1
|
Peterson E, Söderström B, Prins N, Le GHB, Hartley-Tassell LE, Evenhuis C, Grønnemose RB, Andersen TE, Møller-Jensen J, Iosifidis G, Duggin IG, Saunders B, Harry EJ, Bottomley AL. The role of bacterial size, shape and surface in macrophage engulfment of uropathogenic E. coli cells. PLoS Pathog 2024; 20:e1012458. [PMID: 39241059 PMCID: PMC11410268 DOI: 10.1371/journal.ppat.1012458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/18/2024] [Accepted: 07/26/2024] [Indexed: 09/08/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) can undergo extensive filamentation in the host during acute urinary tract infections (UTIs). It has been hypothesised that this morphological plasticity allows bacteria to avoid host immune responses such as macrophage engulfment. However, it is still unclear what properties of filaments are important in macrophage-bacteria interactions. The aim of this work was to investigate the contribution of bacterial biophysical parameters, such as cell size and shape, and physiological parameters, such as cell surface and the environment, to macrophage engulfment efficiency. Viable, reversible filaments of known lengths and volumes were produced in the UPEC strain UTI89 using a variety of methods, including exposure to cell-wall targeting antibiotics, genetic manipulation and isolation from an in vitro human bladder cell model. Quantification of the engulfment ability of macrophages using gentamicin-protection assays and fluorescence microscopy demonstrated that the ability of filaments to avoid macrophage engulfment is dependent on a combination of size (length and volume), shape, cell surface and external environmental factors. UTI89 filamentation and macrophage engulfment efficiency were also found to occur independently of the SOS-inducible filamentation genes, sulA and ymfM in both in vivo and in vitro models of infection. Compared to filaments formed via antibiotic inhibition of division, the infection-derived filaments were preferentially targeted by macrophages. With several strains of UPEC now resistant to current antibiotics, our work identifies the importance of bacterial physiological and morphological states during infection.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Bill Söderström
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Nienke Prins
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Giang H B Le
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | | | - Chris Evenhuis
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Rasmus Birkholm Grønnemose
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Thomas Emil Andersen
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Gregory Iosifidis
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Iain G Duggin
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | | | - Elizabeth J Harry
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Amy L Bottomley
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| |
Collapse
|
2
|
Snoeck S, Guidi C, De Mey M. "Metabolic burden" explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli. Microb Cell Fact 2024; 23:96. [PMID: 38555441 PMCID: PMC10981312 DOI: 10.1186/s12934-024-02370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Engineering bacterial strains to redirect the metabolism towards the production of a specific product has enabled the development of industrial biotechnology. However, rewiring the metabolism can have severe implications for a microorganism, rendering cells with stress symptoms such as a decreased growth rate, impaired protein synthesis, genetic instability and an aberrant cell size. On an industrial scale, this is reflected in processes that are not economically viable. MAIN TEXT In literature, most stress symptoms are attributed to "metabolic burden", however the actual triggers and stress mechanisms involved are poorly understood. Therefore, in this literature review, we aimed to get a better insight in how metabolic engineering affects Escherichia coli and link the observed stress symptoms to its cause. Understanding the possible implications that chosen engineering strategies have, will help to guide the reader towards optimising the envisioned process more efficiently. CONCLUSION This review addresses the gap in literature and discusses the triggers and effects of stress mechanisms that can be activated when (over)expressing (heterologous) proteins in Escherichia coli. It uncovers that the activation of the different stress mechanisms is complex and that many are interconnected. The reader is shown that care has to be taken when (over)expressing (heterologous) proteins as the cell's metabolism is tightly regulated.
Collapse
Affiliation(s)
- Sofie Snoeck
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Chiara Guidi
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium.
