1
|
Mouliou DS. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023; 11:132. [PMID: 37873776 PMCID: PMC10594506 DOI: 10.3390/diseases11040132] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
The current literature provides a body of evidence on C-Reactive Protein (CRP) and its potential role in inflammation. However, most pieces of evidence are sparse and controversial. This critical state-of-the-art monography provides all the crucial data on the potential biochemical properties of the protein, along with further evidence on its potential pathobiology, both for its pentameric and monomeric forms, including information for its ligands as well as the possible function of autoantibodies against the protein. Furthermore, the current evidence on its potential utility as a biomarker of various diseases is presented, of all cardiovascular, respiratory, hepatobiliary, gastrointestinal, pancreatic, renal, gynecological, andrological, dental, oral, otorhinolaryngological, ophthalmological, dermatological, musculoskeletal, neurological, mental, splenic, thyroid conditions, as well as infections, autoimmune-supposed conditions and neoplasms, including other possible factors that have been linked with elevated concentrations of that protein. Moreover, data on molecular diagnostics on CRP are discussed, and possible etiologies of false test results are highlighted. Additionally, this review evaluates all current pieces of evidence on CRP and systemic inflammation, and highlights future goals. Finally, a novel diagnostic algorithm to carefully assess the CRP level for a precise diagnosis of a medical condition is illustrated.
Collapse
|
2
|
The Helicobacter pylori UvrC Nuclease Is Essential for Chromosomal Microimports after Natural Transformation. mBio 2022; 13:e0181122. [PMID: 35876509 PMCID: PMC9426483 DOI: 10.1128/mbio.01811-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterial carcinogenic pathogen that infects the stomachs of half of the human population. It is a natural mutator due to a deficient DNA mismatch repair pathway and is naturally competent for transformation. As a result, it is one of the most genetically diverse human bacterial pathogens. The length of chromosomal imports in H. pylori follows an unusual bimodal distribution consisting of macroimports with a mean length of 1,645 bp and microimports with a mean length of 28 bp. The mechanisms responsible for this import pattern were unknown. Here, we used a high-throughput whole-genome transformation assay to elucidate the role of nucleotide excision repair pathway (NER) components on import length distribution. The data show that the integration of microimports depended on the activity of the UvrC endonuclease, while none of the other components of the NER pathway was required. Using H. pylori site-directed mutants, we showed that the widely conserved UvrC nuclease active sites, while essential for protection from UV light, one of the canonical NER functions, are not required for generation of microimports. A quantitative analysis of recombination patterns based on over 1,000 imports from over 200 sequenced recombinant genomes showed that microimports occur frequently within clusters of multiple imports, strongly suggesting they derive from a single strand invasion event. We propose a hypothetical model of homologous recombination in H. pylori, involving a novel function of UvrC, that reconciles the available experimental data about recombination patterns in H. pylori. IMPORTANCE Helicobacter pylori is one of the most common and genetically diverse human bacterial pathogens. It is responsible for chronic gastritis and represents the main risk factor for gastric cancer. In H. pylori, DNA fragments can be imported by recombination during natural transformation. The length of those fragments determines how many potentially beneficial or deleterious alleles are acquired and thus influences adaptation to the gastric niche. Here, we used a transformation assay to examine imported fragments across the chromosome. We show that UvrC, an endonuclease involved in DNA repair, is responsible for the specific integration of short DNA fragments. This suggests that short and long fragments are imported through distinct recombination pathways. We also show that short fragments are frequently clustered with longer fragments, suggesting that both pathways may be mechanistically linked. These findings provide a novel basis to explain how H. pylori can fine-tune the genetic diversity acquired by transformation.
