, these cells are impaired in the morphological process of engulfment and late forespore gene expression and frequently undergo lysis. Altogether our data indicate that B. subtilis blocks entry into sporulation in high-salinity environments preventing commitment to a developmental program that it cannot complete.
Collapse
Affiliation(s)
- Nils Widderich
- Department of Biology, Laboratory for Molecular Microbiology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany
| | - Christopher D A Rodrigues
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115-5701, USA
| | - Fabian M Commichau
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg August University Göttingen, Griesebachstr, 8, D-37077, Göttingen, Germany
| | - Kathleen E Fischer
- Department of Biology, Laboratory for Molecular Microbiology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany
| | - Fernando H Ramirez-Guadiana
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115-5701, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115-5701, USA
| | - Erhard Bremer
- Department of Biology, Laboratory for Molecular Microbiology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany
| |
Collapse
|
18
|
Evidence that Autophosphorylation of the Major Sporulation Kinase in Bacillus subtilis Is Able To Occur in trans. J Bacteriol 2015; 197:2675-84. [PMID: 26055117 DOI: 10.1128/jb.00257-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/03/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Entry into sporulation in Bacillus subtilis is governed by a multicomponent phosphorelay, a complex version of a two-component system which includes at least three histidine kinases (KinA to KinC), two phosphotransferases (Spo0F and Spo0B), and a response regulator (Spo0A). Among the three histidine kinases, KinA is known as the major sporulation kinase; it is autophosphorylated with ATP upon starvation and then transfers a phosphoryl group to the downstream components in a His-Asp-His-Asp signaling pathway. Our recent study demonstrated that KinA forms a homotetramer, not a dimer, mediated by the N-terminal domain, as a functional unit. Furthermore, when the N-terminal domain was overexpressed in the starving wild-type strain, sporulation was impaired. We hypothesized that this impairment of sporulation could be explained by the formation of a nonfunctional heterotetramer of KinA, resulting in the reduced level of phosphorylated Spo0A (Spo0A∼P), and thus, autophosphorylation of KinA could occur in trans. To test this hypothesis, we generated a series of B. subtilis strains expressing homo- or heterogeneous KinA protein complexes consisting of various combinations of the phosphoryl-accepting histidine point mutant protein and the catalytic ATP-binding domain point mutant protein. We found that the ATP-binding-deficient protein was phosphorylated when the phosphorylation-deficient protein was present in a 1:1 stoichiometry in the tetramer complex, while each of the mutant homocomplexes was not phosphorylated. These results suggest that ATP initially binds to one protomer within the tetramer complex and then the γ-phosphoryl group is transmitted to another in a trans fashion. We further found that the sporulation defect of each of the mutant proteins is complemented when the proteins are coexpressed in vivo. Taken together, these in vitro and in vivo results reinforce the evidence that KinA autophosphorylation is able to occur in a trans fashion. IMPORTANCE Autophosphorylation of histidine kinases is known to occur by either the cis (one subunit of kinase phosphorylating itself within the multimer) or the trans (one subunit of the multimer phosphorylates the other subunit) mechanism. The present study provided direct in vivo and in vitro evidence that autophosphorylation of the major sporulation histidine kinase (KinA) is able to occur in trans within the homotetramer complex. While the physiological and mechanistic significance of the trans autophosphorylation reaction remains obscure, understanding the detailed reaction mechanism of the sporulation kinase is the first step toward gaining insight into the molecular mechanisms of the initiation of sporulation, which is believed to be triggered by unknown factors produced under conditions of nutrient depletion.
