1
|
Notaro A, Zaretsky M, Molinaro A, De Castro C, Eichler J. N-glycosylation in Archaea: Unusual sugars and unique modifications. Carbohydr Res 2023; 534:108963. [PMID: 37890267 DOI: 10.1016/j.carres.2023.108963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Archaea are microorganisms that comprise a distinct branch of the universal tree of life and which are best known as extremophiles, residing in a variety of environments characterized by harsh physical conditions. One seemingly universal trait of Archaea is the ability to perform N-glycosylation. At the same time, archaeal N-linked glycans present variety in terms of both composition and architecture not seen in the parallel eukaryal or bacterial processes. In this mini-review, many of the unique and unusual sugars found in archaeal N-linked glycans as identified by nuclear magnetic resonance spectroscopy are described.
Collapse
Affiliation(s)
- Anna Notaro
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, Italy
| | - Marianna Zaretsky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Cristina De Castro
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel.
| |
Collapse
|
2
|
Kelly J, Vinogradov E, Robotham A, Tessier L, Logan SM, Jarrell KF. Characterizing the N- and O-linked glycans of the PGF-CTERM sorting domain-containing S-layer protein of Methanoculleus marisnigri. Glycobiology 2022; 32:629-644. [PMID: 35481895 DOI: 10.1093/glycob/cwac019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 01/05/2023] Open
Abstract
The glycosylation of structural proteins is a widespread posttranslational modification in Archaea. Although only a handful of archaeal N-glycan structures have been determined to date, it is evident that the diversity of structures expressed is greater than in the other domains of life. Here, we report on our investigation of the N- and O-glycan modifications expressed by Methanoculleus marisnigri, a mesophilic methanogen from the Order Methanomicrobiales. Unusually, mass spectrometry (MS) analysis of purified archaella revealed no evidence for N- or O-glycosylation of the constituent archaellins, In contrast, the S-layer protein, identified as a PGF-CTERM sorting domain-containing protein encoded by MEMAR_RS02690, is both N- and O-glycosylated. Two N-glycans were identified by NMR and MS analysis: a trisaccharide α-GlcNAc-4-β-GlcNAc3NGaAN-4-β-Glc-Asn where the second residue is 2-N-acetyl, 3-N-glyceryl-glucosamide and a disaccharide β-GlcNAc3NAcAN-4-β-Glc-Asn, where the terminal residue is 2,3 di-N-acetyl-glucosamide. The same trisaccharide was also found N-linked to a type IV pilin. The S-layer protein is also extensively modified in the threonine-rich region near the C-terminus with O-glycans composed exclusively of hexoses. While the S-layer protein has a predicted PGF-CTERM processing site, no evidence of a truncated and lipidated C-terminus, the expected product of processing by an archaeosortase, was found. Finally, NMR also identified a polysaccharide expressed by M. marisnigri and composed of a repeating tetrasaccharide unit of [-2-β-Ribf-3-α-Rha2OMe-3-α-Rha - 2-α-Rha-]. This is the first report of N- and O-glycosylation in an archaeon from the Order Methanomicrobiales.
Collapse
Affiliation(s)
- John Kelly
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Evgeny Vinogradov
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Luc Tessier
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Susan M Logan
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Ken F Jarrell
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
3
|
The Oligosaccharyltransferase AglB Supports Surface-Associated Growth and Iron Oxidation in Methanococcus maripaludis. Appl Environ Microbiol 2021; 87:e0099521. [PMID: 34132588 DOI: 10.1128/aem.00995-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Most microbial organisms grow as surface-attached communities known as biofilms. However, the mechanisms whereby methanogenic archaea grow attached to surfaces have remained understudied. Here, we show that the oligosaccharyltransferase AglB is essential for growth of Methanococcus maripaludis strain JJ on glass or metal surfaces. AglB glycosylates several cellular structures, such as pili, archaella, and the cell surface layer (S-layer). We show that the S-layer of strain JJ, but not strain S2, is a glycoprotein, that only strain JJ was capable of growth on surfaces, and that deletion of aglB blocked S-layer glycosylation and abolished surface-associated growth. A strain JJ mutant lacking structural components of the type IV-like pilus did not have a growth defect under any conditions tested, while a mutant lacking the preflagellin peptidase (ΔflaK) was defective for surface growth only when formate was provided as the sole electron donor. Finally, for strains that are capable of Fe0 oxidation, we show that deletion of aglB decreases the rate of anaerobic Fe0 oxidation, presumably due to decreased association of biomass with the Fe0 surface. Together, these data provide an initial characterization of surface-associated growth in a member of the methanogenic archaea. IMPORTANCE Methanogenic archaea are responsible for producing the majority of methane on Earth and catalyze the terminal reactions in the degradation of organic matter in anoxic environments. Methanogens often grow as biofilms associated with surfaces or partner organisms; however, the molecular details of surface-associated growth remain uncharacterized. We have found evidence that glycosylation of the cell surface layer is essential for growth of M. maripaludis on surfaces and can enhance rates of anaerobic iron corrosion. These results provide insight into the physiology of surface-associated methanogenic organisms and highlight the importance of surface association for anaerobic iron corrosion.
