1
|
Chen W, Zhang Z, Yung KKL, Ko JKS. MUC1 is responsible for the pro-metastatic potential of calycosin in pancreatic ductal adenocarcinoma. Am J Cancer Res 2022; 12:3242-3258. [PMID: 35968328 PMCID: PMC9360244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a prominent type of pancreatic cancer. We have recently unveiled that the anti-tumor adjuvant calycosin concurrently possesses growth-inhibitory and pro-metastatic potential in PDAC development by regulating transforming growth factor β (TGF-β), which plays dual roles as both tumor suppressor and tumor promoter. Hence, we are interested to explore if the pro-metastatic property of the drug could be attenuated for effective treatment of PDAC. Through network pharmacology, MUC1 had been identified as the most common drug target of herbal Astragalus constituents (including calycosin) in treating PDAC. Following MUC1 gene silencing, the drug effects of calycosin on migratory activity, growth and metabolic regulation of PDAC cells were assessed by using immunofluorescence microscopy, quantitative real-time polymerase chain reaction (qRT-PCR), Western immunoblotting, co-immunoprecipitation (Co-IP), wound healing assay and flow cytometry, respectively. Through in vivo experiments, we further validated the working relationship between MUC1 and TGF-β. Results have elucidated that MUC1 gene suppression could switch off the migratory and pro-metastatic drive of calycosin while retaining its growth-inhibitory power by inducing apoptosis and cell cycle arrest, as well as facilitating autophagy and metabolic regulation. The underlying mechanism involves downregulation of TGF-β that acts via modulation of AMP-activated protein kinase (AMPK), Sirtuin 1 (Sirt1) and fibroblast growth factor 21 (FGF21) signaling. These findings have provided new insights in the safe and target-specific treatment of PDAC.
Collapse
Affiliation(s)
- Wenqing Chen
- Department of Biology, Hong Kong Baptist UniversityHong Kong SAR, China
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist UniversityHong Kong SAR, China
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist UniversityHong Kong SAR, China
| | - Ken Kin-Lam Yung
- Department of Biology, Hong Kong Baptist UniversityHong Kong SAR, China
| | - Joshua Ka-Shun Ko
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist UniversityHong Kong SAR, China
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist UniversityHong Kong SAR, China
| |
Collapse
|
2
|
Fitzgerald S, Kary SC, Alshabib EY, MacKenzie KD, Stoebel D, Chao TC, Cameron ADS. Redefining the H-NS protein family: a diversity of specialized core and accessory forms exhibit hierarchical transcriptional network integration. Nucleic Acids Res 2020; 48:10184-10198. [PMID: 32894292 PMCID: PMC7544231 DOI: 10.1093/nar/gkaa709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 12/27/2022] Open
Abstract
H-NS is a nucleoid structuring protein and global repressor of virulence and horizontally-acquired genes in bacteria. H-NS can interact with itself or with homologous proteins, but protein family diversity and regulatory network overlap remain poorly defined. Here, we present a comprehensive phylogenetic analysis that revealed deep-branching clades, dispelling the presumption that H-NS is the progenitor of varied molecular backups. Each clade is composed exclusively of either chromosome-encoded or plasmid-encoded proteins. On chromosomes, stpA and newly discovered hlpP are core genes in specific genera, whereas hfp and newly discovered hlpC are sporadically distributed. Six clades of H-NS plasmid proteins (Hpp) exhibit ancient and dedicated associations with plasmids, including three clades with fidelity for plasmid incompatibility groups H, F or X. A proliferation of H-NS homologs in Erwiniaceae includes the first observation of potentially co-dependent H-NS forms. Conversely, the observed diversification of oligomerization domains may facilitate stable co-existence of divergent homologs in a genome. Transcriptomic and proteomic analysis in Salmonella revealed regulatory crosstalk and hierarchical control of H-NS homologs. We also discovered that H-NS is both a repressor and activator of Salmonella Pathogenicity Island 1 gene expression, and both regulatory modes are restored by Sfh (HppH) in the absence of H-NS.