Collapse
|
19
|
Devi SN, Vishnoi M, Kiehler B, Haggett L, Fujita M. In vivo functional characterization of the transmembrane histidine kinase KinC in Bacillus subtilis. MICROBIOLOGY-SGM 2015; 161:1092-1104. [PMID: 25701730 DOI: 10.1099/mic.0.000054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/09/2015] [Indexed: 11/18/2022]
Abstract
In response to starvation, Bacillus subtilis cells differentiate into different subsets, undergoing cannibalism, biofilm formation or sporulation. These processes require a multiple component phosphorelay, wherein the master regulator Spo0A is activated upon phosphorylation by one or a combination of five histidine kinases (KinA-KinE) via two intermediate phosphotransferases, Spo0F and Spo0B. In this study, we focused on KinC, which was originally identified as a sporulation kinase and was later shown to regulate cannibalism and biofilm formation. First, genetic experiments using both the domesticated and undomesticated (biofilm forming) strains revealed that KinC activity and the membrane localization are independent of both the lipid raft marker proteins FloTA and cytoplasmic potassium concentration, which were previously shown to be required for the kinase activity. Next, we demonstrated that KinC controls cannibalism and biofilm formation in a manner dependent on phosphorelay. For further detailed characterization of KinC, we established an IPTG-inducible expression system in the domesticated strain, in which biofilm formation is defective, for simplicity of study. Using this system, we found that the N-terminal transmembrane domain is dispensable but the PAS domain is needed for the kinase activity. An in vivo chemical cross-linking experiment demonstrated that the soluble and functional KinC (KinC(ΔTM1+2)) forms a tetramer. Based on these results, we propose a revised model in which KinC becomes active by forming a homotetramer via the N-terminal PAS domain, but its activity is independent of both the lipid raft and the potassium leakage, which was previously suggested to be induced by surfactin.
Collapse
Affiliation(s)
- Seram Nganbiton Devi
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Monika Vishnoi
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Brittany Kiehler
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Lindsey Haggett
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| |
Collapse
|
20
|
Ihekwaba AEC, Mura I, Barker GC. Computational modelling and analysis of the molecular network regulating sporulation initiation in Bacillus subtilis. BMC SYSTEMS BIOLOGY 2014; 8:119. [PMID: 25341802 PMCID: PMC4213463 DOI: 10.1186/s12918-014-0119-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/13/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Bacterial spores are important contaminants in food, and the spore forming bacteria are often implicated in food safety and food quality considerations. Spore formation is a complex developmental process involving the expression of more than 500 genes over the course of 6 to 8 hrs. The process culminates in the formation of resting cells capable of resisting environmental extremes and remaining dormant for long periods of time, germinating when conditions promote further vegetative growth. Experimental observations of sporulation and germination are problematic and time consuming so that reliable models are an invaluable asset in terms of prediction and risk assessment. In this report we develop a model which assists in the interpretation of sporulation dynamics. RESULTS This paper defines and analyses a mathematical model for the network regulating Bacillus subtilis sporulation initiation, from sensing of sporulation signals down to the activation of the early genes under control of the master regulator Spo0A. Our model summarises and extends other published modelling studies, by allowing the user to execute sporulation initiation in a scenario where Isopropyl β-D-1-thiogalactopyranoside (IPTG) is used as an artificial sporulation initiator as well as in modelling the induction of sporulation in wild-type cells. The analysis of the model results and the comparison with experimental data indicate that the model is good at predicting inducible responses to sporulation signals. However, the model is unable to reproduce experimentally observed accumulation of phosphorelay sporulation proteins in wild type B. subtilis. This model also highlights that the phosphorelay sub-component, which relays the signals detected by the sensor kinases to the master regulator Spo0A, is crucial in determining the response dynamics of the system. CONCLUSION We show that there is a complex connectivity between the phosphorelay features and the master regulatory Spo0A. Additional we discovered that the experimentally observed regulation of the phosphotransferase Spo0B for wild-type B. subtilis may be playing an important role in the network which suggests that modelling of sporulation initiation may require additional experimental support.
