1
|
David A, Louis M, Tahrioui A, Rodrigues S, Labbé C, Maillot O, Barreau M, Lesouhaitier O, Cornelis P, Chevalier S, Bouffartigues E. cmpX overexpression in Pseudomonas aeruginosa affects biofilm formation and cell morphology in response to shear stress. Biofilm 2024; 7:100191. [PMID: 38544741 PMCID: PMC10965496 DOI: 10.1016/j.bioflm.2024.100191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing chronic infections that are related to its ability to form biofilms. Mechanosensitive ion channels (Mcs) are cytoplasmic membrane proteins whose opening depends on a mechanical stress impacting the lipid bilayer. CmpX is a homologue of the small conductance MscS of Escherichia coli. The cmpX gene is part of a transcriptional cfrX-cmpX unit that is under the control of the cell envelope stress response ECF sigma factor SigX. CmpX was shown to regulate the activity of the hybrid sensor kinase PA1611 involved in the regulation of transition from a planktonic to a biofilm lifestyle. The deletion of cmpX leads to increased biofilm formation under static conditions. Herein, the effect of cmpX overexpression was investigated by confocal laser scanning microscopy in terms of biofilm formation and architecture, and matrix components production, in dynamic conditions. We show that overexpression of cmpX in P. aeruginosa leads to enhanced and altered biofilm architecture that seems to be associated to increased matrix components and the emergence of filamentous cells. These phenotypic alterations might occur potentially through a shear stress induced by the medium flow rate. Importance CmpX is involved in biofilm formation and cell filamentation with regards to the medium flow.
Collapse
Affiliation(s)
- Audrey David
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Mélissande Louis
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Ali Tahrioui
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100, Lorient, France
| | - Clarisse Labbé
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Olivier Maillot
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Magalie Barreau
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Olivier Lesouhaitier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Pierre Cornelis
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Sylvie Chevalier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Emeline Bouffartigues
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| |
Collapse
|
2
|
David A, Tahrioui A, Duchesne R, Tareau AS, Maillot O, Barreau M, Feuilloley MGJ, Lesouhaitier O, Cornelis P, Bouffartigues E, Chevalier S. Membrane fluidity homeostasis is required for tobramycin-enhanced biofilm in Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0230323. [PMID: 38411953 PMCID: PMC10986583 DOI: 10.1128/spectrum.02303-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen, which causes chronic infections, especially in cystic fibrosis (CF) patients where it colonizes the lungs via the build-up of biofilms. Tobramycin, an aminoglycoside, is often used to treat P. aeruginosa infections in CF patients. Tobramycin at sub-minimal inhibitory concentrations enhances both biofilm biomass and thickness in vitro; however, the mechanism(s) involved are still unknown. Herein, we show that tobramycin increases the expression and activity of SigX, an extracytoplasmic sigma factor known to be involved in the biosynthesis of membrane lipids and membrane fluidity homeostasis. The biofilm enhancement by tobramycin is not observed in a sigX mutant, and the sigX mutant displays increased membrane stiffness. Remarkably, the addition of polysorbate 80 increases membrane fluidity of sigX-mutant cells in biofilm, restoring the tobramycin-enhanced biofilm formation. Our results suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.IMPORTANCEPrevious studies have shown that sub-lethal concentrations of tobramycin led to an increase biofilm formation in the case of infections with the opportunistic pathogen Pseudomonas aeruginosa. We show that the mechanism involved in this phenotype relies on the cell envelope stress response, triggered by the extracytoplasmic sigma factor SigX. This phenotype was abolished in a sigX-mutant strain. Remarkably, we show that increasing the membrane fluidity of the mutant strain is sufficient to restore the effect of tobramycin. Altogether, our data suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.
Collapse
Affiliation(s)
- Audrey David
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Ali Tahrioui
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Rachel Duchesne
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Anne-Sophie Tareau
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Olivier Maillot
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Magalie Barreau
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Marc G. J. Feuilloley
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Olivier Lesouhaitier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Pierre Cornelis
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Emeline Bouffartigues
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Sylvie Chevalier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| |
Collapse
|
3
|
Yaeger LN, Ranieri MRM, Chee J, Karabelas-Pittman S, Rudolph M, Giovannoni AM, Harvey H, Burrows LL. A genetic screen identifies a role for oprF in Pseudomonas aeruginosa biofilm stimulation by subinhibitory antibiotics. NPJ Biofilms Microbiomes 2024; 10:30. [PMID: 38521769 PMCID: PMC10960818 DOI: 10.1038/s41522-024-00496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
Biofilms are surface-associated communities of bacteria that grow in a self-produced matrix of polysaccharides, proteins, and extracellular DNA (eDNA). Sub-minimal inhibitory concentrations (sub-MIC) of antibiotics induce biofilm formation, potentially as a defensive response to antibiotic stress. However, the mechanisms behind sub-MIC antibiotic-induced biofilm formation are unclear. We show that treatment of Pseudomonas aeruginosa with multiple classes of sub-MIC antibiotics with distinct targets induces biofilm formation. Further, addition of exogenous eDNA or cell lysate failed to increase biofilm formation to the same extent as antibiotics, suggesting that the release of cellular contents by antibiotic-driven bacteriolysis is insufficient. Using a genetic screen for stimulation-deficient mutants, we identified the outer membrane porin OprF and the ECF sigma factor SigX as important. Similarly, loss of OmpA - the Escherichia coli OprF homolog - prevented sub-MIC antibiotic stimulation of E. coli biofilms. Our screen also identified the periplasmic disulfide bond-forming enzyme DsbA and a predicted cyclic-di-GMP phosphodiesterase encoded by PA2200 as essential for biofilm stimulation. The phosphodiesterase activity of PA2200 is likely controlled by a disulfide bond in its regulatory domain, and folding of OprF is influenced by disulfide bond formation, connecting the mutant phenotypes. Addition of reducing agent dithiothreitol prevented sub-MIC antibiotic biofilm stimulation. Finally, activation of a c-di-GMP-responsive promoter follows treatment with sub-MIC antibiotics in the wild-type but not an oprF mutant. Together, these results show that antibiotic-induced biofilm formation is likely driven by a signaling pathway that translates changes in periplasmic redox state into elevated biofilm formation through increases in c-di-GMP.
Collapse
Affiliation(s)
- Luke N Yaeger
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michael R M Ranieri
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Jessica Chee
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Sawyer Karabelas-Pittman
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Madeleine Rudolph
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Alessio M Giovannoni
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Hanjeong Harvey
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Lori L Burrows
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
4
|
Honma K, Sasaki H, Hamada N, Sharma A. An Extracytoplasmic Function Sigma/Anti-Sigma Factor System Regulates β-Glucanase Expression in Tannerella forsythia in Response to Fusobacterium nucleatum Sensing. J Bacteriol 2022; 204:e0031322. [PMID: 36448787 PMCID: PMC9765289 DOI: 10.1128/jb.00313-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
The periodontal pathogen Tannerella forsythia expresses a β-glucanase (TfGlcA) whose expression is induced in response to Fusobacterium nucleatum, a bridge bacterium of the oral cavity. TfGlcA cleaves β-glucans to release glucose, which can serve as a carbon source for F. nucleatum and other cohabiting organisms. A two-gene cluster encoding a putative extracytoplasmic function (ECF) sigma factor and a FecR-like anti-sigma factor has been recognized upstream of a TfGlcA operon. We characterized and analyzed the role of these putative ECF sigma and anti-sigma factors in the regulation of TfGlcA expression. For this purpose, deletion mutants were constructed and analyzed for β-glucanase expression. In addition, an Escherichia coli-produced ECF sigma factor recombinant protein was evaluated for transcriptional and DNA binding activities. The results showed that the recombinant protein promoted transcription by the RNA polymerase core enzyme from the glcA promoter. Furthermore, in comparison to those in the parental strain, the β-glucanase expression levels were significantly reduced in the ECF sigma-factor deletion mutant and increased significantly in the FecR anti-sigma factor deletion mutant. The levels did not change in the mutants following coincubation with the F. nucleatum whole cells or cell extracts. Finally, the levels of β-glucanase produced by T. forsythia strains paralleled F. nucleatum biomass in cobiofilms. In conclusion, we identified a β-glucanase operon regulatory system in T. forsythia comprising an ECF sigma factor (TfSigG) and a cognate FecR-like anti-sigma factor responsive to F. nucleatum and potentially other stimuli. IMPORTANCE Previous studies have shown that F. nucleatum forms robust biofilms with T. forsythia utilizing glucose from the hydrolysis of β-glucans by T. forsythia β-glucanase, induced by F. nucleatum. In this study, we showed that a regulatory system comprising of an ECF sigma factor, TfSigG, and a FecR-like anti-sigma factor, TfFecR, is responsible for the β-glucanase induction in response to F. nucleatum, suggesting that this system plays roles in the mutualistic interactions of T. forsythia and F. nucleatum. The findings suggest the development and potential utility of small-molecule inhibitors targeting the β-glucanase activity or the TfSigG/TfFecR system as therapeutic drugs against dental plaque formation and periodontitis.
Collapse
Affiliation(s)
- Kiyonobu Honma
- Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Haruka Sasaki
- Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, New York, USA
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Nobushiro Hamada
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Ashu Sharma
- Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
5
|
Abstract
Pf4 is a filamentous bacteriophage integrated as a prophage into the genome of Pseudomonas aeruginosa PAO1. Pf4 virions can be produced without killing P. aeruginosa. However, cell lysis can occur during superinfection when Pf virions successfully infect a host lysogenized by a Pf superinfective variant. We have previously shown that infection of P. aeruginosa PAO1 with a superinfective Pf4 variant abolished twitching motility and altered biofilm architecture. More precisely, most of the cells embedded into the biofilm were showing a filamentous morphology, suggesting the activation of the cell envelope stress response involving both AlgU and SigX extracytoplasmic function sigma factors. Here, we show that Pf4 variant infection results in a drastic dysregulation of 3,360 genes representing about 58% of P. aeruginosa genome; of these, 70% of the virulence factors encoding genes show a dysregulation. Accordingly, Pf4 variant infection (termed Pf4*) causes in vivo reduction of P. aeruginosa virulence and decreased production of N-acyl-homoserine lactones and 2-alkyl-4-quinolones quorum-sensing molecules and related virulence factors, such as pyocyanin, elastase, and pyoverdine. In addition, the expression of genes involved in metabolism, including energy generation and iron homeostasis, was affected, suggesting further relationships between virulence and central metabolism. Altogether, these data show that Pf4 phage variant infection results in complex network dysregulation, leading to reducing acute virulence in P. aeruginosa. This study contributes to the comprehension of the bacterial response to filamentous phage infection. IMPORTANCE Filamentous bacteriophages can become superinfective and infect P. aeruginosa, even though they are inserted in the genome as lysogens. Despite this productive infection, growth of the host is only mildly affected, allowing the study of the interaction between the phage and the host, which is not possible in the case of lytic phages killing rapidly their host. Here, we demonstrate by transcriptome and phenotypic analysis that the infection by a superinfective filamentous phage variant causes a massive disruption in gene expression, including those coding for virulence factors and metabolic pathways.
