1
|
Li S, Chen F, Li Y, Wang L, Li H, Gu G, Li E. Rhamnose-Containing Compounds: Biosynthesis and Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165315. [PMID: 36014553 PMCID: PMC9415975 DOI: 10.3390/molecules27165315] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Rhamnose-associated molecules are attracting attention because they are present in bacteria but not mammals, making them potentially useful as antibacterial agents. Additionally, they are also valuable for tumor immunotherapy. Thus, studies on the functions and biosynthetic pathways of rhamnose-containing compounds are in progress. In this paper, studies on the biosynthetic pathways of three rhamnose donors, i.e., deoxythymidinediphosphate-L-rhamnose (dTDP-Rha), uridine diphosphate-rhamnose (UDP-Rha), and guanosine diphosphate rhamnose (GDP-Rha), are firstly reviewed, together with the functions and crystal structures of those associated enzymes. Among them, dTDP-Rha is the most common rhamnose donor, and four enzymes, including glucose-1-phosphate thymidylyltransferase RmlA, dTDP-Glc-4,6-dehydratase RmlB, dTDP-4-keto-6-deoxy-Glc-3,5-epimerase RmlC, and dTDP-4-keto-Rha reductase RmlD, are involved in its biosynthesis. Secondly, several known rhamnosyltransferases from Geobacillus stearothermophilus, Saccharopolyspora spinosa, Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Streptococcus pneumoniae are discussed. In these studies, however, the functions of rhamnosyltransferases were verified by employing gene knockout and radiolabeled substrates, which were almost impossible to obtain and characterize the products of enzymatic reactions. Finally, the application of rhamnose-containing compounds in disease treatments is briefly described.
Collapse
Affiliation(s)
- Siqiang Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
- Institute of Agricultural Products Fermentation Engineering and Application, Huanghuai University, Zhumadian 463000, China
| | - Fujia Chen
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
- Institute of Agricultural Products Fermentation Engineering and Application, Huanghuai University, Zhumadian 463000, China
| | - Yun Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
- Institute of Agricultural Products Fermentation Engineering and Application, Huanghuai University, Zhumadian 463000, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250100, China
| | - Hongyan Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Guofeng Gu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Correspondence: (G.G.); (E.L.)
| | - Enzhong Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
- Institute of Agricultural Products Fermentation Engineering and Application, Huanghuai University, Zhumadian 463000, China
- Correspondence: (G.G.); (E.L.)
| |
Collapse
|
2
|
Abstract
Actinobacteria is a group of diverse bacteria. Most species in this class of bacteria are filamentous aerobes found in soil, including the genus Streptomyces perhaps best known for their fascinating capabilities of producing antibiotics. These bacteria typically have a Gram-positive cell envelope, comprised of a plasma membrane and a thick peptidoglycan layer. However, there is a notable exception of the Corynebacteriales order, which has evolved a unique type of outer membrane likely as a consequence of convergent evolution. In this chapter, we will focus on the unique cell envelope of this order. This cell envelope features the peptidoglycan layer that is covalently modified by an additional layer of arabinogalactan . Furthermore, the arabinogalactan layer provides the platform for the covalent attachment of mycolic acids , some of the longest natural fatty acids that can contain ~100 carbon atoms per molecule. Mycolic acids are thought to be the main component of the outer membrane, which is composed of many additional lipids including trehalose dimycolate, also known as the cord factor. Importantly, a subset of bacteria in the Corynebacteriales order are pathogens of human and domestic animals, including Mycobacterium tuberculosis. The surface coat of these pathogens are the first point of contact with the host immune system, and we now know a number of host receptors specific to molecular patterns exposed on the pathogen's surface, highlighting the importance of understanding how the cell envelope of Actinobacteria is structured and constructed. This chapter describes the main structural and biosynthetic features of major components found in the actinobacterial cell envelopes and highlights the key differences between them.
Collapse
Affiliation(s)
- Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
3
|
Rochat T, Fujiwara-Nagata E, Calvez S, Dalsgaard I, Madsen L, Calteau A, Lunazzi A, Nicolas P, Wiklund T, Bernardet JF, Duchaud E. Genomic Characterization of Flavobacterium psychrophilum Serotypes and Development of a Multiplex PCR-Based Serotyping Scheme. Front Microbiol 2017; 8:1752. [PMID: 28955320 PMCID: PMC5601056 DOI: 10.3389/fmicb.2017.01752] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/28/2017] [Indexed: 11/17/2022] Open
Abstract
Flavobacterium psychrophilum is a devastating bacterial pathogen of salmonids reared in freshwater worldwide. So far, serological diversity between isolates has been described but the underlying molecular factors remain unknown. By combining complete genome sequence analysis and the serotyping method proposed by Lorenzen and Olesen (1997) for a set of 34 strains, we identified key molecular determinants of the serotypes. This knowledge allowed us to develop a robust multiplex PCR-based serotyping scheme, which was applied to 244 bacterial isolates. The results revealed a striking association between PCR-serotype and fish host species and illustrate the use of this approach as a simple and cost-effective method for the determination of F. psychrophilum serogroups. PCR-based serotyping could be a useful tool in a range of applications such as disease surveillance, selection of salmonids for bacterial coldwater disease resistance and future vaccine formulation.