Collapse
Affiliation(s)
- Adaoha E C Ihekwaba
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, UK.
| | - Ivan Mura
- Faculty of Engineering, EAN University, Carrera 11 No. 78 - 47, Bogotá, Colombia.
| | - Gary C Barker
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, UK.
| |
Collapse
|
21
|
Asymmetric division and differential gene expression during a bacterial developmental program requires DivIVA. PLoS Genet 2014; 10:e1004526. [PMID: 25101664 PMCID: PMC4125091 DOI: 10.1371/journal.pgen.1004526] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/05/2014] [Indexed: 11/24/2022] Open
Abstract
Sporulation in the bacterium Bacillus subtilis is a developmental program in which a progenitor cell differentiates into two different cell types, the smaller of which eventually becomes a dormant cell called a spore. The process begins with an asymmetric cell division event, followed by the activation of a transcription factor, σF, specifically in the smaller cell. Here, we show that the structural protein DivIVA localizes to the polar septum during sporulation and is required for asymmetric division and the compartment-specific activation of σF. Both events are known to require a protein called SpoIIE, which also localizes to the polar septum. We show that DivIVA copurifies with SpoIIE and that DivIVA may anchor SpoIIE briefly to the assembling polar septum before SpoIIE is subsequently released into the forespore membrane and recaptured at the polar septum. Finally, using super-resolution microscopy, we demonstrate that DivIVA and SpoIIE ultimately display a biased localization on the side of the polar septum that faces the smaller compartment in which σF is activated. A central feature of developmental programs is the establishment of asymmetry and the production of genetically identical daughter cells that display different cell fates. Sporulation in the bacterium Bacillus subtilis is a simple developmental program in which the cell divides asymmetrically to produce two daughter cells, after which the transcription factor σF is activated specifically in the smaller cell. Here we investigated DivIVA, which localizes to highly negatively curved membranes, and discovered that it localizes at the asymmetric division site. In the absence of DivIVA, cells failed to asymmetrically divide and prematurely activated σF in the predivisional cell, largely unreported phenotypes for any deletion mutant in a sporulation gene. We found that DivIVA copurifies with SpoIIE, a protein that is required for asymmetric division and σF activation, and that both proteins preferentially localize on the side of the septum facing the smaller daughter cell. DivIVA is therefore a previously overlooked structural factor that is required at the onset of sporulation to mediate both asymmetric division and compartment-specific transcription.
Collapse
|
22
|
Vishnoi M, Narula J, Devi SN, Dao HA, Igoshin OA, Fujita M. Triggering sporulation in Bacillus subtilis with artificial two-component systems reveals the importance of proper Spo0A activation dynamics. Mol Microbiol 2013; 90:181-94. [PMID: 23927765 DOI: 10.1111/mmi.12357] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2013] [Indexed: 11/27/2022]
Abstract
Sporulation initiation in Bacillus subtilis is controlled by the phosphorylated form of the master regulator Spo0A which controls transcription of a multitude of sporulation genes. In this study, we investigated the importance of temporal dynamics of phosphorylated Spo0A (Spo0A∼P) accumulation by rewiring the network controlling its phosphorylation. We showed that simultaneous induction of KinC, a kinase that can directly phosphorylate Spo0A, and Spo0A itself from separately controlled inducible promoters can efficiently trigger sporulation even under nutrient rich conditions. However, the sporulation efficiency in this artificial two-component system was significantly impaired when KinC and/or Spo0A induction was too high. Using mathematical modelling, we showed that gradual accumulation of Spo0A∼P is essential for the proper temporal order of the Spo0A regulon expression, and that reduction in sporulation efficiency results from the reversal of that order. These insights led us to identify premature repression of DivIVA as one possible explanation for the adverse effects of accelerated accumulation of Spo0A∼P on sporulation. Moreover, we found that positive feedback resulting from autoregulation of the native spo0A promoter leads to robust control of Spo0A∼P accumulation kinetics. Thus we propose that a major function of the conserved architecture of the sporulation network is controlling Spo0A activation dynamics.