Collapse
|
6
|
Chautrand T, Depayras S, Souak D, Kondakova T, Barreau M, Kentache T, Hardouin J, Tahrioui A, Thoumire O, Konto-Ghiorghi Y, Barbey C, Ladam G, Chevalier S, Heipieper HJ, Orange N, Duclairoir-Poc C. Gaseous NO 2 induces various envelope alterations in Pseudomonas fluorescens MFAF76a. Sci Rep 2022; 12:8528. [PMID: 35595726 PMCID: PMC9122911 DOI: 10.1038/s41598-022-11606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Anthropogenic atmospheric pollution and immune response regularly expose bacteria to toxic nitrogen oxides such as NO• and NO2. These reactive molecules can damage a wide variety of biomolecules such as DNA, proteins and lipids. Several components of the bacterial envelope are susceptible to be damaged by reactive nitrogen species. Furthermore, the hydrophobic core of the membranes favors the reactivity of nitrogen oxides with other molecules, making membranes an important factor in the chemistry of nitrosative stress. Since bacteria are often exposed to endogenous or exogenous nitrogen oxides, they have acquired protection mechanisms against the deleterious effects of these molecules. By exposing bacteria to gaseous NO2, this work aims to analyze the physiological effects of NO2 on the cell envelope of the airborne bacterium Pseudomonas fluorescens MFAF76a and its potential adaptive responses. Electron microscopy showed that exposure to NO2 leads to morphological alterations of the cell envelope. Furthermore, the proteomic profiling data revealed that these cell envelope alterations might be partly explained by modifications of the synthesis pathways of multiple cell envelope components, such as peptidoglycan, lipid A, and phospholipids. Together these results provide important insights into the potential adaptive responses to NO2 exposure in P. fluorescens MFAF76a needing further investigations.
Collapse
Affiliation(s)
- Thibault Chautrand
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Ségolène Depayras
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
- Praxens, Normandy Health Security Center, 55 rue Saint-Germain, 27000, Evreux, France
| | - Djouhar Souak
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Tatiana Kondakova
- LPS-BIOSCIENCES SAS, Domaine de l'Université Paris Sud, Bâtiment 430, Université Paris Saclay, 91400, Orsay, France
| | - Magalie Barreau
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Takfarinas Kentache
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, Bâtiment DULONG - Bd Maurice de Broglie, 76821, Mont Saint Aignan Cedex, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| | - Julie Hardouin
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, Bâtiment DULONG - Bd Maurice de Broglie, 76821, Mont Saint Aignan Cedex, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| | - Ali Tahrioui
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Olivier Thoumire
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, 55 rue Saint-Germain, 27000, Evreux, France
| | - Yoan Konto-Ghiorghi
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Corinne Barbey
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Guy Ladam
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, 55 rue Saint-Germain, 27000, Evreux, France
| | - Sylvie Chevalier
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Nicole Orange
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Cécile Duclairoir-Poc
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France.
| |
Collapse
|
7
|
Sauvage S, Gaviard C, Tahrioui A, Coquet L, Le H, Alexandre S, Ben Abdelkrim A, Bouffartigues E, Lesouhaitier O, Chevalier S, Jouenne T, Hardouin J. Impact of Carbon Source Supplementations on Pseudomonas aeruginosa Physiology. J Proteome Res 2022; 21:1392-1407. [PMID: 35482949 DOI: 10.1021/acs.jproteome.1c00936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen highly resistant to a wide range of antimicrobial agents, making its infections very difficult to treat. Since microorganisms need to perpetually adapt to their surrounding environment, understanding the effect of carbon sources on P. aeruginosa physiology is therefore essential to avoid increasing drug-resistance and better fight this pathogen. By a global proteomic approach and phenotypic assays, we investigated the impact of various carbon source supplementations (glucose, glutamate, succinate, and citrate) on the physiology of the P. aeruginosa PA14 strain. A total of 581 proteins were identified as differentially expressed in the 4 conditions. Most of them were more abundant in citrate supplementation and were involved in virulence, motility, biofilm development, and antibiotic resistance. Phenotypic assays were performed to check these hypotheses. By coupling all this data, we highlight the importance of the environment in which the bacterium evolves on its metabolism, and thus the necessity to better understand the metabolic pathways implied in its adaptative response according to the nutrient availability.
Collapse
Affiliation(s)
- Salomé Sauvage
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| | - Charlotte Gaviard
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| | - Ali Tahrioui
- Laboratoire de microbiologie signaux et microenvironnement, LMSM EA4312, 55 rue Saint-Germain, 27000 Evreux, France
| | - Laurent Coquet
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| | - Hung Le
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France
| | - Stéphane Alexandre
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France
| | - Ahmed Ben Abdelkrim
- Lactanet, Valacta, 555 Boul des Anciens-Combattants, Sainte-Anne-de-Bellevue, Québec H9X 3R4, Canada
| | - Emeline Bouffartigues
- Laboratoire de microbiologie signaux et microenvironnement, LMSM EA4312, 55 rue Saint-Germain, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratoire de microbiologie signaux et microenvironnement, LMSM EA4312, 55 rue Saint-Germain, 27000 Evreux, France
| | - Sylvie Chevalier
- Laboratoire de microbiologie signaux et microenvironnement, LMSM EA4312, 55 rue Saint-Germain, 27000 Evreux, France
| | - Thierry Jouenne
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| | - Julie Hardouin
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| |
Collapse
|
8
|
Monteagudo-Cascales E, Santero E, Canosa I. The Regulatory Hierarchy Following Signal Integration by the CbrAB Two-Component System: Diversity of Responses and Functions. Genes (Basel) 2022; 13:genes13020375. [PMID: 35205417 PMCID: PMC8871633 DOI: 10.3390/genes13020375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
CbrAB is a two-component system, unique to bacteria of the family Pseudomonaceae, capable of integrating signals and involved in a multitude of physiological processes that allow bacterial adaptation to a wide variety of varying environmental conditions. This regulatory system provides a great metabolic versatility that results in excellent adaptability and metabolic optimization. The two-component system (TCS) CbrA-CbrB is on top of a hierarchical regulatory cascade and interacts with other regulatory systems at different levels, resulting in a robust output. Among the regulatory systems found at the same or lower levels of CbrAB are the NtrBC nitrogen availability adaptation system, the Crc/Hfq carbon catabolite repression cascade in Pseudomonas, or interactions with the GacSA TCS or alternative sigma ECF factor, such as SigX. The interplay between regulatory mechanisms controls a number of physiological processes that intervene in important aspects of bacterial adaptation and survival. These include the hierarchy in the use of carbon sources, virulence or resistance to antibiotics, stress response or definition of the bacterial lifestyle. The multiple actions of the CbrAB TCS result in an important competitive advantage.
Collapse
Affiliation(s)
| | - Eduardo Santero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, 41013 Seville, Spain;
| | - Inés Canosa
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, 41013 Seville, Spain;
- Correspondence: ; Tel.: +34-954349052
| |
Collapse
|
9
|
Cell Envelope Stress Response in Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:147-184. [DOI: 10.1007/978-3-031-08491-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Ramsay KA, McTavish SM, Wardell SJT, Lamont IL. The Effects of Sub-inhibitory Antibiotic Concentrations on Pseudomonas aeruginosa: Reduced Susceptibility Due to Mutations. Front Microbiol 2021; 12:789550. [PMID: 34987489 PMCID: PMC8721600 DOI: 10.3389/fmicb.2021.789550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa chronically infects in the lungs of people with cystic fibrosis and other forms of lung disease. Infections are treated with antibiotics, but over time, the bacteria acquire mutations that reduce their antibiotic susceptibility. The effects of inhibitory amounts of antibiotics in selecting for antibiotic-resistant mutants have been well studied. However, the concentrations of antibiotics that reach infecting bacteria can be sub-inhibitory and but may nonetheless promote emergence of antibiotic-resistant bacteria. Therefore, the aim of this research was to investigate the effects of sub-inhibitory concentrations of antibiotics on the antibiotic susceptibility of P. aeruginosa. Two P. aeruginosa reference strains, PAO1 and PA14, and six isolates from individuals with cystic fibrosis were studied. The bacteria were passaged in the presence of antibiotics (ceftazidime, ciprofloxacin, meropenem or tobramycin) at sub-inhibitory amounts. Fifteen populations of bacteria (up to five per strain) were exposed to each of the four antibiotics. Antibiotic susceptibility was determined following 10 passages on agar supplemented with antibiotic and compared with susceptibility prior to antibiotic exposure. Antibiotic exposure resulted in susceptibility being significantly (>2-fold) reduced for 13 of the 60 populations. Seven samples had reduced susceptibility to ciprofloxacin, three to tobramycin, two to ceftazidime and one to meropenem. Whole-genome sequencing revealed the mutations arising following antibiotic exposure. Mutants with reduced antibiotic susceptibility had mutations in genes known to affect antibiotic resistance, including regulators of efflux pumps (mexR, mexS, mexZ and nalC) and the fusA1 gene that is associated with aminoglycoside resistance. Genes not previously associated with resistance, including gacS, sigX and crfX and two genes with no known function, were also mutated in some isolates with reduced antibiotic susceptibility. Our results show that exposure to sub-inhibitory amounts of antibiotics can select for mutations that reduce the susceptibility of P. aeruginosa to antibiotics and that the profile of mutations is different from that arising during selection with inhibitory antibiotic concentrations. It is likely that exposure to sub-inhibitory amounts of antibiotics during infection contributes to P. aeruginosa becoming antibiotic-resistant.
