1
|
Raj P, Selvam K, Roy K, Mani Tripathi S, Kesharwani S, Gopal B, Varshney U, Sundriyal S. Identification of a new and diverse set of Mycobacterium tuberculosstais uracil-DNA glycosylase (MtUng) inhibitors using structure-based virtual screening: experimental validation and molecular dynamics studies. Bioorg Med Chem Lett 2022; 76:129008. [PMID: 36174837 DOI: 10.1016/j.bmcl.2022.129008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis uracil-DNA glycosylase (MtUng), a key DNA repair enzyme, represents an attractive target for the design of new antimycobacterial agents. However, only a limited number of weak MtUng inhibitors are reported, primarily based on the uracil ring, and hence, lack diversity. We report the first structure-based virtual screening (SBVS) using three separate libraries consisting of uracil and non-uracil small molecules, together with the FDA-approved drugs. Twenty diverse virtual hits with the highest predicted binding were procured and screened using a fluorescence-based assay to evaluate their potential to inhibit MtUng. Several of these molecules were found to inhibit MtUng activity at low mM and µM levels, comparable to or better than several other reported Ung inhibitors. Thus, these molecules represent a diverse set of scaffolds for developing next-generation MtUng inhibitors. The most active uracil-based compound 5 (IC50 = 0.14 mM) was found to be ∼15-fold more potent than the positive control, uracil. The binding stability and conformation of compound 5 in complex with the enzyme were further confirmed using molecular dynamics simulation.
Collapse
Affiliation(s)
- Prateek Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Karthik Selvam
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Koyel Roy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Shailesh Mani Tripathi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sharyu Kesharwani
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | | | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
2
|
The Error-Prone Polymerase DnaE2 Mediates the Evolution of Antibiotic Resistance in Persister Mycobacterial Cells. Antimicrob Agents Chemother 2022; 66:e0177321. [PMID: 35156855 DOI: 10.1128/aac.01773-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Applying antibiotics to susceptible bacterial cultures generates a minor population of persisters that remain susceptible to antibiotics but can endure them for extended periods. Recent reports suggest that antibiotic persisters (APs) of mycobacteria experience oxidative stress and develop resistance upon treatment with lethal doses of ciprofloxacin or rifampicin. However, the mechanisms driving the de novo emergence of resistance remained unclear. Here, we show that mycobacterial APs activate the SOS response, resulting in the upregulation of the error-prone DNA polymerase DnaE2. The sustained expression of dnaE2 in APs led to mutagenesis across the genome and resulted in the rapid evolution of resistance to antibiotics. Inhibition of RecA by suramin, an anti-Trypanosoma drug, reduced the rate of conversion of persisters to resistors in a diverse group of bacteria. Our study highlights suramin's novel application as a broad-spectrum agent in combating the development of drug resistance.
Collapse
|
3
|
Naz S, Dabral S, Nagarajan SN, Arora D, Singh LV, Kumar P, Singh Y, Kumar D, Varshney U, Nandicoori VK. Compromised base excision repair pathway in Mycobacterium tuberculosis imparts superior adaptability in the host. PLoS Pathog 2021; 17:e1009452. [PMID: 33740020 PMCID: PMC8011731 DOI: 10.1371/journal.ppat.1009452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/31/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is a significant public health concern, exacerbated by the emergence of drug-resistant TB. To combat the host’s dynamic environment, Mtb encodes multiple DNA repair enzymes that play a critical role in maintaining genomic integrity. Mtb possesses a GC-rich genome, rendering it highly susceptible to cytosine deaminations, resulting in the occurrence of uracils in the DNA. UDGs encoded by ung and udgB initiate the repair; hence we investigated the biological impact of deleting UDGs in the adaptation of pathogen. We generated gene replacement mutants of uracil DNA glycosylases, individually (RvΔung, RvΔudgB) or together (RvΔdKO). The double KO mutant, RvΔdKO exhibited remarkably higher spontaneous mutation rate, in the presence of antibiotics. Interestingly, RvΔdKO showed higher survival rates in guinea pigs and accumulated large number of SNPs as revealed by whole-genome sequence analysis. Competition assays revealed the superior fitness of RvΔdKO over Rv, both in ex vivo and in vivo conditions. We propose that compromised DNA repair results in the accumulation of mutations, and a subset of these drives adaptation in the host. Importantly, this property allowed us to utilize RvΔdKO for the facile identification of drug targets. Mutation in the genome of bacteria contributes to the acquisition of drug resistance. Mutations in bacteria can arise due to exposures to antibiotics, oxidative, reductive, and many other stresses that bacteria encounter in the host. Mtb has multiple DNA repair mechanisms, including a base excision repair pathway to restore the damaged genome. Here we set out to determine the impact of deleting the Uracil DNA base excision pathway on pathogen adaptability to both antibiotic and host induced stresses. Combinatorial mutant of Mtb UDGs showed higher spontaneous rates of mutations when subjected to antibiotic stress and showed higher survival levels in the guinea pig model of infection. Whole-genome sequence analysis showed significant accumulation of SNPs, suggesting that mutations providing survival advantage may have been positively selected. We also showed that double mutant of Mtb UDGs would be an excellent means to identify antibiotic targets in the bacteria. Competition experiments wherein we pitted wild type and double mutant against each other demonstrated that double mutant has a decisive edge over the wild type. Together, data suggest that the absence of a base excision repair pathway leads to higher mutations and provides a survival advantage under stress. They could be an invaluable tool for identifying targets of new antibiotics.