Collapse
|
3
|
Liu Y, Wang S, Yang F, Chi W, Ding L, Liu T, Zhu F, Ji D, Zhou J, Fang Y, Zhang J, Xiang P, Zhang Y, Zhao H. Antimicrobial resistance patterns and genetic elements associated with the antibiotic resistance of Helicobacter pylori strains from Shanghai. Gut Pathog 2022; 14:14. [PMID: 35354484 PMCID: PMC8966258 DOI: 10.1186/s13099-022-00488-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/21/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Shanghai, in east China, has one of the world's highest burdens of Helicobacter pylori infection. While multidrug regimens can effectively eradicate H. pylori, the increasing prevalence of antibiotic resistance (AR) in H. pylori has been recognized by the WHO as 'high priority' for urgent need of new therapies. Moreover, the genetic characteristics of H. pylori AR in Shanghai is under-reported. The purpose of this study was to determine the resistance prevalence, re-substantiate resistance-conferring mutations, and investigate novel genetic elements associated with H. pylori AR. RESULTS We performed whole genome sequencing and antimicrobial susceptibility testing of 112 H. pylori strains isolated from gastric biopsy specimens from Shanghai patients with different gastric diseases. No strains were resistant to amoxicillin. Levofloxacin, metronidazole and clarithromycin resistance was observed in 39 (34.8%), 73 (65.2%) and 18 (16.1%) strains, respectively. There was no association between gastroscopy diagnosis and resistance phenotypes. We reported the presence or absence of several subsystem protein coding genes including hopE, hofF, spaB, cagY and pflA, and a combination of CRISPRs, which were potentially correlated with resistance phenotypes. The H. pylori strains were also annotated for 80 genome-wide AR genes (ARGs). A genome-wide ARG analysis was performed for the three antibiotics by correlating the phenotypes with the genetic variants, which identified the well-known intrinsic mutations conferring resistance to levofloxacin (N87T/I and/or D91G/Y mutations in gyrA), metronidazole (I38V mutation in fdxB), and clarithromycin (A2143G and/or A2142G mutations in 23S rRNA), and added 174 novel variations, including 23 non-synonymous SNPs and 48 frameshift Indels that were significantly enriched in either the antibiotic-resistant or antibiotic-susceptible bacterial populations. The variant-level linkage disequilibrium analysis highlighted variations in a protease Lon with strong co-occurring correlation with a series of resistance-associated variants. CONCLUSION Our study revealed multidrug antibiotic resistance in H. pylori strains from Shanghai, which was characterized by high metronidazole and moderate levofloxacin resistance, and identified specific genomic characteristics in relation to H. pylori AR. Continued surveillance of H. pylori AR in Shanghai is warranted in order to establish appropriate eradication treatment regimens for this population.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Su Wang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Wenjing Chi
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Li Ding
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Danian Ji
- Department of Endoscopy, Huadong Hospital, Fudan University, Shanghai, China
| | - Jun Zhou
- Department of Endoscopy, Huadong Hospital, Fudan University, Shanghai, China
| | - Yi Fang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Jinghao Zhang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Ping Xiang
- Department of Endoscopy, Huadong Hospital, Fudan University, Shanghai, China
| | - Yanmei Zhang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Ailloud F, Estibariz I, Suerbaum S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori. FEMS Microbiol Rev 2021; 45:5900976. [PMID: 32880636 DOI: 10.1093/femsre/fuaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a Gram-negative, spiral shaped bacterium that selectively and chronically infects the gastric mucosa of humans. The clinical course of this infection can range from lifelong asymptomatic infection to severe disease, including peptic ulcers or gastric cancer. The high mutation rate and natural competence typical of this species are responsible for massive inter-strain genetic variation exceeding that observed in all other bacterial human pathogens. The adaptive value of such a plastic genome is thought to derive from a rapid exploration of the fitness landscape resulting in fast adaptation to the changing conditions of the gastric environment. Nevertheless, diversity is also lost through recurrent bottlenecks and H. pylori's lifestyle is thus a perpetual race to maintain an appropriate pool of standing genetic variation able to withstand selection events. Another aspect of H. pylori's diversity is a large and variable repertoire of restriction-modification systems. While not yet completely understood, methylome evolution could generate enough transcriptomic variation to provide another intricate layer of adaptive potential. This review provides an up to date synopsis of this rapidly emerging area of H. pylori research that has been enabled by the ever-increasing throughput of Omics technologies and a multitude of other technological advances.