Collapse
Affiliation(s)
| | | | | | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Stetsenko A, Stehantsev P, Dranenko NO, Gelfand MS, Guskov A. Structural and biochemical characterization of a novel ZntB (CmaX) transporter protein from Pseudomonas aeruginosa. Int J Biol Macromol 2021; 184:760-767. [PMID: 34175341 DOI: 10.1016/j.ijbiomac.2021.06.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022]
Abstract
The 2-TM-GxN family of membrane proteins is widespread in prokaryotes and plays an important role in transport of divalent cations. The canonical signature motif, which is also a selectivity filter, has a composition of Gly-Met-Asn. Some members though deviate from this composition, however no data are available as to whether this has any functional implications. Here we report the functional and structural analysis of CmaX protein from a pathogenic Pseudomonas aeruginosa bacterium, which has a Gly-Ile-Asn signature motif. CmaX readily transports Zn2+, Mg2+, Cd2+, Ni2+ and Co2+ ions, but it does not utilize proton-symport as does ZntB from Escherichia coli. Together with the bioinformatics analysis, our data suggest that deviations from the canonical signature motif do not reveal any changes in substrate selectivity or transport and easily alter in course of evolution.
Collapse
Affiliation(s)
- Artem Stetsenko
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Pavlo Stehantsev
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Natalia O Dranenko
- Institute for Information Transmission Problems (Kharkevich Institute) RAS, Moscow, Russia
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems (Kharkevich Institute) RAS, Moscow, Russia; Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Albert Guskov
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
12
|
Azuama OC, Ortiz S, Quirós-Guerrero L, Bouffartigues E, Tortuel D, Maillot O, Feuilloley M, Cornelis P, Lesouhaitier O, Grougnet R, Boutefnouchet S, Wolfender JL, Chevalier S, Tahrioui A. Tackling Pseudomonas aeruginosa Virulence by Mulinane-Like Diterpenoids from Azorella atacamensis. Biomolecules 2020; 10:E1626. [PMID: 33276611 PMCID: PMC7761567 DOI: 10.3390/biom10121626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is an important multidrug-resistant human pathogen by dint of its high intrinsic, acquired, and adaptive resistance mechanisms, causing great concern for immune-compromised individuals and public health. Additionally, P. aeruginosa resilience lies in the production of a myriad of virulence factors, which are known to be tightly regulated by the quorum sensing (QS) system. Anti-virulence therapy has been adopted as an innovative alternative approach to circumvent bacterial antibiotic resistance. Since plants are known repositories of natural phytochemicals, herein, we explored the anti-virulence potential of Azorella atacamensis, a medicinal plant from the Taira Atacama community (Calama, Chile), against P. aeruginosa. Interestingly, A. atacamensis extract (AaE) conferred a significant protection for human lung cells and Caenorhabditis elegans nematodes towards P. aeruginosa pathogenicity. The production of key virulence factors was decreased upon AaE exposure without affecting P. aeruginosa growth. In addition, AaE was able to decrease QS-molecules production. Furthermore, metabolite profiling of AaE and its derived fractions achieved by combination of a molecular network and in silico annotation allowed the putative identification of fourteen diterpenoids bearing a mulinane-like skeleton. Remarkably, this unique interesting group of diterpenoids seems to be responsible for the interference with virulence factors as well as on the perturbation of membrane homeostasis of P. aeruginosa. Hence, there was a significant increase in membrane stiffness, which appears to be modulated by the cell wall stress response ECFσ SigX, an extracytoplasmic function sigma factor involved in membrane homeostasis as well as P. aeruginosa virulence.
Collapse
Affiliation(s)
- Onyedikachi Cecil Azuama
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
- Department of Biological Sciences, Alex-Ekwueme Federal University, Ndufu Alike Ikwo PMB1010, Nigeria
| | - Sergio Ortiz
- Équipe Produits Naturels, Analyses et Synthèses (PNAS), CiTCoM UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (S.O.); (R.G.); (S.B.)
| | - Luis Quirós-Guerrero
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Science, University of Geneva, 1211 Geneva, Switzerland; (L.Q.-G.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Damien Tortuel
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Raphaël Grougnet
- Équipe Produits Naturels, Analyses et Synthèses (PNAS), CiTCoM UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (S.O.); (R.G.); (S.B.)
| | - Sabrina Boutefnouchet
- Équipe Produits Naturels, Analyses et Synthèses (PNAS), CiTCoM UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (S.O.); (R.G.); (S.B.)
| | - Jean-Luc Wolfender
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Science, University of Geneva, 1211 Geneva, Switzerland; (L.Q.-G.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Ali Tahrioui
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| |
Collapse
|
13
|
Activation of the Cell Wall Stress Response in Pseudomonas aeruginosa Infected by a Pf4 Phage Variant. Microorganisms 2020; 8:microorganisms8111700. [PMID: 33143386 PMCID: PMC7693463 DOI: 10.3390/microorganisms8111700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa PAO1 has an integrated Pf4 prophage in its genome, encoding a relatively well-characterized filamentous phage, which contributes to the bacterial biofilm organization and maturation. Pf4 variants are considered as superinfectives when they can re-infect and kill the prophage-carrying host. Herein, the response of P. aeruginosa H103 to Pf4 variant infection was investigated. This phage variant caused partial lysis of the bacterial population and modulated H103 physiology. We show by confocal laser scanning microscopy that a Pf4 variant-infection altered P. aeruginosa H103 biofilm architecture either in static or dynamic conditions. Interestingly, in the latter condition, numerous cells displayed a filamentous morphology, suggesting a link between this phenotype and flow-related forces. In addition, Pf4 variant-infection resulted in cell envelope stress response, mostly mediated by the AlgU and SigX extracytoplasmic function sigma factors (ECFσ). AlgU and SigX involvement may account, at least partly, for the enhanced expression level of genes involved in the biosynthesis pathways of two matrix exopolysaccharides (Pel and alginates) and bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) metabolism.
Collapse
|
14
|
Bouffartigues E, Si Hadj Mohand I, Maillot O, Tortuel D, Omnes J, David A, Tahrioui A, Duchesne R, Azuama CO, Nusser M, Brenner-Weiss G, Bazire A, Connil N, Orange N, Feuilloley MGJ, Lesouhaitier O, Dufour A, Cornelis P, Chevalier S. The Temperature-Regulation of Pseudomonas aeruginosa cmaX-cfrX-cmpX Operon Reveals an Intriguing Molecular Network Involving the Sigma Factors AlgU and SigX. Front Microbiol 2020; 11:579495. [PMID: 33193206 PMCID: PMC7641640 DOI: 10.3389/fmicb.2020.579495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable Gram-negative opportunistic pathogen, notably due to its large number of transcription regulators. The extracytoplasmic sigma factor (ECFσ) AlgU, responsible for alginate biosynthesis, is also involved in responses to cell wall stress and heat shock via the RpoH alternative σ factor. The SigX ECFσ emerged as a major regulator involved in the envelope stress response via membrane remodeling, virulence and biofilm formation. However, their functional interactions to coordinate the envelope homeostasis in response to environmental variations remain to be determined. The regulation of the putative cmaX-cfrX-cmpX operon located directly upstream sigX was investigated by applying sudden temperature shifts from 37°C. We identified a SigX- and an AlgU- dependent promoter region upstream of cfrX and cmaX, respectively. We show that cmaX expression is increased upon heat shock through an AlgU-dependent but RpoH independent mechanism. In addition, the ECFσ SigX is activated in response to valinomycin, an agent altering the membrane structure, and up-regulates cfrX-cmpX transcription in response to cold shock. Altogether, these data provide new insights into the regulation exerted by SigX and networks that are involved in maintaining envelope homeostasis.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Ishac Si Hadj Mohand
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Damien Tortuel
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Jordane Omnes
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Audrey David
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Ali Tahrioui
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Rachel Duchesne
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Cecil Onyedikachi Azuama
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Michael Nusser
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines (LBCM) EA3884, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Nicole Orange
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Marc G J Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines (LBCM) EA3884, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| |
Collapse
|
15
|
Tahrioui A, Ortiz S, Azuama OC, Bouffartigues E, Benalia N, Tortuel D, Maillot O, Chemat S, Kritsanida M, Feuilloley M, Orange N, Michel S, Lesouhaitier O, Cornelis P, Grougnet R, Boutefnouchet S, Chevalier S. Membrane-Interactive Compounds From Pistacia lentiscus L. Thwart Pseudomonas aeruginosa Virulence. Front Microbiol 2020; 11:1068. [PMID: 32528451 PMCID: PMC7264755 DOI: 10.3389/fmicb.2020.01068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is capable to deploy a collection of virulence factors that are not only essential for host infection and persistence, but also to escape from the host immune system and to become more resistant to drug therapies. Thus, developing anti-virulence agents that may directly counteract with specific virulence factors or disturb higher regulatory pathways controlling the production of virulence armories are urgently needed. In this regard, this study reports that Pistacia lentiscus L. fruit cyclohexane extract (PLFE1) thwarts P. aeruginosa virulence by targeting mainly the pyocyanin pigment production by interfering with 4-hydroxy-2-alkylquinolines molecules production. Importantly, the anti-virulence activity of PLFE1 appears to be associated with membrane homeostasis alteration through the modulation of SigX, an extracytoplasmic function sigma factor involved in cell wall stress response. A thorough chemical analysis of PLFE1 allowed us to identify the ginkgolic acid (C17:1) and hydroginkgolic acid (C15:0) as the main bioactive membrane-interactive compounds responsible for the observed increased membrane stiffness and anti-virulence activity against P. aeruginosa. This study delivers a promising perspective for the potential future use of PLFE1 or ginkgolic acid molecules as an adjuvant therapy to fight against P. aeruginosa infections.