Collapse
|
4
|
Jarrell KF, Albers SV, Machado JNDS. A comprehensive history of motility and Archaellation in Archaea. FEMS MICROBES 2021; 2:xtab002. [PMID: 37334237 PMCID: PMC10117864 DOI: 10.1093/femsmc/xtab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 08/24/2023] Open
Abstract
Each of the three Domains of life, Eukarya, Bacteria and Archaea, have swimming structures that were all originally called flagella, despite the fact that none were evolutionarily related to either of the other two. Surprisingly, this was true even in the two prokaryotic Domains of Bacteria and Archaea. Beginning in the 1980s, evidence gradually accumulated that convincingly demonstrated that the motility organelle in Archaea was unrelated to that found in Bacteria, but surprisingly shared significant similarities to type IV pili. This information culminated in the proposal, in 2012, that the 'archaeal flagellum' be assigned a new name, the archaellum. In this review, we provide a historical overview on archaella and motility research in Archaea, beginning with the first simple observations of motile extreme halophilic archaea a century ago up to state-of-the-art cryo-tomography of the archaellum motor complex and filament observed today. In addition to structural and biochemical data which revealed the archaellum to be a type IV pilus-like structure repurposed as a rotating nanomachine (Beeby et al. 2020), we also review the initial discoveries and subsequent advances using a wide variety of approaches to reveal: complex regulatory events that lead to the assembly of the archaellum filaments (archaellation); the roles of the various archaellum proteins; key post-translational modifications of the archaellum structural subunits; evolutionary relationships; functions of archaella other than motility and the biotechnological potential of this fascinating structure. The progress made in understanding the structure and assembly of the archaellum is highlighted by comparing early models to what is known today.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sonja-Verena Albers
- Institute for Biology II- Microbiology, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
| | - J Nuno de Sousa Machado
- Institute for Biology II- Microbiology, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany
| |
Collapse
|
5
|
Zaretsky M, Darnell CL, Schmid AK, Eichler J. N-Glycosylation Is Important for Halobacterium salinarum Archaellin Expression, Archaellum Assembly and Cell Motility. Front Microbiol 2019; 10:1367. [PMID: 31275283 PMCID: PMC6591318 DOI: 10.3389/fmicb.2019.01367] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Halobacterium salinarum are halophilic archaea that display directional swimming in response to various environmental signals, including light, chemicals and oxygen. In Hbt. salinarum, the building blocks (archaellins) of the archaeal swimming apparatus (the archaellum) are N-glycosylated. However, the physiological importance of archaellin N-glycosylation remains unclear. Here, a tetrasaccharide comprising a hexose and three hexuronic acids decorating the five archaellins was characterized by mass spectrometry. Such analysis failed to detect sulfation of the hexuronic acids, in contrast to earlier reports. To better understand the physiological significance of Hbt. salinarum archaellin N-glycosylation, a strain deleted of aglB, encoding the archaeal oligosaccharyltransferase, was generated. In this ΔaglB strain, archaella were not detected and only low levels of archaellins were released into the medium, in contrast to what occurs with the parent strain. Mass spectrometry analysis of the archaellins in ΔaglB cultures did not detect N-glycosylation. ΔaglB cells also showed a slight growth defect and were impaired for motility. Quantitative real-time PCR analysis revealed dramatically reduced transcript levels of archaellin-encoding genes in the mutant strain, suggesting that N-glycosylation is important for archaellin transcription, with downstream effects on archaellum assembly and function. Control of AglB-dependent post-translational modification of archaellins could thus reflect a previously unrecognized route for regulating Hbt. salinarum motility.