Collapse
Affiliation(s)
- Saba Naz
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- Department of Zoology, University of Delhi, Delhi, India
| | - Shruti Dabral
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Divya Arora
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Lakshya Veer Singh
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Pradeep Kumar
- Department of Microbiology & Cell Biology, Indian Institute of Sciences, Bangalore, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Umesh Varshney
- Department of Microbiology & Cell Biology, Indian Institute of Sciences, Bangalore, India
- * E-mail: (UV); (VKN)
| | - Vinay Kumar Nandicoori
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (UV); (VKN)
| |
Collapse
|
4
|
Mehta A, Raj P, Sundriyal S, Gopal B, Varshney U. Use of a molecular beacon based fluorescent method for assaying uracil DNA glycosylase (Ung) activity and inhibitor screening. Biochem Biophys Rep 2021; 26:100954. [PMID: 33665381 PMCID: PMC7900708 DOI: 10.1016/j.bbrep.2021.100954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/27/2022] Open
Abstract
Uracil DNA glycosylases are an important class of enzymes that hydrolyze the N-glycosidic bond between the uracil base and the deoxyribose sugar to initiate uracil excision repair. Uracil may arise in DNA either because of its direct incorporation (against A in the template) or because of cytosine deamination. Mycobacteria with G, C rich genomes are inherently at high risk of cytosine deamination. Uracil DNA glycosylase activity is thus important for the survival of mycobacteria. A limitation in evaluating the druggability of this enzyme, however, is the absence of a rapid assay to evaluate catalytic activity that can be scaled for medium to high-throughput screening of inhibitors. Here we report a fluorescence-based method to assay uracil DNA glycosylase activity. A hairpin DNA oligomer with a fluorophore at its 5′ end and a quencher at its 3′ ends was designed incorporating five consecutive U:A base pairs immediately after the first base pair (5′ C:G 3’) at the top of the hairpin stem. Enzyme assays performed using this fluorescent substrate were seen to be highly sensitive thus enabling investigation of the real time kinetics of uracil excision. Here we present data that demonstrate the feasibility of using this assay to screen for inhibitors of Mycobacterium tuberculosis uracil DNA glycosylase. We note that this assay is suitable for high-throughput screening of compound libraries for uracil DNA glycosylase inhibitors. A novel molecular beacon based fluorescent method to assay uracil DNA glycosylase (UDG) activity has been developed. The single step assay is useful to determine real-time kinetics of uracil release. The assay is useful for high throughput screening of uracil DNA glycosylase inhibitors.
Collapse
Affiliation(s)
- Avani Mehta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Prateek Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | | | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| |
Collapse
|
5
|
Base excision repair pathways of bacteria: new promise for an old problem. Future Med Chem 2020; 12:339-355. [PMID: 32031026 DOI: 10.4155/fmc-2019-0267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases continue to be a major cause of human mortality. With the emergence of drug resistance, diseases that were long thought to have been curable by antibiotics are resurging. There is an urgent clinical need for newer antibiotics that target novel cellular pathways to overcome resistance to currently used therapeutics. The base excision repair (BER) pathways of the pathogen restore altered bases and safeguard the genomic integrity of the pathogen from the host's immune response. Although the BER machinery is of paramount importance to the survival of the pathogens, its potential as a drug target is largely unexplored. In this review, we discuss the importance of BER in different pathogenic organisms and the potential of its inhibition with small molecules.