Collapse
Affiliation(s)
- Ali Tahrioui
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Sergio Ortiz
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Onyedikachi Cecil Azuama
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Nabiha Benalia
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Damien Tortuel
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Smain Chemat
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, CRAPC, Bou Ismaïl, Algeria
| | - Marina Kritsanida
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Nicole Orange
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Sylvie Michel
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Raphaël Grougnet
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Sabrina Boutefnouchet
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| |
Collapse
|
16
|
Bouteiller M, Gallique M, Bourigault Y, Kosta A, Hardouin J, Massier S, Konto-Ghiorghi Y, Barbey C, Latour X, Chane A, Feuilloley M, Merieau A. Crosstalk between the Type VI Secretion System and the Expression of Class IV Flagellar Genes in the Pseudomonas fluorescens MFE01 Strain. Microorganisms 2020; 8:microorganisms8050622. [PMID: 32344878 PMCID: PMC7286023 DOI: 10.3390/microorganisms8050622] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 11/16/2022] Open
Abstract
Type VI secretion systems (T6SSs) are contractile bacterial multiprotein nanomachines that enable the injection of toxic effectors into prey cells. The Pseudomonas fluorescens MFE01 strain has T6SS antibacterial activity and can immobilise competitive bacteria through the T6SS. Hcp1 (hemolysin co-regulated protein 1), a constituent of the T6SS inner tube, is involved in such prey cell inhibition of motility. Paradoxically, disruption of the hcp1 or T6SS contractile tail tssC genes results in the loss of the mucoid and motile phenotypes in MFE01. Here, we focused on the relationship between T6SS and flagella-associated motility. Electron microscopy revealed the absence of flagellar filaments for MFE01Δhcp1 and MFE01ΔtssC mutants. Transcriptomic analysis showed a reduction in the transcription of class IV flagellar genes in these T6SS mutants. However, transcription of fliA, the gene encoding the class IV flagellar sigma factor, was unaffected. Over-expression of fliA restored the motile and mucoid phenotypes in both MFE01Δhcp1+fliA, and MFE01ΔtssC+fliA and a fliA mutant displayed the same phenotypes as MFE01Δhcp1 and MFE01ΔtssC. Moreover, the FliA anti-sigma factor FlgM was not secreted in the T6SS mutants, and flgM over-expression reduced both motility and mucoidy. This study provides arguments to unravel the crosstalk between T6SS and motility.
Collapse
Affiliation(s)
- Mathilde Bouteiller
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, F-76821 Mont-Saint-Aignan, France
| | - Mathias Gallique
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
- Meakins-Christie laboratories, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Yvann Bourigault
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, F-76821 Mont-Saint-Aignan, France
| | - Artemis Kosta
- Plateforme de Microscopie de l’Institut de Microbiologie de la Méditerranée, IMM, Institut de Microbiologie, FR3479, Campus CNRS, 13402 Marseille cedex 20, France;
| | - Julie Hardouin
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, University of Rouen, F-76821 Mont-Saint-Aignan cedex, France; (J.H.); (S.M.)
- PISSARO Proteomics Facility, Université de Rouen, F-76821 Mont-Saint-Aignan, France
| | - Sebastien Massier
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, University of Rouen, F-76821 Mont-Saint-Aignan cedex, France; (J.H.); (S.M.)
- PISSARO Proteomics Facility, Université de Rouen, F-76821 Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
| | - Corinne Barbey
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, F-76821 Mont-Saint-Aignan, France
| | - Xavier Latour
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, F-76821 Mont-Saint-Aignan, France
| | - Andréa Chane
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, F-76821 Mont-Saint-Aignan, France
| | - Marc Feuilloley
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
| | - Annabelle Merieau
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (M.G.); (Y.B.); (Y.K.-G.); (C.B.); (X.L.); (A.C.); (M.F.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, F-76821 Mont-Saint-Aignan, France
- Correspondence:
| |
Collapse
|
17
|
Otero-Asman JR, Wettstadt S, Bernal P, Llamas MA. Diversity of extracytoplasmic function sigma (σ ECF ) factor-dependent signaling in Pseudomonas. Mol Microbiol 2019; 112:356-373. [PMID: 31206859 DOI: 10.1111/mmi.14331] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 12/23/2022]
Abstract
Pseudomonas bacteria are widespread and are found in soil and water, as well as pathogens of both plants and animals. The ability of Pseudomonas to colonize many different environments is facilitated by the multiple signaling systems these bacteria contain that allow Pseudomonas to adapt to changing circumstances by generating specific responses. Among others, signaling through extracytoplasmic function σ (σECF ) factors is extensively present in Pseudomonas. σECF factors trigger expression of functions required under particular conditions in response to specific signals. This manuscript reviews the phylogeny and biological roles of σECF factors in Pseudomonas, and highlights the diversity of σECF -signaling pathways of this genus in terms of function and activation. We show that Pseudomonas σECF factors belong to 16 different phylogenetic groups. Most of them are included within the iron starvation group and are mainly involved in iron acquisition. The second most abundant group is formed by RpoE-like σECF factors, which regulate the responses to cell envelope stress. Other groups controlling solvent tolerance, biofilm formation and the response to oxidative stress, among other functions, are present in lower frequency. The role of σECF factors in the virulence of Pseudomonas pathogenic species is described.
Collapse
Affiliation(s)
- Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Sarah Wettstadt
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Patricia Bernal
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
18
|
Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in Pseudomonas aeruginosa tobramycin-enhanced biofilm formation. NPJ Biofilms Microbiomes 2019; 5:15. [PMID: 31149345 PMCID: PMC6533273 DOI: 10.1038/s41522-019-0088-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Biofilms are structured microbial communities that are the leading cause of numerous chronic infections which are difficult to eradicate. Within the lungs of individuals with cystic fibrosis (CF), Pseudomonas aeruginosa causes persistent biofilm infection that is commonly treated with aminoglycoside antibiotics such as tobramycin. However, sublethal concentrations of this aminoglycoside were previously shown to increase biofilm formation by P. aeruginosa, but the underlying adaptive mechanisms still remain elusive. Herein, we combined confocal laser scanning microscope analyses, proteomics profiling, gene expression assays and phenotypic studies to unravel P. aeruginosa potential adaptive mechanisms in response to tobramycin exposure during biofilm growth. Under this condition, we show that the modified biofilm architecture is related at least in part to increased extracellular DNA (eDNA) release, most likely as a result of biofilm cell death. Furthermore, the activity of quorum sensing (QS) systems was increased, leading to higher production of QS signaling molecules. We also demonstrate upon tobramycin exposure an increase in expression of the PrrF small regulatory RNAs, as well as expression of iron uptake systems. Remarkably, biofilm biovolumes and eDNA relative abundances in pqs and prrF mutant strains decrease in the presence of tobramycin. Overall, our findings offer experimental evidences for a potential adaptive mechanism linking PrrF sRNAs, QS signaling, biofilm cell death, eDNA release, and tobramycin-enhanced biofilm formation in P. aeruginosa. These specific adaptive mechanisms should be considered to improve treatment strategies against P. aeruginosa biofilm establishment in CF patients’ lungs.
Collapse
|
19
|
Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in Pseudomonas putida Lysine Metabolism. mBio 2019; 10:mBio.02577-18. [PMID: 31064836 PMCID: PMC6509195 DOI: 10.1128/mbio.02577-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
P. putida lysine metabolism can produce multiple commodity chemicals, conferring great biotechnological value. Despite much research, the connection of lysine catabolism to central metabolism in P. putida remained undefined. Here, we used random barcode transposon sequencing to fill the gaps of lysine metabolism in P. putida. We describe a route of 2-oxoadipate (2OA) catabolism, which utilizes DUF1338-containing protein P. putida 5260 (PP_5260) in bacteria. Despite its prevalence in many domains of life, DUF1338-containing proteins have had no known biochemical function. We demonstrate that PP_5260 is a metalloenzyme which catalyzes an unusual route of decarboxylation of 2OA to d-2-hydroxyglutarate (d-2HG). Our screen also identified a recently described novel glutarate metabolic pathway. We validate previous results and expand the understanding of glutarate hydroxylase CsiD by showing that can it use either 2OA or 2KG as a cosubstrate. Our work demonstrated that biological novelty can be rapidly identified using unbiased experimental genetics and that RB-TnSeq can be used to rapidly validate previous results. Despite intensive study for 50 years, the biochemical and genetic links between lysine metabolism and central metabolism in Pseudomonas putida remain unresolved. To establish these biochemical links, we leveraged random barcode transposon sequencing (RB-TnSeq), a genome-wide assay measuring the fitness of thousands of genes in parallel, to identify multiple novel enzymes in both l- and d-lysine metabolism. We first describe three pathway enzymes that catabolize l-2-aminoadipate (l-2AA) to 2-ketoglutarate (2KG), connecting d-lysine to the TCA cycle. One of these enzymes, P. putida 5260 (PP_5260), contains a DUF1338 domain, representing a family with no previously described biological function. Our work also identified the recently described coenzyme A (CoA)-independent route of l-lysine degradation that results in metabolization to succinate. We expanded on previous findings by demonstrating that glutarate hydroxylase CsiD is promiscuous in its 2-oxoacid selectivity. Proteomics of selected pathway enzymes revealed that expression of catabolic genes is highly sensitive to the presence of particular pathway metabolites, implying intensive local and global regulation. This work demonstrated the utility of RB-TnSeq for discovering novel metabolic pathways in even well-studied bacteria, as well as its utility a powerful tool for validating previous research.
Collapse
|
20
|
Fléchard M, Duchesne R, Tahrioui A, Bouffartigues E, Depayras S, Hardouin J, Lagy C, Maillot O, Tortuel D, Azuama CO, Clamens T, Duclairoir-Poc C, Catel-Ferreira M, Gicquel G, Feuilloley MGJ, Lesouhaitier O, Heipieper HJ, Groleau MC, Déziel É, Cornelis P, Chevalier S. The absence of SigX results in impaired carbon metabolism and membrane fluidity in Pseudomonas aeruginosa. Sci Rep 2018; 8:17212. [PMID: 30464317 PMCID: PMC6249292 DOI: 10.1038/s41598-018-35503-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
In Pseudomonas aeruginosa, SigX is an extra-cytoplasmic function σ factor that belongs to the cell wall stress response network. In previous studies, we made the puzzling observation that sigX mutant growth was severely affected in rich lysogeny broth (LB) but not in minimal medium. Here, through comparative transcriptomic and proteomic analysis, we show that the absence of SigX results in dysregulation of genes, whose products are mainly involved in transport, carbon and energy metabolisms. Production of most of these genes is controlled by carbon catabolite repression (CCR), a key regulatory system than ensures preferential carbon source uptake and utilization, substrate prioritization and metabolism. The strong CCR response elicited in LB was lowered in a sigX mutant, suggesting altered nutrient uptake. Since the absence of SigX affects membrane composition and fluidity, we suspected membrane changes to cause such phenotype. The detergent polysorbate 80 (PS80) can moderately destabilize the envelope resulting in non-specific increased nutrient intake. Remarkably, growth, membrane fluidity and expression of dysregulated genes in the sigX mutant strain were restored in LB supplemented with PS80. Altogether, these data suggest that SigX is indirectly involved in CCR regulation, possibly via its effects on membrane integrity and fluidity.
