1
|
Arroyo-Pérez EE, Hook JC, Alvarado A, Wimmi S, Glatter T, Thormann K, Ringgaard S. A conserved cell-pole determinant organizes proper polar flagellum formation. eLife 2024; 13:RP93004. [PMID: 39636223 PMCID: PMC11620751 DOI: 10.7554/elife.93004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The coordination of cell cycle progression and flagellar synthesis is a complex process in motile bacteria. In γ-proteobacteria, the localization of the flagellum to the cell pole is mediated by the SRP-type GTPase FlhF. However, the mechanism of action of FlhF, and its relationship with the cell pole landmark protein HubP remain unclear. In this study, we discovered a novel protein called FipA that is required for normal FlhF activity and function in polar flagellar synthesis. We demonstrated that membrane-localized FipA interacts with FlhF and is required for normal flagellar synthesis in Vibrio parahaemolyticus, Pseudomonas putida, and Shewanella putrefaciens, and it does so independently of the polar localization mediated by HubP. FipA exhibits a dynamic localization pattern and is present at the designated pole before flagellar synthesis begins, suggesting its role in licensing flagellar formation. This discovery provides insight into a new pathway for regulating flagellum synthesis and coordinating cellular organization in bacteria that rely on polar flagellation and FlhF-dependent localization.
Collapse
Affiliation(s)
- Erick E Arroyo-Pérez
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - John C Hook
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität GiessenGiessenGermany
| | - Alejandra Alvarado
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Bacterial Metabolomics, University of TübingenTübingenGermany
| | - Stephan Wimmi
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Institute for Biological Physics, University of CologneKölnGermany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Kai Thormann
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität GiessenGiessenGermany
| | - Simon Ringgaard
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität MünchenMunichGermany
| |
Collapse
|
2
|
Dornes A, Schmidt LM, Mais CN, Hook JC, Pané-Farré J, Kressler D, Thormann K, Bange G. Polar confinement of a macromolecular machine by an SRP-type GTPase. Nat Commun 2024; 15:5797. [PMID: 38987236 PMCID: PMC11236974 DOI: 10.1038/s41467-024-50274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
The basal structure of the bacterial flagellum includes a membrane embedded MS-ring (formed by multiple copies of FliF) and a cytoplasmic C-ring (composed of proteins FliG, FliM and FliN). The SRP-type GTPase FlhF is required for directing the initial flagellar protein FliF to the cell pole, but the mechanisms are unclear. Here, we show that FlhF anchors developing flagellar structures to the polar landmark protein HubP/FimV, thereby restricting their formation to the cell pole. Specifically, the GTPase domain of FlhF interacts with HubP, while a structured domain at the N-terminus of FlhF binds to FliG. FlhF-bound FliG subsequently engages with the MS-ring protein FliF. Thus, the interaction of FlhF with HubP and FliG recruits a FliF-FliG complex to the cell pole. In addition, the modulation of FlhF activity by the MinD-type ATPase FlhG controls the interaction of FliG with FliM-FliN, thereby regulating the progression of flagellar assembly at the pole.
Collapse
Affiliation(s)
- Anita Dornes
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany
| | - Lisa Marie Schmidt
- Justus-Liebig-Universität, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Christopher-Nils Mais
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany
| | - John C Hook
- Justus-Liebig-Universität, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Jan Pané-Farré
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany
| | - Dieter Kressler
- University of Fribourg, Department of Biology, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Kai Thormann
- Justus-Liebig-Universität, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
| | - Gert Bange
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany.