Collapse
Affiliation(s)
- Monika Vishnoi
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | | | | | | | | | | |
Collapse
|
23
|
Role of the PAS sensor domains in the Bacillus subtilis sporulation kinase KinA. J Bacteriol 2013; 195:2349-58. [PMID: 23504013 DOI: 10.1128/jb.00096-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Histidine kinases are sophisticated molecular sensors that are used by bacteria to detect and respond to a multitude of environmental signals. KinA is the major histidine kinase required for initiation of sporulation upon nutrient deprivation in Bacillus subtilis. KinA has a large N-terminal region (residues 1 to 382) that is uniquely composed of three tandem Per-ARNT-Sim (PAS) domains that have been proposed to constitute a sensor module. To further enhance our understanding of this "sensor" region, we defined the boundaries that give rise to the minimal autonomously folded PAS domains and analyzed their homo- and heteroassociation properties using analytical ultracentrifugation, nuclear magnetic resonance (NMR) spectroscopy, and multiangle laser light scattering. We show that PAS(A) self-associates very weakly, while PAS(C) is primarily a monomer. In contrast, PAS(B) forms a stable dimer (K(d) [dissociation constant] of <10 nM), and it appears to be the main N-terminal determinant of KinA dimerization. Analysis of KinA mutants deficient for one or more PAS domains revealed a critical role for PAS(B), but not PAS(A), in autophosphorylation of KinA. Our findings suggest that dimerization of PAS(B) is important for keeping the catalytic domain of KinA in a functional conformation. We use this information to propose a model for the structure of the N-terminal sensor module of KinA.
Collapse
|
24
|
Abstract
Starving Bacillus subtilis cells execute a gene expression program resulting in the formation of stress-resistant spores. Sporulation master regulator, Spo0A, is activated by a phosphorelay and controls the expression of a multitude of genes, including the forespore-specific sigma factor σ(F) and the mother cell-specific sigma factor σ(E). Identification of the system-level mechanism of the sporulation decision is hindered by a lack of direct control over Spo0A activity. This limitation can be overcome by using a synthetic system in which Spo0A activation is controlled by inducing expression of phosphorelay kinase KinA. This induction results in a switch-like increase in the number of sporulating cells at a threshold of KinA. Using a combination of mathematical modeling and single-cell microscopy, we investigate the origin and physiological significance of this ultrasensitive threshold. The results indicate that the phosphorelay is unable to achieve a sufficiently fast and ultrasensitive response via its positive feedback architecture, suggesting that the sporulation decision is made downstream. In contrast, activation of σ(F) in the forespore and of σ(E) in the mother cell compartments occurs via a cascade of coherent feed-forward loops, and thereby can produce fast and ultrasensitive responses as a result of KinA induction. Unlike σ(F) activation, σ(E) activation in the mother cell compartment only occurs above the KinA threshold, resulting in completion of sporulation. Thus, ultrasensitive σ(E) activation explains the KinA threshold for sporulation induction. We therefore infer that under uncertain conditions, cells initiate sporulation but postpone making the sporulation decision to average stochastic fluctuations and to achieve a robust population response.
Collapse
|
25
|
Higgins D, Dworkin J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol Rev 2011; 36:131-48. [PMID: 22091839 DOI: 10.1111/j.1574-6976.2011.00310.x] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 08/25/2011] [Accepted: 09/02/2011] [Indexed: 11/29/2022] Open
Abstract
The Gram-positive bacterium Bacillus subtilis can initiate the process of sporulation under conditions of nutrient limitation. Here, we review some of the last 5 years of work in this area, with a particular focus on the decision to initiate sporulation, DNA translocation, cell-cell communication, protein localization and spore morphogenesis. The progress we describe has implications not only just for the study of sporulation but also for other biological systems where homologs of sporulation-specific proteins are involved in vegetative growth.