Collapse
Affiliation(s)
- Stephen Fitzgerald
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Stefani C Kary
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ebtihal Y Alshabib
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Keith D MacKenzie
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Daniel M Stoebel
- Department of Biology, Harvey Mudd College, Claremont, CA 91711, USA
| | - Tzu-Chiao Chao
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute of Environmental Change and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
3
|
Horizontally Acquired Homologs of Xenogeneic Silencers: Modulators of Gene Expression Encoded by Plasmids, Phages and Genomic Islands. Genes (Basel) 2020; 11:genes11020142. [PMID: 32013150 PMCID: PMC7074111 DOI: 10.3390/genes11020142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023] Open
Abstract
Acquisition of mobile elements by horizontal gene transfer can play a major role in bacterial adaptation and genome evolution by providing traits that contribute to bacterial fitness. However, gaining foreign DNA can also impose significant fitness costs to the host bacteria and can even produce detrimental effects. The efficiency of horizontal acquisition of DNA is thought to be improved by the activity of xenogeneic silencers. These molecules are a functionally related group of proteins that possess affinity for the acquired DNA. Binding of xenogeneic silencers suppresses the otherwise uncontrolled expression of genes from the newly acquired nucleic acid, facilitating their integration to the bacterial regulatory networks. Even when the genes encoding for xenogeneic silencers are part of the core genome, homologs encoded by horizontally acquired elements have also been identified and studied. In this article, we discuss the current knowledge about horizontally acquired xenogeneic silencer homologs, focusing on those encoded by genomic islands, highlighting their distribution and the major traits that allow these proteins to become part of the host regulatory networks.
Collapse
|
4
|
Sun Z, Vasileva D, Suzuki-Minakuchi C, Okada K, Luo F, Igarashi Y, Nojiri H. Growth phase-dependent expression profiles of three vital H-NS family proteins encoded on the chromosome of Pseudomonas putida KT2440 and on the pCAR1 plasmid. BMC Microbiol 2017; 17:188. [PMID: 28851281 PMCID: PMC5576294 DOI: 10.1186/s12866-017-1091-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/11/2017] [Indexed: 01/09/2023] Open
Abstract
Background H-NS family proteins are nucleoid-associated proteins that form oligomers on DNA and function as global regulators. They are found in both bacterial chromosomes and plasmids, and were suggested to be candidate effectors of the interaction between them. TurA and TurB are the predominantly expressed H-NS family proteins encoded on the chromosome of Pseudomonas putida KT2440, while Pmr is encoded on the carbazole-degradative incompatibility group P-7 plasmid pCAR1. Previous transcriptome analyses suggested that they function cooperatively, but play different roles in the global transcriptional network. In addition to differences in protein interaction and DNA-binding functions, cell expression levels are important in clarifying the detailed underlying mechanisms. Here, we determined the precise protein amounts of TurA, TurB, and Pmr in KT2440 in the presence and absence of pCAR1. Results The intracellular amounts of TurA and TurB in KT2440 and KT2440(pCAR1) were determined by quantitative western blot analysis using specific antibodies. The amount of TurA decreased from the log phase (~80,000 monomers per cell) to the stationary phase (~20,000 monomers per cell), while TurB was only detectable upon entry into the stationary phase (maximum 6000 monomers per cell). Protein amounts were not affected by pCAR1 carriage. KT2440(pCAR1pmrHis), where histidine-tagged Pmr is expressed under its original promotor, was used to determine the intracellular amount of Pmr, which was constant (~30,000 monomers per cell) during cell growth. Quantitative reverse transcription PCR demonstrated that the transcriptional levels of turA and turB were consistent with protein expression, though the transcriptional and translational profiles of Pmr differed. Conclusion The amount of TurB increases as TurA decreases, and the amount of Pmr does not affect the amounts of TurA and TurB. This is consistent with our previous observation that TurA and TurB play complementary roles, whereas Pmr works relatively independently. This study provides insight into the molecular mechanisms underlying reconstitution of the transcriptional network in KT2440 by pCAR1 carriage. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1091-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zongping Sun
- Research Center of Bioenergy & Bioremediation, College of Resources and Environment, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing, 400715, China.,Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Delyana Vasileva
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Feng Luo
- Research Center of Bioenergy & Bioremediation, College of Resources and Environment, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Yasuo Igarashi
- Research Center of Bioenergy & Bioremediation, College of Resources and Environment, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Hideaki Nojiri
- Research Center of Bioenergy & Bioremediation, College of Resources and Environment, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing, 400715, China. .,Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
5
|
H-NS, Its Family Members and Their Regulation of Virulence Genes in Shigella Species. Genes (Basel) 2016; 7:genes7120112. [PMID: 27916940 PMCID: PMC5192488 DOI: 10.3390/genes7120112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/04/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) has played a key role in shaping the evolution of Shigella spp., and provides the backdrop to the regulatory cascade that controls virulence by silencing many genes found on the large virulence plasmid. H-NS and its paralogue StpA are present in all four Shigella spp., but a second H-NS paralogue, Sfh, is found in the Shigella flexneri type strain 2457T, which is routinely used in studies of Shigella pathogenesis. While StpA and Sfh have been proposed to serve as “molecular backups” for H-NS, the apparent redundancy of these proteins is questioned by in vitro studies and work done in Escherichia coli. In this review, we describe the current understanding of the regulatory activities of the H-NS family members, the challenges associated with studying these proteins and their role in the regulation of virulence genes in Shigella.