Collapse
Affiliation(s)
- Marianna Zaretsky
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheba, Israel
| | | | - Amy K Schmid
- Department of Biology, Duke University, Durham, NC, United States.,Center for Genomics and Computational Biology, Duke University, Durham, NC, United States
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
6
|
Sharma S, Ding Y, Jarrell KF, Brockhausen I. Identification and characterization of the 4-epimerase AglW from the archaeon Methanococcus maripaludis. Glycoconj J 2018; 35:525-535. [PMID: 30293150 DOI: 10.1007/s10719-018-9845-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 11/27/2022]
Abstract
Archaea are ubiquitous single-cell microorganisms that have often adapted to harsh conditions and play important roles in biogeochemical cycles with potential applications in biotechnology. Methanococcus maripaludis, a methane-producing archaeon, is motile through multiple archaella on its cell surface. The major structural proteins (archaellins) of the archaellum are glycoproteins, modified with N-linked tetrasaccharides that are essential for the proper assembly and function of archaella. The aglW gene, encoding the putative 4-epimerase AglW, plays a key role in the synthesis of the tetrasaccharide. The goal of our work was to biochemically demonstrate the 4-epimerase activity of AglW, and to develop assays to determine its substrate specificity and properties. We carried out assays using UDP-Galactose, UDP-Glucose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and N-acetylglucosamine/N-acetylgalactosamine-diphosphate - lipid as substrates, coupled with specific glycosyltransferases. We showed that AglW has a broad specificity towards UDP-sugars and that Tyr151 within a conserved YxxxK sequon is essential for the 4-epimerase function of AglW. The glycosyltransferase-coupled assays are generally useful for the identification and specificity studies of novel 4-epimerases.
Collapse
Affiliation(s)
- Sulav Sharma
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
7
|
Complementation of an aglB Mutant of Methanococcus maripaludis with Heterologous Oligosaccharyltransferases. PLoS One 2016; 11:e0167611. [PMID: 27907170 PMCID: PMC5131992 DOI: 10.1371/journal.pone.0167611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/17/2016] [Indexed: 01/04/2023] Open
Abstract
The oligosaccharyltransferase is the signature enzyme for N-linked glycosylation in all domains of life. In Archaea, this enzyme termed AglB, is responsible for transferring lipid carrier-linked glycans to select asparagine residues in a variety of target proteins including archaellins, S-layer proteins and pilins. This study investigated the ability of a variety of AglBs to compensate for the oligosaccharyltransferase activity in Methanococcus maripaludis deleted for aglB, using archaellin FlaB2 as the reporter protein since all archaellins in Mc. maripaludis are modified at multiple sites by an N-linked tetrasaccharide and this modification is required for archaellation. In the Mc. maripaludis ΔaglB strain FlaB2 runs as at a smaller apparent molecular weight in western blots and is nonarchaellated. We demonstrate that AglBs from Methanococcus voltae and Methanothermococcus thermolithotrophicus functionally replaced the oligosaccharyltransferase activity missing in the Mc. maripaludis ΔaglB strain, both returning the apparent molecular weight of FlaB2 to wildtype size and restoring archaellation. This demonstrates that AglB from Mc. voltae has a relaxed specificity for the linking sugar of the transferred glycan since while the N-linked glycan present in Mc. voltae is similar to that of Mc. maripaludis, the Mc. voltae glycan uses N-acetylglucosamine as the linking sugar. In Mc. maripaludis that role is held by N-acetylgalactosamine. This study also identifies aglB from Mtc. thermolithotrophicus for the first time by its activity. Attempts to use AglB from Methanocaldococcus jannaschii, Haloferax volcanii or Sulfolobus acidocaldarius to functionally replace the oligosaccharyltransferase activity missing in the Mc. maripaludis ΔaglB strain were unsuccessful.