Collapse
Affiliation(s)
- Maud Fléchard
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Rachel Duchesne
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Ali Tahrioui
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Emeline Bouffartigues
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Ségolène Depayras
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Julie Hardouin
- Normandie Université, Université de Rouen Normandie, Laboratoire Polymères Biopolymères Surfaces, PBS, UMR, 6270 CNRS, Mont-Saint-Aignan, France
| | - Coralie Lagy
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Olivier Maillot
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Damien Tortuel
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Cecil Onyedikachi Azuama
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Thomas Clamens
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Cécile Duclairoir-Poc
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Manuella Catel-Ferreira
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Gwendoline Gicquel
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Marc G J Feuilloley
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Olivier Lesouhaitier
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, UFZ Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | - Éric Déziel
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Pierre Cornelis
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France
| | - Sylvie Chevalier
- Normandie Université, Université de Rouen Normandie, Laboratoire de Microbiologie Signaux et Micro-environnement, LMSM EA 4312, Evreux, France.
| |
Collapse
|
21
|
Chevalier S, Bouffartigues E, Bazire A, Tahrioui A, Duchesne R, Tortuel D, Maillot O, Clamens T, Orange N, Feuilloley MGJ, Lesouhaitier O, Dufour A, Cornelis P. Extracytoplasmic function sigma factors in Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:706-721. [PMID: 29729420 DOI: 10.1016/j.bbagrm.2018.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/06/2018] [Accepted: 04/30/2018] [Indexed: 01/26/2023]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa, like all members of the genus Pseudomonas, has the capacity to thrive in very different environments, ranging from water, plant roots, to animals, including humans to whom it can cause severe infections. This remarkable adaptability is reflected in the number of transcriptional regulators, including sigma factors in this bacterium. Among those, the 19 to 21 extracytoplasmic sigma factors (ECFσ) are endowed with different regulons and functions, including the iron starvation σ (PvdS, FpvI, HasI, FecI, FecI2 and others), the cell wall stress ECFσ AlgU, SigX and SbrI, and the unorthodox σVreI involved in the expression of virulence. Recently published data show that these ECFσ have separate regulons although presenting some cross-talk. We will present evidence that these different ECFσ are involved in the expression of different phenotypes, ranging from cell-wall stress response, production of extracellular polysaccharides, formation of biofilms, to iron acquisition.
Collapse
Affiliation(s)
- Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France.
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Alexis Bazire
- IUEM, Université de Bretagne-Sud (UBL), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Rachel Duchesne
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Damien Tortuel
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Alain Dufour
- IUEM, Université de Bretagne-Sud (UBL), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| |
Collapse
|
22
|
Song F, Wang H, Sauer K, Ren D. Cyclic-di-GMP and oprF Are Involved in the Response of Pseudomonas aeruginosa to Substrate Material Stiffness during Attachment on Polydimethylsiloxane (PDMS). Front Microbiol 2018; 9:110. [PMID: 29449837 PMCID: PMC5799285 DOI: 10.3389/fmicb.2018.00110] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/17/2018] [Indexed: 12/29/2022] Open
Abstract
Recently, we reported that the stiffness of poly(dimethylsiloxane) (PDMS) affects the attachment of Pseudomonas aeruginosa, and the morphology and antibiotic susceptibility of attached cells. To further understand how P. aeruginosa responses to material stiffness during attachment, the wild-type P. aeruginosa PAO1 and several isogenic mutants were characterized for their attachment on soft and stiff PDMS. Compared to the wild-type strain, mutation of the oprF gene abolished the differences in attachment, growth, and size of attached cells between soft and stiff PDMS surfaces. These defects were rescued by genetic complementation of oprF. We also found that the wild-type P. aeruginosa PAO1 cells attached on soft (40:1) PDMS have higher level of intracellular cyclic dimeric guanosine monophosphate (c-di-GMP), a key regulator of biofilm formation, compared to those on stiff (5:1) PDMS surfaces. Consistently, the mutants of fleQ and wspF, which have similar high-level c-di-GMP as the oprF mutant, exhibited defects in response to PDMS stiffness during attachment. Collectively, the results from this study suggest that P. aeruginosa can sense the stiffness of substrate material during attachment and respond to such mechanical cues by adjusting c-di-GMP level and thus the following biofilm formation. Further understanding of the related genes and pathways will provide new insights into bacterial mechanosensing and help develop better antifouling materials.
Collapse
Affiliation(s)
- Fangchao Song
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States.,Syracuse Biomaterials Institute, Syracuse, NY, United States
| | - Hao Wang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States.,Syracuse Biomaterials Institute, Syracuse, NY, United States
| | - Karin Sauer
- Department of Biological Science, Binghamton University, Binghamton, NY, United States
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States.,Syracuse Biomaterials Institute, Syracuse, NY, United States.,Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, United States.,Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
23
|
β-Glucanase Activity of the Oral Bacterium Tannerella forsythia Contributes to the Growth of a Partner Species, Fusobacterium nucleatum, in Cobiofilms. Appl Environ Microbiol 2018; 84:AEM.01759-17. [PMID: 29079615 DOI: 10.1128/aem.01759-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/16/2017] [Indexed: 11/20/2022] Open
Abstract
Tannerella forsythia and Fusobacterium nucleatum are dental plaque bacteria implicated in the development of periodontitis. These two species have been shown to form synergistic biofilms and have been found to be closely associated in dental plaque biofilms. A number of genetic loci for TonB-dependent membrane receptors (TDR) for glycan acquisition, with many existing in association with genes coding for enzymes involved in the breakdown of complex glycans, have been identified in T. forsythia In this study, we focused on a locus, BFO_0186-BFO_0188, that codes for a predicted TDR-SusD transporter along with a putative β-glucan hydrolyzing enzyme (BFO_0186). This operon is located immediately downstream of a 2-gene operon that codes for a putative stress-responsive extracytoplasmic function (ECF) sigma factor and an anti-sigma factor. Here, we show that BFO_0186 expresses a β-glucanase that cleaves glucans with β-1,6 and β-1,3 linkages. Furthermore, the BFO_0186-BFO_0188 locus is upregulated, with an induction of β-glucanase activity, in cobiofilms of T. forsythia and F. nucleatum The β-glucanase activity in mixed biofilms in turn leads to an enhanced hydrolysis of β-glucans and release of glucose monomers and oligomers as nutrients for F. nucleatum In summary, our study highlights the role of T. forsythia β-glucanase expressed by the asaccharolytic oral bacterium T. forsythia in the development of T. forsythia-F. nucleatum mixed species biofilms, and suggest that dietary β-glucans might contribute in plaque development and periodontal disease pathogenesis.IMPORTANCE The development of dental plaque biofilm is a complex process in which metabolic, chemical and physical interactions between bacteria take a central role. Previous studies have shown that the dental pathogens T. forsythia and F. nucleatum form synergistic biofilms and are closely associated in human dental plaque. In this study, we show that β-glucanase from the periodontal pathogen T. forsythia plays a role in the formation of T. forsythia-F. nucleatum cobiofilms by hydrolyzing β-glucans to glucose as a nutrient. We also unveiled that the expression of T. forsythia β-glucanase is induced in response to F. nucleatum sensing. This study highlights the involvement of β-glucanase activity in the development of T. forsythia-F. nucleatum biofilms and suggests that intake of dietary β-glucans might be a contributing risk factor in plaque development and periodontal disease pathogenesis.
Collapse
|
24
|
Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ, Orange N, Dufour A, Cornelis P. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev 2017; 41:698-722. [PMID: 28981745 DOI: 10.1093/femsre/fux020] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium belonging to the γ-proteobacteria. Like other members of the Pseudomonas genus, it is known for its metabolic versatility and its ability to colonize a wide range of ecological niches, such as rhizosphere, water environments and animal hosts, including humans where it can cause severe infections. Another particularity of P. aeruginosa is its high intrinsic resistance to antiseptics and antibiotics, which is partly due to its low outer membrane permeability. In contrast to Enterobacteria, pseudomonads do not possess general diffusion porins in their outer membrane, but rather express specific channel proteins for the uptake of different nutrients. The major outer membrane 'porin', OprF, has been extensively investigated, and displays structural, adhesion and signaling functions while its role in the diffusion of nutrients is still under discussion. Other porins include OprB and OprB2 for the diffusion of glucose, the two small outer membrane proteins OprG and OprH, and the two porins involved in phosphate/pyrophosphate uptake, OprP and OprO. The remaining nineteen porins belong to the so-called OprD (Occ) family, which is further split into two subfamilies termed OccD (8 members) and OccK (11 members). In the past years, a large amount of information concerning the structure, function and regulation of these porins has been published, justifying why an updated review is timely.
Collapse
Affiliation(s)
- Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Josselin Bodilis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Alain Dufour
- IUEM, Laboratoire de Biotechnologie et Chimie Marines EA 3884, Université de Bretagne-Sud (UEB), 56321 Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| |
Collapse
|
25
|
CmpX Affects Virulence in Pseudomonas aeruginosa Through the Gac/Rsm Signaling Pathway and by Modulating c-di-GMP Levels. J Membr Biol 2017; 251:35-49. [DOI: 10.1007/s00232-017-9994-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
|
26
|
Soghomonyan D, Margaryan A, Trchounian K, Ohanyan K, Badalyan H, Trchounian A. The Effects of Low Doses of Gamma-Radiation on Growth and Membrane Activity of Pseudomonas aeruginosa GRP3 and Escherichia coli M17. Cell Biochem Biophys 2017; 76:209-217. [PMID: 29039057 DOI: 10.1007/s12013-017-0831-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/09/2017] [Indexed: 11/26/2022]
Abstract
Microorganisms are part of the natural environments and reflect the effects of different physical factors of surrounding environment, such as gamma (γ) radiation. This work was devoted to the study of the influence of low doses of γ radiation with the intensity of 2.56 μW (m2 s)-1 (absorbed doses were 3.8 mGy for the radiation of 15 min and 7.2 mGy-for 30 min) on Escherichia coli M-17 and Pseudomonas aeruginosa GRP3 wild type cells. The changes of bacterial, growth, survival, morphology, and membrane activity had been studied after γ irradiation. Verified microbiological (specific growth rate, lag phase duration, colony-forming units (CFU) number, and light microscopy digital image analysis), biochemical (ATPase activity of bacterial membrane vesicles), and biophysical (H+ fluxes throughout cytoplasmic membrane of bacteria) methods were used for assessment of radiation implications on bacteria. It was shown that growth specific rate, lag phase duration and CFU number of these bacteria were lowered after irradiation, and average cell surface area was decreased too. Moreover ion fluxes of bacteria were changed: for P. aeruginosa they were decreased and for E. coli-increased. The N,N'-dicyclohexylcarbodiimide (DCCD) sensitive fluxes were also changed which were indicative for the membrane-associated F0F1-ATPase enzyme. ATPase activity of irradiated membrane vesicles was decreased for P. aeruginosa and stimulated for E. coli. Furthermore, DCCD sensitive ATPase activity was also changed. The results obtained suggest that these bacteria especially, P. aeruginosa are sensitive to γ radiation and might be used for developing new monitoring methods for estimating environmental changes after γ irradiation.