- Max-Planck-Institute for terrestrial Microbiology, Molecular Physiology of Microbes, Karl-von-Frisch Strasse 14, 35043, Marburg, Germany.
| |
Collapse
|
3
|
Andreasen MR, Rick T, Alexandersen NR, Hansen KH, Pedersen MS, Warweitzky JK, Botelho CM, Häussler S, Jelsbak L, Schønning K. Identification of a CTX-M-255 β-lactamase containing a G239S substitution selectively conferring resistance to penicillin/β-lactamase inhibitor combinations. J Antimicrob Chemother 2024; 79:810-814. [PMID: 38366372 DOI: 10.1093/jac/dkae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
OBJECTIVES An Escherichia coli isolate, WGS1363, showed resistance to piperacillin/tazobactam but susceptibility to cephalosporins and contained a previously unrecognized β-lactamase, CTX-M-255, as the only acquired β-lactamase. CTX-M-255 was identical to CTX-M-27 except for a G239S substitution. Here, we characterize the hydrolytic spectrum of CTX-M-255 and a previously reported β-lactamase, CTX-M-178, also containing a G239S substitution and compare it to their respective parental enzymes, CTX-M-27 and CTX-M-15. METHODS All β-lactamase genes were expressed in E. coli TOP10 and MICs to representative β-lactam-antibiotics were determined. Furthermore, blaCTX-M-15, blaCTX-M-27, blaCTX-M-178 and blaCTX-M-255 with C-terminal His-tag fusions were affinity purified for enzyme kinetic assays determining Michaelis-Menten kinetic parameters against representative β-lactam-antibiotics and IC50s of clavulanate, sulbactam, tazobactam and avibactam. RESULTS TOP10-transformants expressing blaCTX-M-178 and blaCTX-M-255 showed resistance to penicillin/β-lactamase combinations and susceptibility to cephalothin and cefotaxime in contrast to transformants expressing blaCTX-M-15 and blaCTX-M-27. Determination of enzyme kinetic parameters showed that CTX-M-178 and CTX-M-255 both lacked hydrolytic activity against cephalosporins and showed impaired hydrolytic efficiency against penicillin antibiotics compared to their parental enzymes. Both enzymes appeared more active against piperacillin compared to benzylpenicillin and ampicillin. Compared to their parental enzymes, IC50s of β-lactamase-inhibitors were increased more than 1000-fold for CTX-M-178 and CTX-M-255. CONCLUSIONS CTX-M-178 and CTX-M-255, both containing a G239S substitution, conferred resistance to piperacillin/tazobactam and may be characterized as inhibitor-resistant CTX-M β-lactamases. Inhibitor resistance was accompanied by loss of activity against cephalosporins and monobactams. These findings add to the necessary knowledge base for predicting antibiotic susceptibility from genotypic data.
Collapse
Affiliation(s)
- Minna Rud Andreasen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - Tim Rick
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Nicolai Riff Alexandersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Katrine Hartung Hansen
- Department of Clinical Microbiology, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Schou Pedersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jakob K Warweitzky
- Department Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Twincore, Centre for Experimental and Clinical Infection Research, A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Carolina Mastella Botelho
- Department Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Twincore, Centre for Experimental and Clinical Infection Research, A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Susanne Häussler
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Twincore, Centre for Experimental and Clinical Infection Research, A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Lotte Jelsbak
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Kristian Schønning
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Kühn MJ, Edelmann DB, Thormann KM. Polar flagellar wrapping and lateral flagella jointly contribute to Shewanella putrefaciens environmental spreading. Environ Microbiol 2022; 24:5911-5923. [PMID: 35722744 DOI: 10.1111/1462-2920.16107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 01/12/2023]
Abstract
Flagella enable bacteria to actively spread within the environment. A number of species possess two separate flagellar systems, where in most cases a primary polar flagellar system is supported by distinct secondary lateral flagella under appropriate conditions. Using functional fluorescence tagging on one of these species, Shewanella putrefaciens, as a model system, we explored how two different flagellar systems can exhibit efficient joint function. The S. putrefaciens secondary flagellar filaments are composed as a mixture of two highly homologous non-glycosylated flagellins, FlaA2 and FlaB2 . Both are solely sufficient to form a functional filament, however, full spreading motility through soft agar requires both flagellins. During swimming, lateral flagella emerge from the cell surface at angles between 30° and 50°, and only filaments located close to the cell pole may form a bundle. Upon a directional shift from forward to backward swimming initiated by the main polar flagellum, the secondary filaments flip over and thus support propulsion into either direction. Lateral flagella do not inhibit the wrapping of the polar flagellum around the cell body at high load. Accordingly, screw thread-like motility mediated by the primary flagellum and activity of lateral flagella cumulatively supports spreading through constricted environments such as polysaccharide matrices.