Collapse
|
6
|
Shintani M, Suzuki-Minakuchi C, Nojiri H. Nucleoid-associated proteins encoded on plasmids: Occurrence and mode of function. Plasmid 2015; 80:32-44. [PMID: 25952329 DOI: 10.1016/j.plasmid.2015.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/14/2015] [Accepted: 04/22/2015] [Indexed: 01/31/2023]
Abstract
Nucleoid-associated proteins (NAPs) play a role in changing the shape of microbial DNA, making it more compact and affecting the regulation of transcriptional networks in host cells. Genes that encode NAPs include H-NS family proteins (H-NS, Ler, MvaT, BpH3, Bv3F, HvrA, and Lsr2), FIS, HU, IHF, Lrp, and NdpA, and are found in both microbial chromosomes and plasmid DNA. In the present study, NAP genes were distributed among 442 plasmids out of 4602 plasmid sequences, and many H-NS family proteins, and HU, IHF, Lrp, and NdpA were found in plasmids of Alpha-, Beta-, and Gammaproteobacteria, while HvrA, Lsr2, HU, and Lrp were found in other classes including Actinobacteria and Bacilli. Larger plasmids frequently carried multiple NAP genes. In addition, NAP genes were more frequently found in conjugative plasmids than non-transmissible plasmids. Several host cells carried the same types of H-NS family proteins on both their plasmids and chromosome(s), while this was not observed for other NAPs. Recent studies have shown that NAP genes on plasmids and chromosomes play important roles in the physical and regulatory integration of plasmids into the host cell.
Collapse
Affiliation(s)
- Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
7
|
Dorman CJ. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria. Plasmid 2014; 75:1-11. [DOI: 10.1016/j.plasmid.2014.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
|
8
|
Pmr, a histone-like protein H1 (H-NS) family protein encoded by the IncP-7 plasmid pCAR1, is a key global regulator that alters host function. J Bacteriol 2010; 192:4720-31. [PMID: 20639326 DOI: 10.1128/jb.00591-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone-like protein H1 (H-NS) family proteins are nucleoid-associated proteins (NAPs) conserved among many bacterial species. The IncP-7 plasmid pCAR1 is transmissible among various Pseudomonas strains and carries a gene encoding the H-NS family protein, Pmr. Pseudomonas putida KT2440 is a host of pCAR1, which harbors five genes encoding the H-NS family proteins PP_1366 (TurA), PP_3765 (TurB), PP_0017 (TurC), PP_3693 (TurD), and PP_2947 (TurE). Quantitative reverse transcription-PCR (qRT-PCR) demonstrated that the presence of pCAR1 does not affect the transcription of these five genes and that only pmr, turA, and turB were primarily transcribed in KT2440(pCAR1). In vitro pull-down assays revealed that Pmr strongly interacted with itself and with TurA, TurB, and TurE. Transcriptome comparisons of the pmr disruptant, KT2440, and KT2440(pCAR1) strains indicated that pmr disruption had greater effects on the host transcriptome than did pCAR1 carriage. The transcriptional levels of some genes that increased with pCAR1 carriage, such as the mexEF-oprN efflux pump genes and parI, reverted with pmr disruption to levels in pCAR1-free KT2440. Transcriptional levels of putative horizontally acquired host genes were not altered by pCAR1 carriage but were altered by pmr disruption. Identification of genome-wide Pmr binding sites by ChAP-chip (chromatin affinity purification coupled with high-density tiling chip) analysis demonstrated that Pmr preferentially binds to horizontally acquired DNA regions. The Pmr binding sites overlapped well with the location of the genes differentially transcribed following pmr disruption on both the plasmid and the chromosome. Our findings indicate that Pmr is a key factor in optimizing gene transcription on pCAR1 and the host chromosome.