Collapse
|
8
|
Ding Y, Nash J, Berezuk A, Khursigara CM, Langelaan DN, Smith SP, Jarrell KF. Identification of the first transcriptional activator of an archaellum operon in a euryarchaeon. Mol Microbiol 2016; 102:54-70. [PMID: 27314758 DOI: 10.1111/mmi.13444] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2016] [Indexed: 12/21/2022]
Abstract
The archaellum is the swimming organelle of the third domain, the Archaea. In the euryarchaeon Methanococcus maripaludis, genes involved in archaella formation, including the three archaellins flaB1, flaB2 and flaB3, are mainly located in the fla operon. Previous studies have shown that transcription of fla genes and expression of Fla proteins are regulated under different growth conditions. In this study, we identify MMP1718 as the first transcriptional activator that directly regulates the fla operon in M. maripaludis. Mutants carrying an in-frame deletion in mmp1718 did not express FlaB2 detected by western blotting. Quantitative reverse transcription PCR analysis of purified RNA from the Δmmp1718 mutant showed that transcription of flaB2 was negligible compared to wildtype cells. In addition, no archaella were observed on the cell surface of the Δmmp1718 mutant. FlaB2 expression and archaellation were restored when the Δmmp1718 mutant was complemented with mmp1718 in trans. Electrophoretic motility shift assay and isothermal titration calorimetry results demonstrated the specific binding of purified MMP1718 to DNA fragments upstream of the fla promoter. Four 6 bp consensus sequences were found immediately upstream of the fla promoter and are considered the putative MMP1718-binding sites. Herein, we designate MMP1718 as EarA, the first euryarchaeal archaellum regulator.
Collapse
Affiliation(s)
- Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - John Nash
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, N1G 3W4, Canada
| | - Alison Berezuk
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - David N Langelaan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
9
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
10
|
Effects of growth conditions on archaellation and N-glycosylation in Methanococcus maripaludis. Microbiology (Reading) 2016; 162:339-350. [DOI: 10.1099/mic.0.000221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
11
|
Ding Y, Jones GM, Brimacombe C, Uchida K, Aizawa SI, Logan SM, Kelly JF, Jarrell KF. Identification of a gene involved in the biosynthesis pathway of the terminal sugar of the archaellin N-linked tetrasaccharide in Methanococcus maripaludis. Antonie van Leeuwenhoek 2015; 109:131-48. [PMID: 26590834 DOI: 10.1007/s10482-015-0615-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
In Methanococcus maripaludis, the three archaellins which comprise the archaellum are modified at multiple sites with an N-linked tetrasaccharide with the structure of Sug-4-β-ManNAc3NAmA6Thr-4-β-GlcNAc3NAcA-3-β-GalNAc, where Sug is a unique sugar (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-L-erythro-hexos-5-ulo-1,5-pyranose, so far found exclusively in this species. In this study, a six-gene cluster mmp1089-1094, neighboring one of the genomic regions already known to contain genes involved with the archaellin N-glycosylation pathway, was examined for its potential involvement in the archaellin N-glycosylation or sugar biosynthesis pathway. The co-transcription of these six genes was demonstrated by RT-PCR. Mutants carrying an in-frame deletion in mmp1090, mmp1091 or mmp1092 were successfully generated. The Δmmp1090 deletion mutant was archaellated when examined by electron microscopy and mass spectrometry analysis of purified archaella showed that the archaellins were modified with a truncated N-glycan in which the terminal sugar residue and the threonine linked to the third sugar residue were missing. Both gene annotation and bioinformatic analyses indicate that MMP1090 is a UDP-glucose 4-epimerase, suggesting that the unique terminal sugar of the archaellin N-glycan might be synthesised from UDP-glucose or UDP-N-acetylglucosamine with an essential early step in synthesis catalysed by MMP1090. In contrast, no detectable phenotype related to archaellin glycosylation was observed in mutants deleted for either mmp1091 or mmp1092 while attempts to delete mmp1089, mmp1093 and mmp1094 were unsuccessful. Based on its demonstrated involvement in the archaellin N-glycosylation pathway, we designated mmp1090 as aglW.