Collapse
Affiliation(s)
- Marco J Kühn
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany.,Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel B Edelmann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Kai M Thormann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
5
|
Schwan M, Khaledi A, Willger S, Papenfort K, Glatter T, Häußler S, Thormann KM. FlrA-independent production of flagellar proteins is required for proper flagellation in Shewanella putrefaciens. Mol Microbiol 2022; 118:670-682. [PMID: 36285560 DOI: 10.1111/mmi.14993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 01/18/2023]
Abstract
Flagella are multiprotein complexes whose assembly and positioning require complex spatiotemporal control. Flagellar assembly is thought to be controlled by several transcriptional tiers, which are mediated through various master regulators. Here, we revisited the regulation of flagellar genes in polarly flagellated gammaproteobacteria by the regulators FlrA, RpoN (σ54 ) and FliA (σ28 ) in Shewanella putrefaciens CN-32 at the transcript and protein level. We found that a number of regulatory and structural proteins were present in the absence of the main regulators, suggesting that initiation of flagella assembly and motor activation relies on the abundance control of only a few structural key components that are required for the formation of the MS- and C-ring and the flagellar type III secretion system. We identified FlrA-independent promoters driving expression of the regulators of flagellar number and positioning, FlhF and FlhG. Reduction of the gene expression levels from these promoters resulted in the emergence of hyperflagellation. This finding indicates that basal expression is required to adjust the flagellar counter in Shewanella. This is adding a deeper layer to the regulation of flagellar synthesis and assembly.
Collapse
Affiliation(s)
- Meike Schwan
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Ariane Khaledi
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sven Willger
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kai Papenfort
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Mass Spectrometry and Proteomics, Marburg, Germany
| | - Susanne Häußler
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kai M Thormann
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| |
Collapse
|
6
|
The GGDEF-EAL protein CdgB from Azospirillum baldaniorum Sp245, is a dual function enzyme with potential polar localization. PLoS One 2022; 17:e0278036. [PMID: 36417483 PMCID: PMC9683572 DOI: 10.1371/journal.pone.0278036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Azospirillum baldaniorum Sp245, a plant growth-promoting rhizobacterium, can form biofilms through a process controlled by the second messenger cyclic diguanylate monophosphate (c-di-GMP). A. baldaniorum has a variety of proteins potentially involved in controlling the turnover of c-di-GMP many of which are coupled to sensory domains that could be involved in establishing a mutualistic relationship with the host. Here, we present in silico analysis and experimental characterization of the function of CdgB (AZOBR_p410089), a predicted MHYT-PAS-GGDEF-EAL multidomain protein from A. baldaniorum Sp245. When overproduced, CdgB behaves predominantly as a c-di-GMP phosphodiesterase (PDE) in A. baldaniorum Sp245. It inhibits biofilm formation and extracellular polymeric substances production and promotes swimming motility. However, a CdgB variant with a degenerate PDE domain behaves as diguanylate cyclase (DGC). This strongly suggest that CdgB is capable of dual activity. Variants with alterations in the DGC domain and the MHYT domain negatively affects extracellular polymeric substances production and induction of swimming motility. Surprisingly, we observed that overproduction of CdgB results in increased c-di-GMP accumulation in the heterologous host Escherichia coli, suggesting under certain conditions, the WT CdgB variant can behave predominantly as a DGC. Furthermore, we also demonstrated that CdgB is anchored to the cell membrane and localizes potentially to the cell poles. This localization is dependent on the presence of the MHYT domain. In summary, our results suggest that CdgB can provide versatility to signaling modules that control motile and sessile lifestyles in response to key environmental signals in A. baldaniorum.