Collapse
|
6
|
Singh A, Vijayan M, Varshney U. Distinct properties of a hypoxia specific paralog of single stranded DNA binding (SSB) protein in mycobacteria. Tuberculosis (Edinb) 2018. [PMID: 29523318 DOI: 10.1016/j.tube.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In addition to the canonical Single Stranded DNA Binding (SSBa) protein, many bacterial species, including mycobacteria, have a paralogous SSBb. The SSBb proteins have not been well characterized. While in B. subtilis, SSBb has been shown to be involved in genetic recombination; in S. coelicolor it mediates chromosomal segregation during sporulation. Sequence analysis of SSBs from mycobacterial species suggests low conservation of SSBb proteins, as compared to the conservation of SSBa proteins. Like most bacterial SSB proteins, M. smegmatis SSBb (MsSSBb) forms a stable tetramer. However, solution studies indicate that MsSSBb is less stable to thermal and chemical denaturation than MsSSBa. Also, in contrast to the 5-20 fold differences in DNA binding affinity between paralogous SSBs in other organisms, MsSSBb is only about two-fold poorer in its DNA binding affinity than MsSSBa. The expression levels of ssbB gene increased during UV and hypoxic stresses, while the levels of ssbA expression declined. A direct physical interaction of MsSSBb and RecA, mediated by the C-terminal tail of MsSSBb, was also established. The results obtained in this study indicate a role of MsSSBb in recombination repair during stress.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advamced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
7
|
Sang PB, Srinath T, Patil AG, Woo EJ, Varshney U. A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily. Nucleic Acids Res 2015; 43:8452-63. [PMID: 26304551 PMCID: PMC4787834 DOI: 10.1093/nar/gkv854] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Uracil DNA glycosylases (UDGs) are an important group of DNA repair enzymes, which pioneer the base excision repair pathway by recognizing and excising uracil from DNA. Based on two short conserved sequences (motifs A and B), UDGs have been classified into six families. Here we report a novel UDG, UdgX, from Mycobacterium smegmatis and other organisms. UdgX specifically recognizes uracil in DNA, forms a tight complex stable to sodium dodecyl sulphate, 2-mercaptoethanol, urea and heat treatment, and shows no detectable uracil excision. UdgX shares highest homology to family 4 UDGs possessing Fe-S cluster. UdgX possesses a conserved sequence, KRRIH, which forms a flexible loop playing an important role in its activity. Mutations of H in the KRRIH sequence to S, G, A or Q lead to gain of uracil excision activity in MsmUdgX, establishing it as a novel member of the UDG superfamily. Our observations suggest that UdgX marks the uracil-DNA for its repair by a RecA dependent process. Finally, we observed that the tight binding activity of UdgX is useful in detecting uracils in the genomes.
Collapse
Affiliation(s)
- Pau Biak Sang
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Thiruneelakantan Srinath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Aravind Goud Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Eui-Jeon Woo
- Functional Genomic Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Yuseongu, Daejeon, South Korea
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
8
|
Kumar S, Mittal E, Deore S, Kumar A, Rahman A, Krishnasastry MV. Mycobacterial tlyA gene product is localized to the cell-wall without signal sequence. Front Cell Infect Microbiol 2015; 5:60. [PMID: 26347855 PMCID: PMC4543871 DOI: 10.3389/fcimb.2015.00060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/31/2015] [Indexed: 01/09/2023] Open
Abstract
The mycobacterial tlyA gene product, Rv1694 (MtbTlyA), has been annotated as “hemolysin” which was re-annotated as 2′-O rRNA methyl transferase. In order to function as a hemolysin, it must reach the extracellular milieu with the help of signal sequence(s) and/or transmembrane segment(s). However, the MtbTlyA neither has classical signals sequences that signify general/Sec/Tat pathways nor transmembrane segments. Interestingly, the tlyA gene appears to be restricted to pathogenic strains such as H37Rv, M. marinum, M. leprae, than M. smegmatis, M. vaccae, M. kansasii etc., which highlights the need for a detailed investigation to understand its functions. In this study, we have provided several evidences which highlight the presence of TlyA on the surface of M. marinum (native host) and upon expression in M. smegmatis (surrogate host) and E. coli (heterologous host). The TlyA was visualized at the bacterial-surface by confocal microscopy and accessible to Proteinase K. In addition, sub-cellular fractionation has revealed the presence of TlyA in the membrane fractions and this sequestration is not dependent on TatA, TatC or SecA2 pathways. As a consequence of expression, the recombinant bacteria exhibit distinct hemolysis. Interestingly, the MtbTlyA was also detected in both membrane vesicles secreted by M. smegmatis and outer membrane vesicles secreted by E. coli. Our experimental evidences unambiguously confirm that the mycobacterial TlyA can reach the extra cellular milieu without any signal sequence. Hence, the localization of TlyA class of proteins at the bacterial surface may highlight the existence of non-classical bacterial secretion mechanisms.