| |
Collapse
|
3
|
Verma T, Nandini SS, Singh V, Raghavan A, Annappa H, Bhaskarla C, Dubey AK, Nandi D. Divergent Roles of Escherichia Coli Encoded Lon Protease in Imparting Resistance to Uncouplers of Oxidative Phosphorylation: Roles of marA, rob, soxS and acrB. Curr Microbiol 2024; 81:98. [PMID: 38372817 DOI: 10.1007/s00284-024-03632-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Uncouplers of oxidative phosphorylation dissipate the proton gradient, causing lower ATP production. Bacteria encounter several non-classical uncouplers in the environment, leading to stress-induced adaptations. Here, we addressed the molecular mechanisms responsible for the effects of uncouplers in Escherichia coli. The expression and functions of genes involved in phenotypic antibiotic resistance were studied using three compounds: two strong uncouplers, i.e., Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 2,4-Dinitrophenol (DNP), and one moderate uncoupler, i.e., Sodium salicylate (NaSal). Quantitative expression studies demonstrated induction of transcripts encoding marA, soxS and acrB with NaSal and DNP, but not CCCP. Since MarA and SoxS are degraded by the Lon protease, we investigated the roles of Lon using a lon-deficient strain (Δlon). Compared to the wild-type strain, Δlon shows compromised growth upon exposure to NaSal or 2, 4-DNP. This sensitivity is dependent on marA but not rob and soxS. On the other hand, the Δlon strain shows enhanced growth in the presence of CCCP, which is dependent on acrB. Interestingly, NaSal and 2,4-DNP, but not CCCP, induce resistance to antibiotics, such as ciprofloxacin and tetracycline. This study addresses the effects of uncouplers and the roles of genes involved during bacterial growth and phenotypic antibiotic resistance. Strong uncouplers are often used to treat wastewater, and these results shed light on the possible mechanisms by which bacteria respond to uncouplers. Also, the rampant usage of some uncouplers to treat wastewater may lead to the development of antibiotic resistance.
Collapse
Affiliation(s)
- Taru Verma
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Santhi Sanil Nandini
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Varsha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Abinaya Raghavan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Harshita Annappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Chetana Bhaskarla
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Ashim Kumar Dubey
- Undergraduate program, Indian Institute of Science, Bengaluru, 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
4
|
Gao M, Zhao T, Zhang C, Li P, Wang J, Han J, Zhang N, Pang B, Liu S. Ferritinophagy-mediated iron competition in RUTIs: Tug-of-war between UPEC and host. Biomed Pharmacother 2023; 163:114859. [PMID: 37167722 DOI: 10.1016/j.biopha.2023.114859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the main pathogen of recurrent urinary tract infections (RUTIs). Urinary tract infection is a complicated interaction between UPEC and the host. During infection, UPEC can evade the host's immune response and retain in bladder epithelial cells, which requires adequate nutritional support. Iron is the first necessary trace element in life and a key nutritional factor, making it an important part of the competition between UPEC and the host. On the one hand, UPEC grabs iron to satisfy its reproduction, on the other hand, the host relies on iron to build nutritional immunity defenses against UPEC. Ferritinophagy is a selective autophagy of ferritin mediated by nuclear receptor coactivator 4, which is not only a way for the host to regulate iron metabolism to maintain iron homeostasis, but also a key point of competition between the host and UPEC. Although recent studies have confirmed the role of ferritinophagy in the progression of many diseases, the mechanism of potential interactions between ferritinophagy in UPEC and the host is poorly understood. In this paper, we reviewed the potential mechanisms of ferritinophagy-mediated iron competition in the UPEC-host interactions. This competitive relationship, like a tug-of-war, is a confrontation between the capability of UPEC to capture iron and the host's nutritional immunity defense, which could be the trigger for RUTIs. Therefore, understanding ferritinophagy-mediated iron competition may provide new strategies for exploring effective antibiotic alternative therapies to prevent and treat RUTIs.
Collapse
Affiliation(s)
- Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Tingting Zhao
- Department of Nephrology, Beijing Key Laboratory for Immune-Mediated Inflammatory 9 Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chuanlong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ping Li
- Department of Nephrology, Beijing Key Laboratory for Immune-Mediated Inflammatory 9 Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jiazhe Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiatong Han
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Ning Zhang
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Bo Pang
- International Medical Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China.