Collapse
|
7
|
Dersch S, Rotter DA, Graumann PL. Heterogeneity of Subcellular Diffusion in Bacteria Based on Spatial Segregation of Ribosomes and Nucleoids. Microb Physiol 2022; 32:177-186. [PMID: 36070705 PMCID: PMC9827431 DOI: 10.1159/000526846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 01/12/2023]
Abstract
It has long become clear that in spite of generally lacking internal membrane systems, bacteria contain well-structured subcellular structures of usually filamentous proteins, and a preferred 3D arrangement of their chromosome(s). Some of these systems are set up by so-called cytoskeletal elements, or by polar landmark proteins, but the mechanism of specific localization is still unclear in most cases. Intriguingly, apart from such spatially organizing systems, the bacterial cytoplasm has unusual properties in terms of the diffusion of molecules, which varies between different sites within the cell. In many bacteria, chromosomes are compacted into centrally located nucleoids, being orderly folded as opposed to consisting of random coils of DNA. In these bacteria, there is a separation of transcription and translation, such that transcription by RNA polymerase occurs on the nucleoids, and translation takes place mostly at the cell poles and directly underneath the cell membrane, because 70S ribosomes accumulate at sites surrounding the nucleoids. Interestingly, accumulation of ribosomes appears to slow down diffusion of enzymes, noticeable for larger enzyme complexes, while nucleoids provide areas of confined motion for DNA-binding proteins, yet acceleration zones for non-DNA-binding proteins. Crowded regions at the cell poles set up zones of higher concentration of the translation machinery, shortening diffusion distances for rate-limiting translation factor/ribosome interactions, and of metabolic enzymes, possibly speeding up pathways containing low concentrations of metabolites. Thus, heterogeneous diffusion adds another layer of subcellular organization on top of cytoskeletal elements.
Collapse
|
8
|
The HD-GYP domain protein of Shewanella putrefaciens YZ08 regulates biofilm formation and spoilage activities. Food Res Int 2022; 157:111466. [DOI: 10.1016/j.foodres.2022.111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
|
9
|
Rick T, Kreiling V, Höing A, Fiedler S, Glatter T, Steinchen W, Hochberg G, Bähre H, Seifert R, Bange G, Knauer SK, Graumann PL, Thormann KM. GGDEF domain as spatial on-switch for a phosphodiesterase by interaction with landmark protein HubP. NPJ Biofilms Microbiomes 2022; 8:35. [PMID: 35501424 PMCID: PMC9061725 DOI: 10.1038/s41522-022-00297-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn bacteria, the monopolar localization of enzymes and protein complexes can result in a bimodal distribution of enzyme activity between the dividing cells and heterogeneity of cellular behaviors. In Shewanella putrefaciens, the multidomain hybrid diguanylate cyclase/phosphodiesterase PdeB, which degrades the secondary messenger c-di-GMP, is located at the flagellated cell pole. Here, we show that direct interaction between the inactive diguanylate cyclase (GGDEF) domain of PdeB and the FimV domain of the polar landmark protein HubP is crucial for full function of PdeB as a phosphodiesterase. Thus, the GGDEF domain serves as a spatially controlled on-switch that effectively restricts PdeBs activity to the flagellated cell pole. PdeB regulates abundance and activity of at least two crucial surface-interaction factors, the BpfA surface-adhesion protein and the MSHA type IV pilus. The heterogeneity in c-di-GMP concentrations, generated by differences in abundance and timing of polar appearance of PdeB, orchestrates the population behavior with respect to cell-surface interaction and environmental spreading.