Collapse
Affiliation(s)
- Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada
| | - Gareth M Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada
| | - Cedric Brimacombe
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada
| | - Kaoru Uchida
- Department of Life Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, 727-0023, Japan
| | - Shin-Ichi Aizawa
- Department of Life Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, 727-0023, Japan
| | - Susan M Logan
- Human Health Therapeutics Portfolio, National Research Council, Ottawa, K1A 0R6, Canada
| | - John F Kelly
- Human Health Therapeutics Portfolio, National Research Council, Ottawa, K1A 0R6, Canada.
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada.
| |
Collapse
|
12
|
Evidence that biosynthesis of the second and third sugars of the archaellin Tetrasaccharide in the archaeon Methanococcus maripaludis occurs by the same pathway used by Pseudomonas aeruginosa to make a di-N-acetylated sugar. J Bacteriol 2015; 197:1668-80. [PMID: 25733616 DOI: 10.1128/jb.00040-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/24/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Methanococcus maripaludis has two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-β-ManNAc3NAmA6Thr-1,4-β-GlcNAc3NAcA-1,3-β-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-L-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additional hexose attached to GalNAc. In this study, genes located in two adjacent, divergently transcribed operons (mmp0350-mmp0354 and mmp0359-mmp0355) were targeted for study based on annotations suggesting their involvement in biosynthesis of N-glycan sugars. Mutants carrying deletions in mmp0350, mmp0351, mmp0352, or mmp0353 were nonarchaellated and synthesized archaellins modified with a 1-sugar glycan, as estimated from Western blots. Mass spectroscopy analysis of pili purified from the Δmmp0352 strain confirmed a glycan with only GalNAc, suggesting mmp0350 to mmp0353 were all involved in biosynthesis of the second sugar (GlcNAc3NAcA). The Δmmp0357 mutant was archaellated and had archaellins with a 2-sugar glycan, as confirmed by mass spectroscopy of purified archaella, indicating a role for MMP0357 in biosynthesis of the third sugar (ManNAc3NAmA6Thr). M. maripaludis mmp0350, mmp0351, mmp0352, mmp0353, and mmp0357 are proposed to be functionally equivalent to Pseudomonas aeruginosa wbpABEDI, involved in converting UDP-N-acetylglucosamine to UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, an O5-specific antigen sugar. Cross-domain complementation of the final step of the P. aeruginosa pathway with mmp0357 supports this hypothesis. IMPORTANCE This work identifies a series of genes in adjacent operons that are shown to encode the enzymes that complete the entire pathway for generation of the second and third sugars of the N-linked tetrasaccharide that modifies archaellins of Methanococcus maripaludis. This posttranslational modification of archaellins is important, as it is necessary for archaellum assembly. Pilins are modified with a different N-glycan consisting of the archaellin tetrasaccharide but with an additional hexose attached to the linking sugar. Mass spectrometry analysis of the pili of one mutant strain provided insight into how this different glycan might ultimately be assembled. This study includes a rare example of an archaeal gene functionally replacing a bacterial gene in a complex sugar biosynthesis pathway.
Collapse
|
13
|
Ding Y, Uchida K, Aizawa SI, Murphy K, Berezuk A, Khursigara CM, Chong JPJ, Jarrell KF. Effects of N-glycosylation site removal in archaellins on the assembly and function of archaella in Methanococcus maripaludis. PLoS One 2015; 10:e0116402. [PMID: 25700084 PMCID: PMC4336324 DOI: 10.1371/journal.pone.0116402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/09/2014] [Indexed: 12/22/2022] Open
Abstract
In Methanococcus maripaludis S2, the swimming organelle, the archaellum, is composed of three archaellins, FlaB1S2, FlaB2S2 and FlaB3S2. All three are modified with an N-linked tetrasaccharide at multiple sites. Disruption of the N-linked glycosylation pathway is known to cause defects in archaella assembly or function. Here, we explored the potential requirement of N-glycosylation of archaellins on archaellation by investigating the effects of eliminating the 4 N-glycosylation sites in the wildtype FlaB2S2 protein in all possible combinations either by Asn to Glu (N to Q) substitution or Asn to Asp (N to D) substitutions of the N-glycosylation sequon asparagine. The ability of these mutant derivatives to complement a non-archaellated ΔflaB2S2 strain was examined by electron microscopy (for archaella assembly) and swarm plates (for analysis of swimming). Western blot results showed that all mutated FlaB2S2 proteins were expressed and of smaller apparent molecular mass compared to wildtype FlaB2S2, consistent with the loss of glycosylation sites. In the 8 single-site mutant complements, archaella were observed on the surface of Q2, D2 and D4 (numbers after N or Q refer to the 1st to 4th glycosylation site). Of the 6 double-site mutation complementations all were archaellated except D1,3. Of the 4 triple-site mutation complements, only D2,3,4 was archaellated. Elimination of all 4 N-glycosylation sites resulted in non-archaellated cells, indicating some minimum amount of archaellin glycosylation was necessary for their incorporation into stable archaella. All complementations that led to a return of archaella also resulted in motile cells with the exception of the D4 version. In addition, a series of FlaB2S2 scanning deletions each missing 10 amino acids was also generated and tested for their ability to complement the ΔflaB2S2 strain. While most variants were expressed, none of them restored archaellation, although FlaB2S2 harbouring a smaller 3-amino acid deletion was able to partially restore archaellation.