Collapse
Affiliation(s)
- D Soghomonyan
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - A Margaryan
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - K Trchounian
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - K Ohanyan
- Department of Nuclear Physics, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - H Badalyan
- Department of General Physics and Astrophysics, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - A Trchounian
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia.
- Department of Biochemistry Microbiology and Biotechnology, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia.
| |
Collapse
|
27
|
Li X, Gu GQ, Chen W, Gao LJ, Wu XH, Zhang LQ. The outer membrane protein OprF and the sigma factor SigX regulate antibiotic production in Pseudomonas fluorescens 2P24. Microbiol Res 2017; 206:159-167. [PMID: 29146252 DOI: 10.1016/j.micres.2017.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/09/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
Pseudomonas fluorescens 2P24 produces 2,4-diacetylphloroglucinol (2,4-DAPG) as the major antibiotic compound that protects plants from soil-borne diseases. Expression of the 2,4-DAPG biosynthesis enzymes, which are encoded by the phlACBD locus, is under the control of a delicate regulatory network. In this study, we identified a novel role for the outer membrane protein gene oprF, in negatively regulating the 2,4-DAPG production by using random mini-Tn5 mutagentsis. A sigma factor gene sigX was located immediately upstream of the oprF gene and shown to be a positive regulator for oprF transcription and 2,4-DAPG production. Genetic analysis of an oprF and sigX double-mutant indicated that the 2,4-DAPG regulation by oprF was dependent on SigX. The sigX gene did not affect PhlA and PhlD expression, but positively regulated the level of malonyl-CoA, the substrate of 2,4-DAPG synthesis, by influencing the expression of acetyl-CoA carboxylases. Further investigations revealed that sigX transcription was induced under conditions of salt starvation or glycine addition. All these findings indicate that SigX is a novel regulator of substrate supplements for 2,4-DAPG production.
Collapse
Affiliation(s)
- Xu Li
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Gao-Qi Gu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Wei Chen
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Li-Juan Gao
- Beijing Centre for Physical and Chemical Analysis, Beijing, 100089, China
| | - Xue-Hong Wu
- Department of Plant Pathology, China Agricultural University, Beijing, China; Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Beijing, China
| | - Li-Qun Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China; Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
28
|
Woods EC, McBride SM. Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Microbes Infect 2017; 19:238-248. [PMID: 28153747 DOI: 10.1016/j.micinf.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 11/27/2022]
Abstract
Extracytoplasmic function (ECF) sigma factors are a subfamily of σ70 sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens.
Collapse
Affiliation(s)
- Emily C Woods
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
29
|
Mittal R, Lisi CV, Kumari H, Grati M, Blackwelder P, Yan D, Jain C, Mathee K, Weckwerth PH, Liu XZ. Otopathogenic Pseudomonas aeruginosa Enters and Survives Inside Macrophages. Front Microbiol 2016; 7:1828. [PMID: 27917157 PMCID: PMC5114284 DOI: 10.3389/fmicb.2016.01828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Otitis media (OM) is a broad term describing a group of infectious and inflammatory disorders of the middle ear. Despite antibiotic therapy, acute OM can progress to chronic suppurative otitis media (CSOM) characterized by ear drum perforation and purulent discharge. Pseudomonas aeruginosa is the most common pathogen associated with CSOM. Although, macrophages play an important role in innate immune responses but their role in the pathogenesis of P. aeruginosa-induced CSOM is not known. The objective of this study is to examine the interaction of P. aeruginosa with primary macrophages. We observed that P. aeruginosa enters and multiplies inside human and mouse primary macrophages. This bacterial entry in macrophages requires both microtubule and actin dependent processes. Transmission electron microscopy demonstrated that P. aeruginosa was present in membrane bound vesicles inside macrophages. Interestingly, deletion of oprF expression in P. aeruginosa abrogates its ability to survive inside macrophages. Our results suggest that otopathogenic P. aeruginosa entry and survival inside macrophages is OprF-dependent. The survival of bacteria inside macrophages will lead to evasion of killing and this lack of pathogen clearance by phagocytes contributes to the persistence of infection in CSOM. Understanding host-pathogen interaction will provide novel avenues to design effective treatment modalities against OM.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Christopher V Lisi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Hansi Kumari
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami FL, USA
| | - M'hamed Grati
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Patricia Blackwelder
- Chemistry Department, Center for Advanced Microscopy, University of Miami, Coral GablesFL, USA; Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key BiscayneFL, USA
| | - Denise Yan
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Chaitanya Jain
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, MiamiFL, USA; Global Health Consortium and Biomolecular Science Institute, Florida International University, MiamiFL, USA
| | - Paulo H Weckwerth
- Health Sciences Department, University of Sagrado Coração Bauru, Brazil
| | - Xue Z Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| |
Collapse
|
30
|
Dosunmu EF, Chaudhari AA, Bawage S, Bakeer MK, Owen DR, Singh SR, Dennis VA, Pillai SR. Novel cationic peptide TP359 down-regulates the expression of outer membrane biogenesis genes in Pseudomonas aeruginosa: a potential TP359 anti-microbial mechanism. BMC Microbiol 2016; 16:192. [PMID: 27549081 PMCID: PMC4994277 DOI: 10.1186/s12866-016-0808-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/10/2016] [Indexed: 11/18/2022] Open
Abstract
Background Antimicrobial peptides (AMPs) are a class of antimicrobial agents with broad-spectrum activities. Several reports indicate that cationic AMPs bind to the negatively charged bacterial membrane causing membrane depolarization and damage. However, membrane depolarization and damage may be insufficient to elicit cell death, thereby suggesting that other mechanism(s) of action could be involved in this phenomenon. In this study, we investigated the antimicrobial activity of a novel antimicrobial peptide, TP359, against two strains of Pseudomonas aeruginosa, as well as its possible mechanisms of action. Results TP359 proved to be bactericidal against P. aeruginosa as confirmed by the reduced bacteria counts, membrane damage and cytoplasmic membrane depolarization. In addition, it was non-toxic to mouse J774 macrophages and human lung A549 epithelial cells. Electron microscopy analysis showed TP359 bactericidal effects by structural changes of the bacteria from viable rod-shaped cells to those with cell membrane damages, proceeding into the efflux of cytoplasmic contents and emergence of ghost cells. Gene expression analysis on the effects of TP359 on outer membrane biogenesis genes underscored marked down-regulation, particularly of oprF, which encodes a major structural and outer membrane porin (OprF) in both strains studied, indicating that the peptide may cause deregulation of outer membrane genes and reduced structural stability which could lead to cell death. Conclusion Our data shows that TP359 has potent antimicrobial activity against P aeruginosa. The correlation between membrane damage, depolarization and reduced expression of outer membrane biogenesis genes, particularly oprF may suggest the bactericidal mechanism of action of the TP359 peptide. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0808-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ejovwoke F Dosunmu
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA
| | - Atul A Chaudhari
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA
| | - Swapnil Bawage
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA
| | - Mona K Bakeer
- LSU Health Sciences Center, School of Allied Health Professions, New Orleans, LA, USA
| | | | - Shree R Singh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA
| | - Shreekumar R Pillai
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
31
|
Kondakova T, Catovic C, Barreau M, Nusser M, Brenner-Weiss G, Chevalier S, Dionnet F, Orange N, Poc CD. Response to Gaseous NO2 Air Pollutant of P. fluorescens Airborne Strain MFAF76a and Clinical Strain MFN1032. Front Microbiol 2016; 7:379. [PMID: 27065229 PMCID: PMC4814523 DOI: 10.3389/fmicb.2016.00379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/09/2016] [Indexed: 01/22/2023] Open
Abstract
Human exposure to nitrogen dioxide (NO2), an air pollutant of increasing interest in biology, results in several toxic effects to human health and also to the air microbiota. The aim of this study was to investigate the bacterial response to gaseous NO2. Two Pseudomonas fluorescens strains, namely the airborne strain MFAF76a and the clinical strain MFN1032 were exposed to 0.1, 5, or 45 ppm concentrations of NO2, and their effects on bacteria were evaluated in terms of motility, biofilm formation, antibiotic resistance, as well as expression of several chosen target genes. While 0.1 and 5 ppm of NO2did not lead to any detectable modification in the studied phenotypes of the two bacteria, several alterations were observed when the bacteria were exposed to 45 ppm of gaseous NO2. We thus chose to focus on this high concentration. NO2-exposed P. fluorescens strains showed reduced swimming motility, and decreased swarming in case of the strain MFN1032. Biofilm formed by NO2-treated airborne strain MFAF76a showed increased maximum thickness compared to non-treated cells, while NO2 had no apparent effect on the clinical MFN1032 biofilm structure. It is well known that biofilm and motility are inversely regulated by intracellular c-di-GMP level. The c-di-GMP level was however not affected in response to NO2 treatment. Finally, NO2-exposed P. fluorescens strains were found to be more resistant to ciprofloxacin and chloramphenicol. Accordingly, the resistance nodulation cell division (RND) MexEF-OprN efflux pump encoding genes were highly upregulated in the two P. fluorescens strains. Noticeably, similar phenotypes had been previously observed following a NO treatment. Interestingly, an hmp-homolog gene in P. fluorescens strains MFAF76a and MFN1032 encodes a NO dioxygenase that is involved in NO detoxification into nitrites. Its expression was upregulated in response to NO2, suggesting a possible common pathway between NO and NO2 detoxification. Taken together, our study provides evidences for the bacterial response to NO2 toxicity.