Collapse
|
10
|
Homma M, Nishikino T, Kojima S. Achievements in bacterial flagellar research with focus on Vibrio species. Microbiol Immunol 2021; 66:75-95. [PMID: 34842307 DOI: 10.1111/1348-0421.12954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022]
Abstract
In 1980's, the most genes involved in the bacterial flagellar function and formation had been isolated though many of their functions or roles were not clarified. Bacterial flagella are the primary locomotive organ and are not necessary for growing in vitro but are probably essential for living in natural condition and are involved in the pathogenicity. In vitro, the flagella-deficient strains can grow at rates similar to wild-type strains. More than 50 genes are responsible for flagellar function, and the flagellum is constructed by more than 20 structural proteins. The maintenance cost of flagellum is high as several genes are required for its development. The fact that it evolved as a motor organ even with such the high cost shows that the motility is indispensable to survive under the harsh environment of Earth. In this review, we focus on flagella-related research conducted by the authors for about 40 years and flagellar research focused on Vibrio spp. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University
| | | | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
11
|
Pecina A, Schwan M, Blagotinsek V, Rick T, Klüber P, Leonhard T, Bange G, Thormann KM. The Stand-Alone PilZ-Domain Protein MotL Specifically Regulates the Activity of the Secondary Lateral Flagellar System in Shewanella putrefaciens. Front Microbiol 2021; 12:668892. [PMID: 34140945 PMCID: PMC8203827 DOI: 10.3389/fmicb.2021.668892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
A number of bacterial species control the function of the flagellar motor in response to the levels of the secondary messenger c-di-GMP, which is often mediated by c-di-GMP-binding proteins that act as molecular brakes or clutches to slow the motor rotation. The gammaproteobacterium Shewanella putrefaciens possesses two distinct flagellar systems, the primary single polar flagellum and a secondary system with one to five lateral flagellar filaments. Here, we identified a protein, MotL, which specifically regulates the activity of the lateral, but not the polar, flagellar motors in response to the c-di-GMP levels. MotL only consists of a single PilZ domain binding c-di-GMP, which is crucial for its function. Deletion and overproduction analyses revealed that MotL slows down the lateral flagella at elevated levels of c-di-GMP, and may speed up the lateral flagellar-mediated movement at low c-di-GMP concentrations. In vitro interaction studies hint at an interaction of MotL with the C-ring of the lateral flagellar motors. This study shows a differential c-di-GMP-dependent regulation of the two flagellar systems in a single species, and implicates that PilZ domain-only proteins can also act as molecular regulators to control the flagella-mediated motility in bacteria.
Collapse
Affiliation(s)
- Anna Pecina
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Meike Schwan
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Vitan Blagotinsek
- Department of Chemistry, SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| | - Tim Rick
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Patrick Klüber
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Tabea Leonhard
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Gert Bange
- Department of Chemistry, SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| | - Kai M Thormann
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Giessen, Germany
| |
Collapse
|
12
|
Melior H, Li S, Stötzel M, Maaß S, Schütz R, Azarderakhsh S, Shevkoplias A, Barth-Weber S, Baumgardt K, Ziebuhr J, Förstner KU, Chervontseva Z, Becher D, Evguenieva-Hackenberg E. Reprograming of sRNA target specificity by the leader peptide peTrpL in response to antibiotic exposure. Nucleic Acids Res 2021; 49:2894-2915. [PMID: 33619526 PMCID: PMC7968998 DOI: 10.1093/nar/gkab093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Trans-acting regulatory RNAs have the capacity to base pair with more mRNAs than generally detected under defined conditions, raising the possibility that sRNA target specificities vary depending on the specific metabolic or environmental conditions. In Sinorhizobium meliloti, the sRNA rnTrpL is derived from a tryptophan (Trp) transcription attenuator located upstream of the Trp biosynthesis gene trpE(G). The sRNA rnTrpL contains a small ORF, trpL, encoding the 14-aa leader peptide peTrpL. If Trp is available, efficient trpL translation causes transcription termination and liberation of rnTrpL, which subsequently acts to downregulate the trpDC operon, while peTrpL is known to have a Trp-independent role in posttranscriptional regulation of antibiotic resistance mechanisms. Here, we show that tetracycline (Tc) causes rnTrpL accumulation independently of Trp availability. In the presence of Tc, rnTrpL and peTrpL act collectively to destabilize rplUrpmA mRNA encoding ribosomal proteins L21 and L27. The three molecules, rnTrpL, peTrpL, and rplUrpmA mRNA, form an antibiotic-dependent ribonucleoprotein complex (ARNP). In vitro reconstitution of this ARNP in the presence of competing trpD and rplU transcripts revealed that peTrpL and Tc cause a shift of rnTrpL specificity towards rplU, suggesting that sRNA target prioritization may be readjusted in response to changing environmental conditions.