Collapse
Affiliation(s)
- Florent Ailloud
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Iratxe Estibariz
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany.,DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Pettenkoferstr. 9a, 80336 München, Germany.,National Reference Center for Helicobacter pylori, Pettenkoferstr. 9a, 80336 München, Germany
| |
Collapse
|
5
|
Identification of Pathogenicity Island Genes Associated with Loss of Type IV Secretion Function during Murine Infection with Helicobacter pylori. Infect Immun 2020; 88:IAI.00801-19. [PMID: 32205402 DOI: 10.1128/iai.00801-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/16/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic Helicobacter pylori colonization in animal models often leads to downregulation of the type IV secretion system (T4SS), typically by recombination in cagY, which is an essential T4SS gene. However, 17 other cag pathogenicity island (cagPAI) genes, as well as some non-cagPAI genes, are also essential for T4SS function. To get a more complete picture of how H. pylori regulates the T4SS during animal colonization, we examined cagY in 534 mouse-passaged isolates that lost T4SS function, defined as a normalized interleukin-8 (IL-8) value of <0.3 relative to the input H. pylori strain PMSS1. In order to analyze the genetic changes in the strains with unchanged cagY, we sequenced the entire pathogenicity island of 60 such isolates using single-molecule, real-time (SMRT) sequencing technology (PacBio, Menlo Park, CA), and we compared the results to the PMSS1 wild type (WT). Of the 534 strains, 271 (51%) showed evidence of recombination in cagY, but we also found indels or nonsynonymous changes in 13 other essential cagPAI genes implicated in H. pylori T4SS function, most commonly cag5, cag10, and cagA While cagY recombination is the most common mechanism by which H. pylori downregulates T4SS function during murine infection, loss of function is also associated with changes in other essential cagPAI genes.
Collapse
|
6
|
Stingl K, Koraimann G. Prokaryotic Information Games: How and When to Take up and Secrete DNA. Curr Top Microbiol Immunol 2019. [PMID: 29536355 DOI: 10.1007/978-3-319-75241-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Besides transduction via bacteriophages natural transformation and bacterial conjugation are the most important mechanisms driving bacterial evolution and horizontal gene spread. Conjugation systems have evolved in eubacteria and archaea. In Gram-positive and Gram-negative bacteria, cell-to-cell DNA transport is typically facilitated by a type IV secretion system (T4SS). T4SSs also mediate uptake of free DNA in Helicobacter pylori, while most transformable bacteria use a type II secretion/type IV pilus system. In this chapter, we focus on how and when bacteria "decide" that such a DNA transport apparatus is to be expressed and assembled in a cell that becomes competent. Development of DNA uptake competence and DNA transfer competence is driven by a variety of stimuli and often involves intricate regulatory networks leading to dramatic changes in gene expression patterns and bacterial physiology. In both cases, genetically homogeneous populations generate a distinct subpopulation that is competent for DNA uptake or DNA transfer or might uniformly switch into competent state. Phenotypic conversion from one state to the other can rely on bistable genetic networks that are activated stochastically with the integration of external signaling molecules. In addition, we discuss principles of DNA uptake processes in naturally transformable bacteria and intend to understand the exceptional use of a T4SS for DNA import in the gastric pathogen H. pylori. Realizing the events that trigger developmental transformation into competence within a bacterial population will eventually help to create novel and effective therapies against the transmission of antibiotic resistances among pathogens.
Collapse
Affiliation(s)
- Kerstin Stingl
- National Reference Laboratory for Campylobacter, Department Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria.
| |
Collapse
|
7
|
Moazami E, Perry JM, Soffer G, Husser MC, Shih SCC. Integration of World-to-Chip Interfaces with Digital Microfluidics for Bacterial Transformation and Enzymatic Assays. Anal Chem 2019; 91:5159-5168. [DOI: 10.1021/acs.analchem.8b05754] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ehsan Moazami
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec H3G1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| | - James M. Perry
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| | - Guy Soffer
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec H3G1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| | - Mathieu C. Husser
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| | - Steve C. C. Shih
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec H3G1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| |
Collapse
|
8
|
Host Determinants of Expression of the Helicobacter pylori BabA Adhesin. Sci Rep 2017; 7:46499. [PMID: 28418004 PMCID: PMC5394467 DOI: 10.1038/srep46499] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Abstract
Expression of the Helicobacter pylori blood group antigen binding adhesin A (BabA) is more common in strains isolated from patients with peptic ulcer disease or gastric cancer, rather than asymptomatic colonization. Here we used mouse models to examine host determinants that affect H. pylori BabA expression. BabA expression was lost by phase variation as frequently in WT mice as in RAG2−/− mice that do not have functional B or T cells, and in MyD88−/−, TLR2−/− and TLR4−/− mice that are defective in toll like receptor signaling. The presence of other bacteria had no effect on BabA expression as shown by infection of germ free mice. Moreover, loss of BabA expression was not dependent on Leb expression or the capacity of BabA to bind Leb. Surprisingly, gender was the host determinant most associated with loss of BabA expression, which was maintained to a greater extent in male mice and was associated with greater bacterial load. These results suggest the possibility that loss of BabA expression is not driven by adaptive immunity or toll-like receptor signaling, and that BabA may have other, unrecognized functions in addition to serving as an adhesin that binds Leb.