Collapse
Affiliation(s)
- Tatiana Kondakova
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Normandy University, University of Rouen, SéSa, IRIBEvreux, France; Aerothermic and Internal Combustion Engine Technological Research CentreSaint Etienne du Rouvray, France
| | - Chloé Catovic
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Normandy University, University of Rouen, SéSa, IRIB Evreux, France
| | - Magalie Barreau
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Normandy University, University of Rouen, SéSa, IRIB Evreux, France
| | - Michael Nusser
- Institute of Functional Interfaces, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Normandy University, University of Rouen, SéSa, IRIB Evreux, France
| | - Frédéric Dionnet
- Aerothermic and Internal Combustion Engine Technological Research Centre Saint Etienne du Rouvray, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Normandy University, University of Rouen, SéSa, IRIB Evreux, France
| | - Cécile Duclairoir Poc
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Normandy University, University of Rouen, SéSa, IRIB Evreux, France
| |
Collapse
|
32
|
Binder SC, Eckweiler D, Schulz S, Bielecka A, Nicolai T, Franke R, Häussler S, Meyer-Hermann M. Functional modules of sigma factor regulons guarantee adaptability and evolvability. Sci Rep 2016; 6:22212. [PMID: 26915971 PMCID: PMC4768184 DOI: 10.1038/srep22212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/10/2016] [Indexed: 01/30/2023] Open
Abstract
The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability.
Collapse
Affiliation(s)
- Sebastian C Binder
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Denitsa Eckweiler
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, 30265 Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sebastian Schulz
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, 30265 Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Agata Bielecka
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, 30265 Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Tanja Nicolai
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Raimo Franke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, 30265 Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
33
|
Leneveu-Jenvrin C, Bouffartigues E, Maillot O, Cornelis P, Feuilloley MGJ, Connil N, Chevalier S. Expression of the translocator protein (TSPO) from Pseudomonas fluorescens Pf0-1 requires the stress regulatory sigma factors AlgU and RpoH. Front Microbiol 2015; 6:1023. [PMID: 26441945 PMCID: PMC4585239 DOI: 10.3389/fmicb.2015.01023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is an evolutionary conserved protein that is found in many Eukarya, Archae, and Bacteria, in which it plays several important functions including for example membrane biogenesis, signaling, and stress response. A tspo homolog gene has been identified in several members of the Pseudomonas genus, among which the soil bacterium P. fluorescens Pf0-1. In this bacterium, the tspo gene is located in the vicinity of a putative hybrid histidine kinase-encoding gene. Since tspo has been involved in water stress related response in plants, we explored the effects of hyperosmolarity and temperature on P. fluorescens Pf0-1 tspo expression using a strategy based on lux-reporter fusions. We show that the two genes Pfl01_2810 and tspo are co-transcribed forming a transcription unit. The expression of this operon is growth phase-dependent and is increased in response to high concentrations of NaCl, sucrose and to a D-cycloserine treatment, which are conditions leading to activity of the major cell wall stress responsive extracytoplasmic sigma factor AlgU. Interestingly, the promoter region activity is strongly lowered in a P. aeruginosa algU mutant, suggesting that AlgU may be involved at least partly in the molecular mechanism leading to Pfl01_2810-tspo expression. In silico analysis of this promoter region failed to detect an AlgU consensus binding site; however, a putative binding site for the heat shock response RpoH sigma factor was detected. Accordingly, the promoter activity of the region containing this sequence is increased in response to high growth temperature and slightly lowered in a P. aeruginosa rpoH mutant strain. Taken together, our data suggest that P. fluorescens tspo gene may belong at least partly to the cell wall stress response.
Collapse
Affiliation(s)
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Nathalie Connil
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| |
Collapse
|
34
|
Bouffartigues E, Moscoso JA, Duchesne R, Rosay T, Fito-Boncompte L, Gicquel G, Maillot O, Bénard M, Bazire A, Brenner-Weiss G, Lesouhaitier O, Lerouge P, Dufour A, Orange N, Feuilloley MGJ, Overhage J, Filloux A, Chevalier S. The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in c-di-GMP level. Front Microbiol 2015; 6:630. [PMID: 26157434 PMCID: PMC4477172 DOI: 10.3389/fmicb.2015.00630] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/09/2015] [Indexed: 11/13/2022] Open
Abstract
OprF is the major outer membrane porin in bacteria belonging to the Pseudomonas genus. In previous studies, we have shown that OprF is required for full virulence expression of the opportunistic pathogen Pseudomonas aeruginosa. Here, we describe molecular insights on the nature of this relationship and report that the absence of OprF leads to increased biofilm formation and production of the Pel exopolysaccharide. Accordingly, the level of c-di-GMP, a key second messenger in biofilm control, is elevated in an oprF mutant. By decreasing c-di-GMP levels in this mutant, both biofilm formation and pel gene expression phenotypes were restored to wild-type levels. We further investigated the impact on two small RNAs, which are associated with the biofilm lifestyle, and found that expression of rsmZ but not of rsmY was increased in the oprF mutant and this occurs in a c-di-GMP-dependent manner. Finally, the extracytoplasmic function (ECF) sigma factors AlgU and SigX displayed higher activity levels in the oprF mutant. Two genes of the SigX regulon involved in c-di-GMP metabolism, PA1181 and adcA (PA4843), were up-regulated in the oprF mutant, partly explaining the increased c-di-GMP level. We hypothesized that the absence of OprF leads to a cell envelope stress that activates SigX and results in a c-di-GMP elevated level due to higher expression of adcA and PA1181. The c-di-GMP level can in turn stimulate Pel synthesis via increased rsmZ sRNA levels and pel mRNA, thus affecting Pel-dependent phenotypes such as cell aggregation and biofilm formation. This work highlights the connection between OprF and c-di-GMP regulatory networks, likely via SigX (ECF), on the regulation of biofilm phenotypes.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Joana A Moscoso
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London London, UK
| | - Rachel Duchesne
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Thibaut Rosay
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Laurène Fito-Boncompte
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Gwendoline Gicquel
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Olivier Maillot
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Magalie Bénard
- Cell Imaging Platform of Normandy (PRIMACEN), Institute for Research and Innovation in Biomedicine, University of Rouen Mont-Saint-Aignan, France
| | - Alexis Bazire
- EA 3884-Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud Lorient, France
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Olivier Lesouhaitier
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Patrice Lerouge
- Glyco-MeV Laboratory, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Alain Dufour
- EA 3884-Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud Lorient, France
| | - Nicole Orange
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Marc G J Feuilloley
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Joerg Overhage
- Institute of Functional Interfaces, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London London, UK
| | - Sylvie Chevalier
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| |
Collapse
|
35
|
McCarthy RR, Mooij MJ, Reen FJ, Lesouhaitier O, O'Gara F. A new regulator of pathogenicity (bvlR) is required for full virulence and tight microcolony formation in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2014; 160:1488-1500. [PMID: 24829363 DOI: 10.1099/mic.0.075291-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
LysR-type transcriptional regulators (LTTRs) are the most common family of transcriptional regulators found in the opportunistic pathogen Pseudomonas aeruginosa. They are known to regulate a wide variety of virulence determinants and have emerged recently as positive global regulators of pathogenicity in a broad spectrum of important bacterial pathogens. However, in spite of their key role in modulating expression of key virulence determinants underpinning pathogenic traits associated with the process of infection, surprisingly few are found to be transcriptionally altered by contact with host cells. BvlR (PA14_26880) an LTTR of previously unknown function, has been shown to be induced in response to host cell contact, and was therefore investigated for its potential role in virulence. BvlR expression was found to play a pivotal role in the regulation of acute virulence determinants such as type III secretion system and exotoxin A production. BvlR also played a key role in P. aeruginosa pathogenicity within the Caenorhabditis elegans acute model of infection. Loss of BvlR led to an inability to form tight microcolonies, a key step in biofilm formation in the cystic fibrosis lung, although surface attachment was increased. Unusually for LTTRs, BvlR was shown to exert its influence through the transcriptional repression of many genes, including the virulence-associated cupA and alg genes. This highlights the importance of BvlR as a new virulence regulator in P. aeruginosa with a central role in modulating key events in the pathogen-host interactome.
Collapse
Affiliation(s)
- Ronan R McCarthy
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Marlies J Mooij
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen, 55 rue Saint Germain, 27000 Evreux, France
| | - Fergal O'Gara
- Curtin University, School of Biomedical Sciences, Perth, WA, Australia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
36
|
Bouffartigues E, Duchesne R, Bazire A, Simon M, Maillot O, Dufour A, Feuilloley M, Orange N, Chevalier S. Sucrose favors Pseudomonas aeruginosa pellicle production through the extracytoplasmic function sigma factor SigX. FEMS Microbiol Lett 2014; 356:193-200. [PMID: 24861220 DOI: 10.1111/1574-6968.12482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas aeruginosa biofilm formation was increased by addition of sucrose to Luria-Bertani medium, whereas addition of NaCl to a final similar osmolarity and use of maltose instead of sucrose, were ineffective. In a previous study, we showed that the extracytoplasmic sigma factor SigX is activated in the presence of sucrose. The sucrose-mediated pellicle increase was abolished in a sigX mutant strain. Sucrose addition led to an increase in pel expression and cyclic-diguanylate (c-di-GMP) pool level production. Interestingly, these two phenotypes were strongly decreased in a sigX mutant. Since pel is not known as a SigX-target, we suspect SigX to be involved in the c-di-GMP production. We found that expression of the diguanylate cyclase PA4843 gene was increased in the presence of sucrose at least partly through SigX activity. Our study shows that sucrose itself rather than osmolarity favours the biofilm mode of P. aeruginosa through the activation of SigX.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM), EA 4312, Normandie Université, Université de Rouen, Rouen, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bazire A, Dufour A. The Pseudomonas aeruginosa rhlG and rhlAB genes are inversely regulated and RhlG is not required for rhamnolipid synthesis. BMC Microbiol 2014; 14:160. [PMID: 24943492 PMCID: PMC4074388 DOI: 10.1186/1471-2180-14-160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa produces rhamnolipid biosurfactants involved in numerous phenomena including virulence. The transcriptional study of the rhlAB operon encoding two key enzymes for rhamnolipid synthesis led to the discovery of the quorum sensing system RhlRI. The latter positively controls the transcription of rhlAB, as well as of rhlC, which is required for di-rhamnolipid synthesis. The rhlG gene encodes an NADPH-dependent β-ketoacyl reductase. Although it was reported to be required for the biosynthesis of the fatty acid part of rhamnolipids, its function in rhamnolipid synthesis was later questioned. The rhlG transcription and its role in rhamnolipid production were investigated here. RESULTS Using 5'-RACE PCR, a luxCDABE-based transcriptional fusion, and quantitative reverse transcription-PCR, we confirmed two previously identified σ70- and σ54-dependent promoters and we identified a third promoter recognized by the extra-cytoplasmic function sigma factor AlgU. rhlG was inversely regulated compared to rhlAB and rhlC: the rhlG transcription was down-regulated in response to N-butyryl-l-homoserine lactone, the communication molecule of the RhlRI system, and was induced by hyperosmotic stress in an AlgU-dependent manner. Consistently with this transcriptional pattern, the single or double deletions of rhlG and PA3388, which forms an operon with rhlG, did not dramatically impair rhamnolipid synthesis. CONCLUSION This first detailed study of rhlG transcription reveals a complex regulation involving three sigma factors and N-butyryl-l-homoserine lactone. We furthermore present evidences that RhlG does not play a key role in rhamnolipid synthesis.