Collapse
Affiliation(s)
- Hendrik Melior
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Siqi Li
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Maximilian Stötzel
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Rubina Schütz
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Saina Azarderakhsh
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Aleksei Shevkoplias
- Faculty of Biology and Biotechnology, Higher School of Economics, 117312 Moscow, Russia.,Institute for Information Transmission Problems (the Kharkevich Institute, RAS), 127051 Moscow, Russia
| | - Susanne Barth-Weber
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Kathrin Baumgardt
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, University of Giessen, 35392 Giessen, Germany
| | - Konrad U Förstner
- Data Science and Services, ZB MED - Information Centre for Life Sciences, 50931 Cologne, Germany
| | - Zoe Chervontseva
- Institute for Information Transmission Problems (the Kharkevich Institute, RAS), 127051 Moscow, Russia
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | | |
Collapse
|
13
|
Hengge R. High-Specificity Local and Global c-di-GMP Signaling. Trends Microbiol 2021; 29:993-1003. [PMID: 33640237 DOI: 10.1016/j.tim.2021.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
The striking multiplicity, signal input diversity, and output specificity of c-di-GMP signaling proteins in many bacteria has brought second messenger signaling back onto the agenda of contemporary microbiology. How can several signaling pathways act in parallel in a specific manner if all of them use the same diffusible second messenger present at a certain global cellular concentration? Recent research has now shown that bacteria achieve this by flexibly combining modes of local and global c-di-GMP signaling in complex signaling networks. Three criteria have to be met to define local c-di-GMP signaling: specific knockout phenotypes, direct interactions between proteins involved, and actual cellular c-di-GMP levels remaining below the Kd of effectors. Adaptive changes in signaling network architecture can further enhance signaling flexibility.
Collapse
Affiliation(s)
- Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
14
|
Identification of Three New GGDEF and EAL Domain-Containing Proteins Participating in the Scr Surface Colonization Regulatory Network in Vibrio parahaemolyticus. J Bacteriol 2021; 203:JB.00409-20. [PMID: 33199284 DOI: 10.1128/jb.00409-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus rapidly colonizes surfaces using swarming motility. Surface contact induces the surface-sensing regulon, including lateral flagellar genes, spurring dramatic shifts in physiology and behavior. The bacterium can also adopt a sessile, surface-associated lifestyle and form robust biofilms. These alternate colonization strategies are influenced reciprocally by the second messenger c-di-GMP. Although V. parahaemolyticus possesses 43 predicted proteins with the c-di-GMP-forming GGDEF domain, none have been previously been identified as contributors to surface colonization. We sought to explore this knowledge gap by using a suppressor transposon screen to restore the swarming motility of a nonswarming, high-c-di-GMP strain. Two diguanylate cyclases, ScrJ and ScrL, each containing tetratricopeptide repeat-coupled GGDEF domains, were demonstrated to contribute additively to swarming gene repression. Both proteins required an intact catalytic motif to regulate. Another suppressor mapped in lafV, the last gene in a lateral flagellar operon. Containing a degenerate phosphodiesterase (EAL) domain, LafV repressed transcription of multiple genes in the surface sensing regulon; its repressive activity required LafK, the primary swarming regulator. Mutation of the signature EAL motif had little effect on LafV's repressive activity, suggesting that LafV belongs to the subclass of EAL-type proteins that are regulatory but not enzymatic. Consistent with these activities and their predicted effects on c-di-GMP, scrJ and scrL but not lafV, mutants affected the transcription of the c-di-GMP-responsive biofilm reporter cpsA::lacZ Our results expand the knowledge of the V. parahaemolyticus GGDEF/EAL repertoire and its roles in this surface colonization regulatory network.IMPORTANCE A key survival decision, in the environment or the host, is whether to emigrate or aggregate. In bacteria, c-di-GMP signaling almost universally influences solutions to this dilemma. In V. parahaemolyticus, c-di-GMP reciprocally regulates swarming and sticking (i.e., biofilm formation) programs of surface colonization. Key c-di-GMP-degrading phosphodiesterases responsive to quorum and nutritional signals have been previously identified. c-di-GMP binding transcription factors programming biofilm development have been studied. Here, we further develop the blueprint of the c-di-GMP network by identifying new participants involved in dictating the complex decision of whether to swarm or stay. These include diguanylate cyclases with tetratricopeptide domains and a degenerate EAL protein that, analogously to the negative flagellar regulator RflP/YdiV of enteric bacteria, serves to regulate swarming.