Collapse
Affiliation(s)
- Santosh Kumar
- Membrane Biology, National Centre for Cell Science, Savitribai Phule Pune University Pune, India
| | - Ekansh Mittal
- Membrane Biology, National Centre for Cell Science, Savitribai Phule Pune University Pune, India
| | - Sapna Deore
- Membrane Biology, National Centre for Cell Science, Savitribai Phule Pune University Pune, India
| | - Anil Kumar
- Membrane Biology, National Centre for Cell Science, Savitribai Phule Pune University Pune, India
| | - Aejazur Rahman
- Membrane Biology, National Centre for Cell Science, Savitribai Phule Pune University Pune, India
| | - Musti V Krishnasastry
- Membrane Biology, National Centre for Cell Science, Savitribai Phule Pune University Pune, India
| |
Collapse
|
9
|
Rex K, Kurthkoti K, Varshney U. Hypersensitivity of hypoxia grown Mycobacterium smegmatis to DNA damaging agents: Implications of the DNA repair deficiencies in attenuation of mycobacteria. Mech Ageing Dev 2013; 134:516-22. [DOI: 10.1016/j.mad.2013.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 05/07/2013] [Accepted: 08/24/2013] [Indexed: 01/01/2023]
|
10
|
McGrath M, Gey van Pittius NC, van Helden PD, Warren RM, Warner DF. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2013; 69:292-302. [DOI: 10.1093/jac/dkt364] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Development of a new generation of vectors for gene expression, gene replacement, and protein-protein interaction studies in mycobacteria. Appl Environ Microbiol 2013; 79:1718-29. [PMID: 23315736 DOI: 10.1128/aem.03695-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli-mycobacterium shuttle vectors are important tools for gene expression and gene replacement in mycobacteria. However, most of the currently available vectors are limited in their use because of the lack of extended multiple cloning sites (MCSs) and convenience of appending an epitope tag(s) to the cloned open reading frames (ORFs). Here we report a new series of vectors that allow for the constitutive and regulatable expression of proteins, appended with peptide tag sequences at their N and C termini, respectively. The applicability of these vectors is demonstrated by the constitutive and induced expression of the Mycobacterium tuberculosis pknK gene, coding for protein kinase K, a serine-threonine protein kinase. Furthermore, a suicide plasmid with expanded MCS for creating gene replacements, a plasmid for chromosomal integrations at the commonly used L5 attB site, and a hypoxia-responsive vector, for expression of a gene(s) under hypoxic conditions that mimic latency, have also been created. Additionally, we have created a vector for the coexpression of two proteins controlled by two independent promoters, with each protein being in fusion with a different tag. The shuttle vectors developed in the present study are excellent tools for the analysis of gene function in mycobacteria and are a valuable addition to the existing repertoire of vectors for mycobacterial research.
Collapse
|
12
|
Base excision and nucleotide excision repair pathways in mycobacteria. Tuberculosis (Edinb) 2011; 91:533-43. [DOI: 10.1016/j.tube.2011.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/01/2011] [Accepted: 06/12/2011] [Indexed: 01/13/2023]
|
13
|
Kurthkoti K, Varshney U. Distinct mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth. Mech Ageing Dev 2011; 133:138-46. [PMID: 21982925 DOI: 10.1016/j.mad.2011.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 08/28/2011] [Accepted: 09/22/2011] [Indexed: 01/20/2023]
Abstract
About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. Emergence of drug resistant strains and the protracted treatment strategies have compelled the scientific community to identify newer drug targets, and to develop newer vaccines. In the host macrophages, the bacterium survives within an environment rich in reactive nitrogen and oxygen species capable of damaging its genome. Therefore, for its successful persistence in the host, the pathogen must need robust DNA repair mechanisms. Analysis of M. tuberculosis genome sequence revealed that it lacks mismatch repair pathway suggesting a greater role for other DNA repair pathways such as the nucleotide excision repair, and base excision repair pathways. In this article, we summarize the outcome of research involving these two repair pathways in mycobacteria focusing primarily on our own efforts. Our findings, using Mycobacterium smegmatis model, suggest that deficiency of various DNA repair functions in single or in combinations severely compromises their DNA repair capacity and attenuates their growth under conditions typically encountered in macrophages.
Collapse
Affiliation(s)
- Krishna Kurthkoti
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|