Collapse
Affiliation(s)
- Douglas Higgins
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | |
Collapse
|
26
|
Hammerstrom TG, Roh JH, Nikonowicz EP, Koehler TM. Bacillus anthracis virulence regulator AtxA: oligomeric state, function and CO(2) -signalling. Mol Microbiol 2011; 82:634-47. [PMID: 21923765 DOI: 10.1111/j.1365-2958.2011.07843.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AtxA, a unique regulatory protein of unknown molecular function, positively controls expression of the major virulence genes of Bacillus anthracis. The 475 amino acid sequence of AtxA reveals DNA binding motifs and regions similar to proteins associated with the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS). We used strains producing native and functional epitope-tagged AtxA proteins to examine protein-protein interactions in cell lysates and in solutions of purified protein. Co-affinity purification, non-denaturing polyacrylamide gel electrophoresis and bis(maleimido)hexane (BMH) cross-linking experiments revealed AtxA homo-multimers. Dimers were the most abundant species. BMH cross-links available cysteines within 13 Å. To localize interaction sites, six AtxA mutants containing distinct Cys→Ser substitutions were tested for multimerization and cross-linking. All mutants multimerized, but one mutation, C402S, prevented cross-linking. Thus, BMH uses C402 to make the inter-molecular bond between AtxA proteins, but C402 is not required for protein-protein interaction. C402 is in a region bearing amino acid similarity to Enzyme IIB proteins of the PTS. The AtxA EIIB motif may function in protein oligomerization. Finally, cultures grown with elevated CO(2) /bicarbonate exhibited increased AtxA dimer/monomer ratios and increased AtxA activity, relative to cultures grown without added CO(2) /bicarbonate, suggesting that this host-associated signal enhances AtxA function by shifting the dimer/monomer equilibrium towards the dimeric state.
Collapse
Affiliation(s)
- Troy G Hammerstrom
- Department of Microbiology and Molecular Genetics, The University of Texas - Houston Health Science Center, Medical School, Houston, TX, USA
| | | | | | | |
Collapse
|
27
|
Expression level of a chimeric kinase governs entry into sporulation in Bacillus subtilis. J Bacteriol 2011; 193:6113-22. [PMID: 21926229 DOI: 10.1128/jb.05920-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Upon starvation, Bacillus subtilis cells switch from growth to sporulation. It is believed that the N-terminal sensor domain of the cytoplasmic histidine kinase KinA is responsible for detection of the sporulation-specific signal(s) that appears to be produced only under starvation conditions. Following the sensing of the signal, KinA triggers autophosphorylation of the catalytic histidine residue in the C-terminal domain to transmit the phosphate moiety, via phosphorelay, to the master regulator for sporulation, Spo0A. However, there is no direct evidence to support the function of the sensor domain, because the specific signal(s) has never been found. To investigate the role of the N-terminal sensor domain, we replaced the endogenous three-PAS repeat in the N-terminal domain of KinA with a two-PAS repeat derived from Escherichia coli and examined the function of the resulting chimeric protein. Despite the introduction of a foreign domain, we found that the resulting chimeric protein, in a concentration-dependent manner, triggered sporulation by activating Spo0A through phosphorelay, irrespective of nutrient availability. Further, by using chemical cross-linking, we showed that the chimeric protein exists predominantly as a tetramer, mediated by the N-terminal domain, as was found for KinA. These results suggest that tetramer formation mediated by the N-terminal domain, regardless of the origin of the protein, is important and sufficient for the kinase activity catalyzed by the C-terminal domain. Taken together with our previous observations, we propose that the primary role of the N-terminal domain of KinA is to form a functional tetramer, but not for sensing an unknown signal.
Collapse
|
28
|
The threshold level of the sensor histidine kinase KinA governs entry into sporulation in Bacillus subtilis. J Bacteriol 2010; 192:3870-82. [PMID: 20511506 DOI: 10.1128/jb.00466-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sporulation in Bacillus subtilis is controlled by a complex gene regulatory circuit that is activated upon nutrient deprivation. The initial process is directed by the phosphorelay, involving the major sporulation histidine kinase (KinA) and two additional phosphotransferases (Spo0F and Spo0B), that activates the master transcription factor Spo0A. Little is known about the initial event and mechanisms that trigger sporulation. Using a strain in which the synthesis of KinA is under the control of an IPTG (isopropyl-beta-d-thiogalactopyranoside)-inducible promoter, here we demonstrate that inducing the synthesis of the KinA beyond a certain level leads to the entry of the irreversible process of sporulation irrespective of nutrient availability. Moreover, the engineered cells expressing KinA under a sigma(H)-dependent promoter that is similar to but stronger than the endogenous kinA promoter induce sporulation during growth. These cells, which we designated COS (constitutive sporulation) cells, exhibit the morphology and properties of sporulating cells and express sporulation marker genes under nutrient-rich conditions. Thus, we created an engineered strain displaying two cell cycles (growth and sporulation) integrated into one cycle irrespective of culture conditions, while in the wild type, the appropriate cell fate decision is made depending on nutrient availability. These results suggest that the threshold level of the major sporulation kinase acts as a molecular switch to determine cell fate and may rule out the possibility that the activity of KinA is regulated in response to the unknown signal(s).