Collapse
|
15
|
Pióro M, Jakimowicz D. Chromosome Segregation Proteins as Coordinators of Cell Cycle in Response to Environmental Conditions. Front Microbiol 2020; 11:588. [PMID: 32351468 PMCID: PMC7174722 DOI: 10.3389/fmicb.2020.00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation is a crucial stage of the cell cycle. In general, proteins involved in this process are DNA-binding proteins, and in most bacteria, ParA and ParB are the main players; however, some bacteria manage this process by employing other proteins, such as condensins. The dynamic interaction between ParA and ParB drives movement and exerts positioning of the chromosomal origin of replication (oriC) within the cell. In addition, both ParA and ParB were shown to interact with the other proteins, including those involved in cell division or cell elongation. The significance of these interactions for the progression of the cell cycle is currently under investigation. Remarkably, DNA binding by ParA and ParB as well as their interactions with protein partners conceivably may be modulated by intra- and extracellular conditions. This notion provokes the question of whether chromosome segregation can be regarded as a regulatory stage of the cell cycle. To address this question, we discuss how environmental conditions affect chromosome segregation and how segregation proteins influence other cell cycle processes.
Collapse
Affiliation(s)
- Monika Pióro
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dagmara Jakimowicz
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
16
|
Nicastro GG, Kaihami GH, Pulschen AA, Hernandez-Montelongo J, Boechat AL, de Oliveira Pereira T, Rosa CGT, Stefanello E, Colepicolo P, Bordi C, Baldini RL. c-di-GMP-related phenotypes are modulated by the interaction between a diguanylate cyclase and a polar hub protein. Sci Rep 2020; 10:3077. [PMID: 32080219 PMCID: PMC7033161 DOI: 10.1038/s41598-020-59536-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/30/2020] [Indexed: 01/19/2023] Open
Abstract
c-di-GMP is a major player in the switch between biofilm and motile lifestyles. Several bacteria exhibit a large number of c-di-GMP metabolizing proteins, thus a fine-tuning of this nucleotide levels may occur. It is hypothesized that some c-di-GMP metabolizing proteins would provide the global c-di-GMP levels inside the cell whereas others would maintain a localized pool, with the resulting c-di-GMP acting at the vicinity of its production. Although attractive, this hypothesis has yet to be demonstrated in Pseudomonas aeruginosa. We found that the diguanylate cyclase DgcP interacts with the cytosolic region of FimV, a polar peptidoglycan-binding protein involved in type IV pilus assembly. Moreover, DgcP is located at the cell poles in wild type cells but scattered in the cytoplasm of cells lacking FimV. Overexpression of dgcP leads to the classical phenotypes of high c-di-GMP levels (increased biofilm and impaired motilities) in the wild-type strain, but not in a ΔfimV background. Therefore, our findings suggest that DgcP activity is regulated by FimV. The polar localization of DgcP might contribute to a local c-di-GMP pool that can be sensed by other proteins at the cell pole, bringing to light a specialized function for a specific diguanylate cyclase.