Collapse
Affiliation(s)
- Alexis Bazire
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France.
| | | |
Collapse
|
38
|
Boechat AL, Kaihami GH, Politi MJ, Lépine F, Baldini RL. A novel role for an ECF sigma factor in fatty acid biosynthesis and membrane fluidity in Pseudomonas aeruginosa. PLoS One 2013; 8:e84775. [PMID: 24386415 PMCID: PMC3875570 DOI: 10.1371/journal.pone.0084775] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/18/2013] [Indexed: 01/27/2023] Open
Abstract
Extracytoplasmic function (ECF) sigma factors are members of cell-surface signaling systems, abundant in the opportunistic pathogen Pseudomonas aeruginosa. Twenty genes coding for ECF sigma factors are present in P. aeruginosa sequenced genomes, most of them being part of TonB systems related to iron uptake. In this work, poorly characterized sigma factors were overexpressed in strain PA14, in an attempt to understand their role in the bacterium's physiology. Cultures overexpressing SigX displayed a biphasic growth curve, reaching stationary phase earlier than the control strain, followed by subsequent growth resumption. During the first stationary phase, most cells swell and die, but the remaining cells return to the wild type morphology and proceed to a second exponential growth. This is not due to compensatory mutations, since cells recovered from late time points and diluted into fresh medium repeated this behavior. Swollen cells have a more fluid membrane and contain higher amounts of shorter chain fatty acids. A proteomic analysis was performed to identify differentially expressed proteins due to overexpression of sigX, revealing the induction of several fatty acid synthesis (FAS) enzymes. Using qRT-PCR, we showed that at least one isoform from each of the FAS pathway enzymes were upregulated at the mRNA level in the SigX overexpressing strain thus pointing to a role for this ECF sigma factor in the FAS regulation in P. aeruginosa.
Collapse
Affiliation(s)
- Ana Laura Boechat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gilberto Hideo Kaihami
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Mario José Politi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - François Lépine
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Regina L. Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Gicquel G, Bouffartigues E, Bains M, Oxaran V, Rosay T, Lesouhaitier O, Connil N, Bazire A, Maillot O, Bénard M, Cornelis P, Hancock REW, Dufour A, Feuilloley MGJ, Orange N, Déziel E, Chevalier S. The extra-cytoplasmic function sigma factor sigX modulates biofilm and virulence-related properties in Pseudomonas aeruginosa. PLoS One 2013; 8:e80407. [PMID: 24260387 PMCID: PMC3832394 DOI: 10.1371/journal.pone.0080407] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/02/2013] [Indexed: 11/23/2022] Open
Abstract
SigX, one of the 19 extra-cytoplasmic function sigma factors of P. aeruginosa, was only known to be involved in transcription of the gene encoding the major outer membrane protein OprF. We conducted a comparative transcriptomic study between the wildtype H103 strain and its sigX mutant PAOSX, which revealed a total of 307 differentially expressed genes that differed by more than 2 fold. Most dysregulated genes belonged to six functional classes, including the “chaperones and heat shock proteins”, “antibiotic resistance and susceptibility”, “energy metabolism”, “protein secretion/export apparatus”, and “secreted factors”, and “motility and attachment” classes. In this latter class, the large majority of the affected genes were down-regulated in the sigX mutant. In agreement with the array data, the sigX mutant was shown to demonstrate substantially reduced motility, attachment to biotic and abiotic surfaces, and biofilm formation. In addition, virulence towards the nematode Caenorhabditis elegans was reduced in the sigX mutant, suggesting that SigX is involved in virulence-related phenotypes.
Collapse
Affiliation(s)
- Gwendoline Gicquel
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Emeline Bouffartigues
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Manjeet Bains
- Centre for Microbal Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Virginie Oxaran
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Thibaut Rosay
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Olivier Lesouhaitier
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Nathalie Connil
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Alexis Bazire
- IUEM, Université de Bretagne-Sud (UEB), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Olivier Maillot
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Magalie Bénard
- Cell Imaging Platform of Normandy (PRIMACEN), IRIB, Faculty of Sciences, University of Rouen, Mont-Saint-Aignan, France
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research group Microbiology, VIB Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robert E. W. Hancock
- Centre for Microbal Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Alain Dufour
- IUEM, Université de Bretagne-Sud (UEB), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Marc G. J. Feuilloley
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Nicole Orange
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Sylvie Chevalier
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
- * E-mail:
| |
Collapse
|
40
|
Identification of the alternative sigma factor SigX regulon and its implications for Pseudomonas aeruginosa pathogenicity. J Bacteriol 2013; 196:345-56. [PMID: 24187091 DOI: 10.1128/jb.01034-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is distinguished by its broad metabolic diversity and its remarkable capability for adaptation, which relies on a large collection of transcriptional regulators and alternative sigma (σ) factors. The largest group of alternative σ factors is that of the extracytoplasmic function (ECF) σ factors, which control key transduction pathways for maintenance of envelope homeostasis in response to external stress and cell growth. In addition, there are specific roles of alternative σ factors in regulating the expression of virulence and virulence-associated genes. Here, we analyzed a deletion mutant of the ECF σ factor SigX and applied mRNA profiling to define the SigX-dependent regulon in P. aeruginosa in response to low-osmolarity-medium conditions. Furthermore, the combination of transcriptional data with chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) led to the identification of the DNA binding motif of SigX. Genome-wide mapping of SigX-binding regions revealed enrichment of downstream genes involved in fatty acid biosynthesis, type III secretion, swarming and cyclic di-GMP (c-di-GMP) signaling. In accordance, a sigX deletion mutant exhibited altered fatty acid composition of the cell membrane, reduced cytotoxicity, impaired swarming activity, elevated c-di-GMP levels, and increased biofilm formation. In conclusion, a combination of ChIP-seq with transcriptional profiling and bioinformatic approaches to define consensus DNA binding sequences proved to be effective for the elucidation of the regulon of the alternative σ factor SigX, revealing its role in complex virulence-associated phenotypes in P. aeruginosa.
Collapse
|
41
|
Duchesne R, Bouffartigues E, Oxaran V, Maillot O, Bénard M, Feuilloley MGJ, Orange N, Chevalier S. A proteomic approach of SigX function in Pseudomonas aeruginosa outer membrane composition. J Proteomics 2013; 94:451-9. [PMID: 24332064 DOI: 10.1016/j.jprot.2013.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/29/2013] [Accepted: 10/17/2013] [Indexed: 12/22/2022]
Abstract
UNLABELLED SigX is one of the 19 extracytoplasmic function sigma factors that have been predicted in the human opportunistic pathogen Pseudomonas aeruginosa genome. SigX is involved in the transcription of oprF, encoding the major outer membrane protein OprF, a pleiotropic porin that contributes to the maintaining of the wall structure, and is essential to P. aeruginosa virulence. This study aimed to get further insights into the functions of SigX. We performed here an outer membrane subproteome of a sigX mutant. Proteomic investigations revealed lower production of 8 porins among which 4 gated channels involved in iron or hem uptake, OprF, and the three substrate-specific proteins OprD, OprQ and OprE. On the other side, the glucose-specific porin OprB and the lipid A 3-O-deacylase that is involved in LPS modification were up-regulated. Our results indicate that SigX may be involved in the control and/or regulation of the outer membrane composition. BIOLOGICAL SIGNIFICANCE A proteomic approach was used herein to get further insights into SigX functions in P. aeruginosa. The data presented here suggest that SigX is involved in the outer membrane protein composition, and could be linked to a regulatory network involved in OM homeostasis.
Collapse
Affiliation(s)
- Rachel Duchesne
- Laboratory of Microbiology Signal and Microenvironment (LMSM) EA 4312, University of Rouen, GRRs SeSa, IRIB, Evreux F-27000, France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signal and Microenvironment (LMSM) EA 4312, University of Rouen, GRRs SeSa, IRIB, Evreux F-27000, France
| | - Virginie Oxaran
- Laboratory of Microbiology Signal and Microenvironment (LMSM) EA 4312, University of Rouen, GRRs SeSa, IRIB, Evreux F-27000, France
| | - Olivier Maillot
- Laboratory of Microbiology Signal and Microenvironment (LMSM) EA 4312, University of Rouen, GRRs SeSa, IRIB, Evreux F-27000, France
| | - Magalie Bénard
- Cell Imaging Platform of Normandy (PRIMACEN), IRIB, Faculty of Sciences, University of Rouen, Mont-Saint-Aignan F-76821, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signal and Microenvironment (LMSM) EA 4312, University of Rouen, GRRs SeSa, IRIB, Evreux F-27000, France
| | - Nicole Orange
- Laboratory of Microbiology Signal and Microenvironment (LMSM) EA 4312, University of Rouen, GRRs SeSa, IRIB, Evreux F-27000, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signal and Microenvironment (LMSM) EA 4312, University of Rouen, GRRs SeSa, IRIB, Evreux F-27000, France.
| |
Collapse
|