| |
Collapse
|
5
|
Lai YH, Franke R, Pinkert L, Overwin H, Brönstrup M. Molecular Signatures of the Eagle Effect Induced by the Artificial Siderophore Conjugate LP-600 in E. coli. ACS Infect Dis 2023; 9:567-581. [PMID: 36763039 PMCID: PMC10012262 DOI: 10.1021/acsinfecdis.2c00567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Achieving cellular uptake is a central challenge for novel antibiotics targeting Gram-negative bacterial pathogens. One strategy is to hijack the bacterial iron transport system by siderophore-antibiotic conjugates that are actively imported into the cell. This was realized with the MECAM-ampicillin conjugate LP-600 we recently reported that was highly active against E. coli. In the present study, we investigate a paradoxical regrowth of E. coli upon treatment of LP-600 at concentrations 16-32 times above the minimum inhibitory concentration (MIC). The phenomenon, coined "Eagle-effect" in other systems, was not due to resistance formation, and it occurred for the siderophore conjugate but not for free ampicillin. To investigate the molecular imprint of the Eagle effect, a combined transcriptome and untargeted metabolome analysis was conducted. LP-600 induced the expression of genes involved in iron acquisition, SOS response, and the e14 prophage upon regrowth conditions. The Eagle effect was diminished in the presence of sulbactam, which we ascribe to a putative synergistic antibiotic action but not to β-lactamase inhibition. The study highlights the relevance of the Eagle effect for siderophore conjugates. Through the first systematic -omics investigations, it also demonstrates that the Eagle effect manifests not only in a paradoxical growth but also in unique gene expression and metabolite profiles.
Collapse
Affiliation(s)
- Yi-Hui Lai
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Raimo Franke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Lukas Pinkert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Heike Overwin
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159 Hannover, Germany
| |
Collapse
|
6
|
Jaramillo‐Riveri S, Broughton J, McVey A, Pilizota T, Scott M, El Karoui M. Growth-dependent heterogeneity in the DNA damage response in Escherichia coli. Mol Syst Biol 2022; 18:e10441. [PMID: 35620827 PMCID: PMC9136515 DOI: 10.15252/msb.202110441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
In natural environments, bacteria are frequently exposed to sub-lethal levels of DNA damage, which leads to the induction of a stress response (the SOS response in Escherichia coli). Natural environments also vary in nutrient availability, resulting in distinct physiological changes in bacteria, which may have direct implications on their capacity to repair their chromosomes. Here, we evaluated the impact of varying the nutrient availability on the expression of the SOS response induced by chronic sub-lethal DNA damage in E. coli. We found heterogeneous expression of the SOS regulon at the single-cell level in all growth conditions. Surprisingly, we observed a larger fraction of high SOS-induced cells in slow growth as compared with fast growth, despite a higher rate of SOS induction in fast growth. The result can be explained by the dynamic balance between the rate of SOS induction and the division rates of cells exposed to DNA damage. Taken together, our data illustrate how cell division and physiology come together to produce growth-dependent heterogeneity in the DNA damage response.
Collapse
Affiliation(s)
| | - James Broughton
- Institute of Cell Biology and SynthSysUniversity of EdinburghEdinburghUK
| | - Alexander McVey
- Institute of Cell Biology and SynthSysUniversity of EdinburghEdinburghUK
- Present address:
OGI Bio LtdEdinburghUK
| | - Teuta Pilizota
- Institute of Cell Biology and SynthSysUniversity of EdinburghEdinburghUK
| | - Matthew Scott
- Department of Applied MathematicsUniversity of WaterlooWaterlooONCanada
| | - Meriem El Karoui
- Institute of Cell Biology and SynthSysUniversity of EdinburghEdinburghUK
| |
Collapse
|
7
|
Vick SHW, Fabian BK, Dawson CJ, Foster C, Asher A, Hassan KA, Midgley DJ, Paulsen IT, Tetu SG. Delving into defence: identifying the Pseudomonas protegens Pf-5 gene suite involved in defence against secreted products of fungal, oomycete and bacterial rhizosphere competitors. Microb Genom 2021; 7. [PMID: 34788213 PMCID: PMC8743541 DOI: 10.1099/mgen.0.000671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Competitive behaviours of plant growth promoting rhizobacteria (PGPR) are integral to their ability to colonize and persist on plant roots and outcompete phytopathogenic fungi, oomycetes and bacteria. PGPR engage in a range of antagonistic behaviours that have been studied in detail, such as the production and secretion of compounds inhibitory to other microbes. In contrast, their defensive activities that enable them to tolerate exposure to inhibitory compounds produced by their neighbours are less well understood. In this study, the genes involved in the Pseudomonas protegens Pf-5 response to metabolites from eight diverse rhizosphere competitor organisms, Fusarium oxysporum, Rhizoctonia solani, Gaeumannomyces graminis var. tritici, Pythium spinosum, Bacillus subtilis QST713, Pseudomonas sp. Q2-87, Streptomyces griseus and Streptomyces bikiniensis subspecies bikiniensi, were examined. Proximity induced excreted metabolite responses were confirmed for Pf-5 with all partner organisms through HPLC before culturing a dense Pf-5 transposon mutant library adjacent to each of these microbes. This was followed by transposon-directed insertion site sequencing (TraDIS), which identified genes that influence Pf-5 fitness during these competitive interactions. A set of 148 genes was identified that were associated with increased fitness during competition, including cell surface modification, electron transport, nucleotide metabolism, as well as regulatory genes. In addition, 51 genes were identified for which loss of function resulted in fitness gains during competition. These included genes involved in flagella biosynthesis and cell division. Considerable overlap was observed in the set of genes observed to provide a fitness benefit during competition with all eight test organisms, indicating commonalities in the competitive response to phylogenetically diverse micro-organisms and providing new insight into competitive processes likely to take place in the rhizosphere.