Collapse
|
29
|
Eswaramoorthy P, Dinh J, Duan D, Igoshin OA, Fujita M. Single-cell measurement of the levels and distributions of the phosphorelay components in a population of sporulating Bacillus subtilis cells. MICROBIOLOGY-SGM 2010; 156:2294-2304. [PMID: 20413551 DOI: 10.1099/mic.0.038497-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Upon nutrient starvation, the Gram-positive bacterium Bacillus subtilis switches from growth to sporulation by activating a multicomponent phosphorelay consisting of a major sensor histidine kinase (KinA), two phosphotransferases (Spo0F and Spo0B) and a response regulator (Spo0A). Although the primary sporulation signal(s) produced under starvation conditions is not known, it is believed that the reception of a signal(s) on the sensor kinase results in the activation of autophosphorylation of the enzyme. The phosphorylated kinase transfers the phosphate group to Spo0A via the phosphorelay and thus triggers sporulation. With a combination of quantitative immunoblot analysis, microscopy imaging and computational analysis, here we found that each of the phosphorelay components tested increased gradually over the period of sporulation, and that Spo0F was expressed in a more heterogeneous pattern than KinA and Spo0B in a sporulating cell population. We determined molecule numbers and concentrations of each phosphorelay component under physiological sporulation conditions at the single-cell level. Based on these results, we suggest that successful entry into the sporulation state is manifested by a certain critical level of each phosphorelay component, and thus that only a subpopulation achieves a sufficient intracellular quorum of the phosphorelay components to activate Spo0A and proceed successfully to the entry into sporulation.
Collapse
Affiliation(s)
| | - Jeffrey Dinh
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Daniel Duan
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX 77251-1892, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| |
Collapse
|
30
|
Systematic domain deletion analysis of the major sporulation kinase in Bacillus subtilis. J Bacteriol 2010; 192:1744-8. [PMID: 20081035 DOI: 10.1128/jb.01481-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To characterize the role of the three PAS domains in KinA, the major sporulation kinase in Bacillus subtilis, we constructed a series of systematic PAS domain deletion mutants and analyzed their activities using an IPTG (isopropyl-beta-d-thiogalactopyranoside)-inducible artificial sporulation induction system, which we have developed recently. The results showed that any one of the three PAS domains is sufficient to maintain the kinase activity and trigger sporulation, if not fully then at least partially, when the protein levels increase beyond a certain level.
Collapse
|
31
|
López D, Kolter R. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol Rev 2009; 34:134-49. [PMID: 20030732 DOI: 10.1111/j.1574-6976.2009.00199.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The soil-dwelling bacterium Bacillus subtilis differentiates into distinct subpopulations of specialized cells that coexist within highly structured communities. The coordination and interplay between these cell types requires extensive extracellular communication driven mostly by sensing self-generated secreted signals. These extracellular signals activate a set of sensor kinases, which respond by phosphorylating three major regulatory proteins, Spo0A, DegU and ComA. Each phosphorylated regulator triggers a specific differentiation program while at the same time repressing other differentiation programs. This allows a cell to differentiate in response to a specific cue, even in the presence of other, possibly conflicting, signals. The sensor kinases involved respond to an eclectic group of extracellular signals, such as quorum-sensing molecules, natural products, temperature, pH or scarcity of nutrients. This article reviews the cascades of cell differentiation pathways that are triggered by sensing extracellular signals. We also present a tentative developmental model in which the diverse cell types sequentially differentiate to achieve the proper development of the bacterial community.
Collapse
Affiliation(s)
- Daniel López
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|