Collapse
Affiliation(s)
- Yan Ding
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Kaoru Uchida
- Department of Life Sciences, Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima, Japan
| | - Shin-Ichi Aizawa
- Department of Life Sciences, Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima, Japan
| | - Kathleen Murphy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alison Berezuk
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Cezar M. Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - James P. J. Chong
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Ken F. Jarrell
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Nair DB, Jarrell KF. Pilin Processing Follows a Different Temporal Route than That of Archaellins in Methanococcus maripaludis. Life (Basel) 2015; 5:85-101. [PMID: 25569238 PMCID: PMC4390842 DOI: 10.3390/life5010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/26/2014] [Indexed: 11/16/2022] Open
Abstract
Methanococcus maripaludis has two different surface appendages: type IV-like pili and archaella. Both structures are believed to be assembled using a bacterial type IV pilus mechanism. Each structure is composed of multiple subunits, either pilins or archaellins. Both pilins and archaellins are made initially as preproteins with type IV pilin-like signal peptides, which must be removed by a prepilin peptidase-like enzyme. This enzyme is FlaK for archaellins and EppA for pilins. In addition, both pilins and archaellins are modified with N-linked glycans. The archaellins possess an N-linked tetrasaccharide while the pilins have a pentasaccharide which consists of the archaellin tetrasaccharide but with an additional sugar, an unidentified hexose, attached to the linking sugar. In this report, we show that archaellins can be processed by FlaK in the absence of N-glycosylation and N-glycosylation can occur on archaellins that still retain their signal peptides. In contrast, pilins are not glycosylated unless they have been acted on by EppA to have the signal peptide removed. However, EppA can still remove signal peptides from non-glycosylated pilins. These findings indicate that there is a difference in the order of the posttranslational modifications of pilins and archaellins even though both are type IV pilin-like proteins.
Collapse
Affiliation(s)
- Divya B Nair
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
15
|
Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J. N-linked glycosylation in Archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev 2014; 78:304-41. [PMID: 24847024 PMCID: PMC4054257 DOI: 10.1128/mmbr.00052-13] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-glycosylation of proteins is one of the most prevalent posttranslational modifications in nature. Accordingly, a pathway with shared commonalities is found in all three domains of life. While excellent model systems have been developed for studying N-glycosylation in both Eukarya and Bacteria, an understanding of this process in Archaea was hampered until recently by a lack of effective molecular tools. However, within the last decade, impressive advances in the study of the archaeal version of this important pathway have been made for halophiles, methanogens, and thermoacidophiles, combining glycan structural information obtained by mass spectrometry with bioinformatic, genetic, biochemical, and enzymatic data. These studies reveal both features shared with the eukaryal and bacterial domains and novel archaeon-specific aspects. Unique features of N-glycosylation in Archaea include the presence of unusual dolichol lipid carriers, the use of a variety of linking sugars that connect the glycan to proteins, the presence of novel sugars as glycan constituents, the presence of two very different N-linked glycans attached to the same protein, and the ability to vary the N-glycan composition under different growth conditions. These advances are the focus of this review, with an emphasis on N-glycosylation pathways in Haloferax, Methanococcus, and Sulfolobus.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Benjamin H Meyer
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lina Kaminski
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel
| |
Collapse
|