Collapse
|
9
|
ComB proteins expression levels determine Helicobacter pylori competence capacity. Sci Rep 2017; 7:41495. [PMID: 28128333 PMCID: PMC5269756 DOI: 10.1038/srep41495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori chronically colonises half of the world’s human population and is the main cause of ulcers and gastric cancers. Its prevalence and the increase in antibiotic resistance observed recently reflect the high genetic adaptability of this pathogen. Together with high mutation rates and an efficient DNA recombination system, horizontal gene transfer through natural competence makes of H. pylori one of the most genetically diverse bacteria. We show here that transformation capacity is enhanced in strains defective for recN, extending previous work with other homologous recombination genes. However, inactivation of either mutY or polA has no effect on DNA transformation, suggesting that natural competence can be boosted in H. pylori by the persistence of DNA breaks but not by enhanced mutagenesis. The transformation efficiency of the different DNA repair impaired strains correlates with the number of transforming DNA foci formed on the cell surface and with the expression of comB8 and comB10 competence genes. Overexpression of the comB6-B10 operon is sufficient to increase the transformation capacity of a wild type strain, indicating that the ComB complex, present in the bacterial wall and essential for DNA uptake, can be a limiting factor for transformation efficiency.
Collapse
|
10
|
Krüger NJ, Knüver MT, Zawilak-Pawlik A, Appel B, Stingl K. Genetic Diversity as Consequence of a Microaerobic and Neutrophilic Lifestyle. PLoS Pathog 2016; 12:e1005626. [PMID: 27166672 PMCID: PMC4864210 DOI: 10.1371/journal.ppat.1005626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/21/2016] [Indexed: 01/10/2023] Open
Abstract
As a neutrophilic bacterium, Helicobacter pylori is growth deficient under extreme acidic conditions. The gastric pathogen is equipped with an acid survival kit, regulating urease activity by a pH-gated urea channel, opening below pH 6.5. After overcoming acid stress, the bacterium’s multiplication site is situated at the gastric mucosa with near neutral pH. The pathogen exhibits exceptional genetic variability, mainly due to its capability of natural transformation, termed competence. Using single cell analysis, we show here that competence is highly regulated in H. pylori. DNA uptake complex activity was reversibly shut down below pH 6.5. pH values above 6.5 opened a competence window, in which competence development was triggered by the combination of pH increase and oxidative stress. In contrast, addition of sublethal concentrations of the DNA-damaging agents ciprofloxacin or mitomycin C did not trigger competence development under our conditions. An oxygen-sensitive mutant lacking superoxide dismutase (sodB) displayed a higher competent fraction of cells than the wild type under comparable conditions. In addition, the sodB mutant was dependent on adenine for growth in broth and turned into non-cultivable coccoid forms in its absence, indicating that adenine had radical quenching capacity. Quantification of periplasmically located DNA in competent wild type cells revealed outstanding median imported DNA amounts of around 350 kb per cell within 10 min of import, with maximally a chromosomal equivalent (1.6 Mb) in individual cells, far exceeding previous amounts detected in other Gram-negative bacteria. We conclude that the pathogen’s high genetic diversity is a consequence of its enormous DNA uptake capacity, triggered by intrinsic and extrinsic oxidative stress once a neutral pH at the site of chronic host colonization allows competence development. Natural transformation, i.e. the capacity to take up DNA from the environment, is one of the crucial means for horizontal gene transfer and genetic diversity in bacteria. The human gastric pathogen Helicobacter pylori is confronted with acid stress before entering its multiplication site, the gastric mucosa. The bacterium causes lifelong chronic gastritis and is perfectly adapted to the human host, crucially by displaying unusual genetic diversity. Using a single cell approach and well-controlled conditions, we show here that the amount of imported DNA in competent H. pylori is outstanding, far exceeding previous measurement with other Gram-negative bacteria. Furthermore, DNA uptake activity was tightly regulated and limited to pH above 6.5, conditions thought to be met in close contact with the gastric mucosa. In addition, we show that within this pH competence window, competence development was triggered by an increase in pH in combination with the level of oxidative stress. Our data provide explanations for the extraordinary high genetic diversity, often referred to as genome plasticity of this unusual microaerobic pathogen.