Collapse
Affiliation(s)
- Silas H W Vick
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, Australia.,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Belinda K Fabian
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, North Ryde, Australia
| | - Catherine J Dawson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | - Christie Foster
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia
| | - Amy Asher
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | - David J Midgley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, North Ryde, Australia
| | - Sasha G Tetu
- Department of Molecular Sciences, Macquarie University, North Ryde, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, North Ryde, Australia
| |
Collapse
|
8
|
Genomic and Phenotypic Analysis of Heat and Sanitizer Resistance in Escherichia coli from Beef in Relation to the Locus of Heat Resistance. Appl Environ Microbiol 2021; 87:e0157421. [PMID: 34550750 DOI: 10.1128/aem.01574-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The locus of heat resistance (LHR) can confer heat resistance to Escherichia coli to various extents. This study investigated the phylogenetic relationships and the genomic and phenotypic characteristics of E. coli with or without LHR recovered from beef by direct plating or from enrichment broth at 42°C. LHR-positive E. coli isolates (n = 24) were subjected to whole-genome sequencing by short and long reads. LHR-negative isolates (n = 18) from equivalent sources as LHR-positive isolates were short-read sequenced. All isolates were assessed for decimal reduction time at 60°C (D60°C) and susceptibility to the sanitizers E-SAN and Perox-E. Selected isolates were evaluated for growth at 42°C. The LHR-positive and -negative isolates were well separated on the core genome tree, with 22/24 positive isolates clustering into three clades. Isolates within clade 1 and 2, despite their different D60°C values, were clonal, as determined by subtyping (multilocus sequence typing [MLST], core genome MLST, and serotyping). Isolates within each clade are of one serotype. The LHR-negative isolates were genetically diverse. The LHR-positive isolates had a larger (P < 0.001) median genome size by 0.3 Mbp (5.0 versus 4.7 Mbp) and overrepresentation of genes related to plasmid maintenance, stress response, and cryptic prophages but underrepresentation of genes involved in epithelial attachment and virulence. All LHR-positive isolates harbored a chromosomal copy of LHR, and all clade 2 isolates had an additional partial copy of LHR on conjugative plasmids. The growth rates at 42°C were 0.71 ± 0.02 and 0.65 ± 0.02 log(OD) h-1 for LHR-positive and -negative isolates, respectively. No meaningful difference in sanitizer susceptibility was noted between LHR-positive and -negative isolates. IMPORTANCE Resistant bacteria are serious food safety and public health concerns. Heat resistance conferred by the LHR varies largely among different strains of E. coli. The findings in this study show that genomic background and composition of LHR, in addition to the presence of LHR, play an important role in the degree of heat resistance in E. coli and that strains with certain genetic backgrounds are more likely to acquire and maintain the LHR. Also, caution should be exercised when recovering E. coli at elevated temperatures, as the presence of LHR may confer growth advantages to some strains. Interestingly, the LHR-harboring strains seem to have evolved further from their primary animal host to adapt to their secondary habitat, as reflected by fewer genes involved in virulence and epithelial attachment. The phylogenetic relationships among the isolates point toward multiple mechanisms for acquisition of LHR by E. coli, likely prior to its being deposited on meat.
Collapse
|