Collapse
Affiliation(s)
- Tatiana Rochat
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| | | | - Ségolène Calvez
- Biologie, Epidémiologie et Analyse du Risque, Institut National de la Recherche Agronomique, OnirisNantes, France
| | - Inger Dalsgaard
- National Veterinary Institute, Technical University of DenmarkKongens Lyngby, Denmark
| | - Lone Madsen
- National Veterinary Institute, Technical University of DenmarkKongens Lyngby, Denmark
| | - Alexandra Calteau
- CEA/Genoscope/LABGeM, CNRS-UMR8030, Université d'Evry - Université Paris-SaclayEvry, France
| | - Aurélie Lunazzi
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| | - Pierre Nicolas
- Mathématiques et Informatique Appliquées du Génome à l'Environnement, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| | - Tom Wiklund
- Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Faculty of Science and Engineering, Åbo Akademi UniversityTurku, Finland
| | - Jean-François Bernardet
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| | - Eric Duchaud
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
5
|
Pang L, Tian X, Pan W, Xie J. Structure and function of mycobacterium glycopeptidolipids from comparative genomics perspective. J Cell Biochem 2013; 114:1705-13. [PMID: 23444081 DOI: 10.1002/jcb.24515] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 11/08/2022]
Abstract
Glycopeptidolipids (GPLs) attached to the outer surface of the greasy cell envelope, are a class of important glycolipids synthesized by several non-tuberculosis mycobacteria. The deletion or structure change of GPLs confers several phenotypical changes including colony morphology, hydrophobicity, aggregation, sliding motility, and biofilm formation. In addition, GPLs, particular serovar specific GPLs, are important immunomodulators. This review aims to summarize the advance on the structure, function and biosynthesis of mycobacterium GPLs.
Collapse
Affiliation(s)
- Lei Pang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | | | | | | |
Collapse
|
6
|
Mukherjee R, Chatterji D. Glycopeptidolipids: immuno-modulators in greasy mycobacterial cell envelope. IUBMB Life 2012; 64:215-25. [PMID: 22252955 DOI: 10.1002/iub.602] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 11/10/2011] [Indexed: 11/12/2022]
Abstract
Species of opportunistic mycobacteria are the major causative agent for disseminating pulmonary infections in immuno-compromised individuals. These naturally resistant strains recruit a unique type of glycolipid known as glycopeptidolipids (GPLs), noncovalently attached to the outer surface of their thick lipid rich cell envelope. Species specific GPLs constitute the chemical determinants of most nontuberculous mycobacterial serotypes, and their absence from the cell surface confers altered colony morphology, hydrophobicity, and inability to grow as biofilms. The objective of this review is to present a comprehensive account and highlight the renewed interest on this much neglected group of pleiotropic molecules with respect to their structural diversity and biosynthesis. In addition, the role of GPLs in mycobacterial survival, both intracellular and in the environment is also discussed. It also explores the possibility of identifying new targets for intervening Mycobacterium avium complex-related infections. These antigenic molecules have been considered to play a pivotal role in immune suppression and can also induce various cytokine mediated innate immune responses, the molecular mechanism of which remains obscure.
Collapse
Affiliation(s)
- Raju Mukherjee
- Swiss Federal Institute of Technology, Lausanne, Switzerland.
| | | |
Collapse
|
7
|
Structure and host recognition of serotype 13 glycopeptidolipid from Mycobacterium intracellulare. J Bacteriol 2011; 193:5766-74. [PMID: 21856857 DOI: 10.1128/jb.05412-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Mycobacterium avium-M. intracellulare complex (MAIC) is divided into 28 serotypes by a species-specific glycopeptidolipid (GPL). Previously, we clarified the structures of serotype 7 GPL and two methyltransferase genes (orfA and orfB) in serotype 12 GPL. This study elucidated the chemical structure, biosynthesis gene, and host innate immune response of serotype 13 GPL. The oligosaccharide (OSE) structure of serotype 13 GPL was determined to be 4-2'-hydroxypropanoyl-amido-4,6-dideoxy-β-hexose-(1 → 3)-4-O-methyl-α-L-rhamnose-(1 → 3)-α-L-rhamnose-(1 → 3)-α-L-rhamnose-(1 → 2)-α-L-6-deoxy-talose by using chromatography, mass spectrometry, and nuclear magnetic resonance (NMR) analyses. The structure of the serotype 13 GPL was different from those of serotype 7 and 12 GPLs only in O-methylations. We found a relationship between the structure and biosynthesis gene cluster. M. intracellulare serotypes 12 and 13 have a 1.95-kb orfA-orfB gene responsible for 3-O-methylation at the terminal hexose, orfB, and 4-O-methylation at the rhamnose next to the terminal hexose, orfA. The serotype 13 orfB had a nonfunctional one-base missense mutation that modifies serotype 12 GPL to serotype 13 GPL. Moreover, the native serotype 13 GPL was multiacetylated and recognized via Toll-like receptor 2. The findings presented here imply that serotypes 7, 12, and 13 are phylogenetically related and confirm that acetylation of the GPL is necessary for host recognition. This study will promote better understanding of the structure-function relationships of GPLs and may open a new avenue for the prevention of MAIC infections.
Collapse
|