Collapse
Affiliation(s)
- Nora-Johanna Krüger
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Marie-Theres Knüver
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Wroclaw, Poland
| | - Bernd Appel
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Kerstin Stingl
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
- * E-mail:
| |
Collapse
|
11
|
Abstract
The integron is a powerful system which, by capturing, stockpiling, and rearranging new functions carried by gene encoding cassettes, confers upon bacteria a rapid adaptation capability in changing environments. Chromosomally located integrons (CI) have been identified in a large number of environmental Gram-negative bacteria. Integron evolutionary history suggests that these sedentary CIs acquired mobility among bacterial species through their association with transposable elements and conjugative plasmids. As a result of massive antibiotic use, these so-called mobile integrons are now widespread in clinically relevant bacteria and are considered to be the principal agent in the emergence and rise of antibiotic multiresistance in Gram-negative bacteria. Cassette rearrangements are catalyzed by the integron integrase, a site-specific tyrosine recombinase. Central to these reactions is the single-stranded DNA nature of one of the recombination partners, the attC site. This makes the integron a unique recombination system. This review describes the current knowledge on this atypical recombination mechanism, its implications in the reactions involving the different types of sites, attC and attI, and focuses on the tight regulation exerted by the host on integron activity through the control of attC site folding. Furthermore, cassette and integrase expression are also highly controlled by host regulatory networks and the bacterial stress (SOS) response. These intimate connections to the host make the integron a genetically stable and efficient system, granting the bacteria a low cost, highly adaptive evolution potential "on demand".
Collapse
|
12
|
Damke PP, Dhanaraju R, Marsin S, Radicella JP, Rao DN. The nuclease activities of both the Smr domain and an additional LDLK motif are required for an efficient anti-recombination function of Helicobacter pylori MutS2. Mol Microbiol 2015; 96:1240-56. [PMID: 25800579 DOI: 10.1111/mmi.13003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 12/23/2022]
Abstract
Helicobacter pylori, a human pathogen, is a naturally and constitutively competent bacteria, displaying a high rate of intergenomic recombination. While recombination events are essential for evolution and adaptation of H. pylori to dynamic gastric niches and new hosts, such events should be regulated tightly to maintain genomic integrity. Here, we analyze the role of the nuclease activity of MutS2, a protein that limits recombination during transformation in H. pylori. In previously studied MutS2 proteins, the C-terminal Smr domain was mapped as the region responsible for its nuclease activity. We report here that deletion of Smr domain does not completely abolish the nuclease activity of HpMutS2. Using bioinformatics analysis and mutagenesis, we identified an additional and novel nuclease motif (LDLK) at the N-terminus of HpMutS2 unique to Helicobacter and related ε-proteobacterial species. A single point mutation (D30A) in the LDLK motif and the deletion of Smr domain resulted in ∼ 5-10-fold loss of DNA cleavage ability of HpMutS2. Interestingly, the mutant forms of HpMutS2 wherein the LDLK motif was mutated or the Smr domain was deleted were unable to complement the hyper-recombination phenotype of a mutS2(-) strain, suggesting that both nuclease sites are indispensable for an efficient anti-recombinase activity of HpMutS2.
Collapse
Affiliation(s)
- Prashant P Damke
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Rajkumar Dhanaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Stéphanie Marsin
- Institute of Cellular and Molecular Radiobiology, CEA, Fontenay-aux-Roses, France.,INSERM UMR967, Fontenay-aux-Roses, France.,Universités Paris Diderot et Paris Sud, Fontenay-aux-Roses, France
| | - Juan Pablo Radicella
- Institute of Cellular and Molecular Radiobiology, CEA, Fontenay-aux-Roses, France.,INSERM UMR967, Fontenay-aux-Roses, France.,Universités Paris Diderot et Paris Sud, Fontenay-aux-Roses, France
| | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|