Collapse
Affiliation(s)
- Gianlucca G Nicastro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gilberto H Kaihami
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - André A Pulschen
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Jacobo Hernandez-Montelongo
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Ana Laura Boechat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Caio Gomes Tavares Rosa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Eliezer Stefanello
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Regina L Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
17
|
Abstract
Prokaryotic organisms occupy the most diverse set of environments and conditions on our planet. Their ability to sense and respond to a broad range of external cues remain key research areas in modern microbiology, central to behaviors that underlie beneficial and pathogenic interactions of bacteria with multicellular organisms and within complex ecosystems. Advances in our understanding of the one- and two-component signal transduction systems that underlie these sensing pathways have been driven by advances in imaging the behavior of many individual bacterial cells, as well as visualizing individual proteins and protein arrays within living cells. Cryo-electron tomography continues to provide new insights into the structure and function of chemosensory receptors and flagellar motors, while advances in protein labeling and tracking are applied to understand information flow between receptor and motor. Sophisticated microfluidics allow simultaneous analysis of the behavior of thousands of individual cells, increasing our understanding of how variance between individuals is generated, regulated and employed to maximize fitness of a population. In vitro experiments have been complemented by the study of signal transduction and motility in complex in vivo models, allowing investigators to directly address the contribution of motility, chemotaxis and aggregation/adhesion on virulence during infection. Finally, systems biology approaches have demonstrated previously uncharted areas of protein space in which novel two-component signal transduction pathways can be designed and constructed de novo These exciting experimental advances were just some of the many novel findings presented at the 15th Bacterial Locomotion and Signal Transduction conference (BLAST XV) in January 2019.
Collapse
|
18
|
Mushnikov NV, Fomicheva A, Gomelsky M, Bowman GR. Inducible asymmetric cell division and cell differentiation in a bacterium. Nat Chem Biol 2019; 15:925-931. [PMID: 31406376 PMCID: PMC7439754 DOI: 10.1038/s41589-019-0340-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
Multicellular organisms achieve greater complexity through cell divisions that generate different cell types. We engineered a simple genetic circuit that induces asymmetric cell division and subsequent cell differentiation in Escherichia coli. The circuit involves a scaffolding protein, PopZ, that is stably maintained at a single cell pole over multiple asymmetric cell divisions. PopZ was functionalized to degrade the signaling molecule, c-di-GMP. By regulating synthesis of functionalized PopZ via small molecules or light, we can chemically or optogenetically control the relative abundance of two distinct cell types, characterized by either low or high c-di-GMP levels. Differences in c-di-GMP levels can be transformed into genetically programmable differences in protein complex assembly or gene expression, which in turn produce differential behavior or biosynthetic activities. This study shows emergence of complex biological phenomena from a simple genetic circuit and adds programmable bacterial cell differentiation to the genetic toolbox of synthetic biology and biotechnology.
Collapse
Affiliation(s)
| | | | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Grant R Bowman
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
19
|
Park S, Yoon J, Lee CR, Lee JY, Kim YR, Jang KS, Lee KH, Seok YJ. Polar landmark protein HubP recruits flagella assembly protein FapA under glucose limitation in Vibrio vulnificus. Mol Microbiol 2019; 112:266-279. [PMID: 31058375 DOI: 10.1111/mmi.14268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2019] [Indexed: 12/26/2022]
Abstract
How motile bacteria recognize their environment and decide whether to stay or navigate toward more favorable location is a fundamental issue in survival. The flagellum is an elaborate molecular device responsible for bacterial locomotion, and the flagellum-driven motility allows bacteria to move themselves to the appropriate location at the right time. Here, we identify the polar landmark protein HubP as a modulator of polar flagellation that recruits the flagellar assembly protein FapA to the old cell pole, thereby controlling its activity for the early events of flagellar assembly in Vibrio vulnificus. We show that dephosphorylated EIIAGlc of the PEP-dependent sugar transporting phosphotransferase system sequesters FapA from HubP in response to glucose and hence inhibits FapA-mediated flagellation. Thus, flagellar assembly and motility is governed by spatiotemporal control of FapA, which is orchestrated by the competition between dephosphorylated EIIAGlc and HubP, in the human pathogen V. vulnificus.
Collapse
Affiliation(s)
- Soyoung Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihee Yoon
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, 17058, Republic of Korea
| | - Ju Yeon Lee
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Yeon-Ran Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Kyu-Ho Lee
- Department of Biological Sciences, Sogang University, Seoul, 04107, Republic of Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|