Collapse
|
9
|
Dillon SC, Cameron ADS, Hokamp K, Lucchini S, Hinton JCD, Dorman CJ. Genome-wide analysis of the H-NS and Sfh regulatory networks in Salmonella Typhimurium identifies a plasmid-encoded transcription silencing mechanism. Mol Microbiol 2010; 76:1250-65. [PMID: 20444106 DOI: 10.1111/j.1365-2958.2010.07173.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conjugative IncHI1 plasmid pSfR27 from Shigella flexneri 2a strain 2457T encodes the Sfh protein, a paralogue of the global transcriptional repressor H-NS. Sfh allows pSfR27 to be transmitted to new bacterial hosts with minimal impact on host fitness, providing a 'stealth' function whose molecular mechanism has yet to be determined. The impact of the Sfh protein on the Salmonella enterica serovar Typhimurium transcriptome was assessed and binding sites for Sfh in the Salmonella Typhimurium genome were identified by chromatin immunoprecipitation. Sfh did not bind uniquely to any sites. Instead, it bound to a subset of the larger H-NS regulatory network. Analysis of Sfh binding in the absence of H-NS revealed a greatly expanded population of Sfh binding sites that included the majority of H-NS target genes. Furthermore, the presence of plasmid pSfR27 caused a decrease in H-NS interactions with the S. Typhimurium chromosome, suggesting that the A + T-rich DNA of this large plasmid acts to titrate H-NS, removing it from chromosomal locations. It is proposed that Sfh acts as a molecular backup for H-NS and that it provides its 'stealth' function by replacing H-NS on the chromosome, thus minimizing disturbances to the H-NS-DNA binding pattern in cells that acquire pSfR27.
Collapse
Affiliation(s)
- Shane C Dillon
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Emerging models of the bacterial nucleoid show that nucleoid-associated proteins (NAPs) and transcription contribute in combination to the dynamic nature of nucleoid structure. NAPs and other DNA-binding proteins that display gene-silencing and anti-silencing activities are emerging as key antagonistic regulators of nucleoid structure. Furthermore, it is becoming clear that the boundary between NAPs and conventional transcriptional regulators is quite blurred and that NAPs facilitate the evolution of novel gene regulatory circuits. Here, NAP biology is considered from the standpoints of both gene regulation and nucleoid structure.
Collapse
|
11
|
Dorman CJ. Horizontally acquired homologues of the nucleoid-associated protein H-NS: implications for gene regulation. Mol Microbiol 2009; 75:264-7. [PMID: 20015146 DOI: 10.1111/j.1365-2958.2009.06996.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
H-NS is one of the most intensively studied members of the family of bacterial nucleoid-associated proteins. It is a DNA-binding protein with a preference for A+T-rich DNA sequences, and it represses the transcription of hundreds of genes in Gram-negative bacteria, including pathogens. In most cases where the issue has been investigated, the repressive activity of H-NS is opposed by the intervention of an antagonistically acting DNA-binding protein, a remodelling of local DNA structure, or a combination of these two. H-NS activity can also be modulated by protein-protein interaction with members of the Hha/YdgT protein family, molecules that share partial amino acid sequence similarity to the oligomerization domain of H-NS. Of particular interest is the ability of H-NS to interact with the full-length paralogue StpA or full-length orthologues that have been acquired by horizontal DNA transfer. In this issue of Molecular Microbiology, Müller et al. describe the H-NS orthologue Hfp and present evidence that in bacteria that acquire Hfp the range of activities of H-NS is modified with important implications for the physiology of the bacterium.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
12
|
Müller CM, Schneider G, Dobrindt U, Emödy L, Hacker J, Uhlin BE. Differential effects and interactions of endogenous and horizontally acquired H-NS-like proteins in pathogenic Escherichia coli. Mol Microbiol 2009; 75:280-93. [PMID: 19968792 PMCID: PMC2814080 DOI: 10.1111/j.1365-2958.2009.06995.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleoid-associated protein H-NS is important for gene regulation in Escherichia coli. We have studied H-NS interaction with StpA and an uncharacterized H-NS-like protein, Hfp, in the uropathogenic E. coli isolate 536 that expresses all three nucleoid-associated proteins. We found distinct interactions of the three proteins at the protein level, resulting in the formation of heteromers, as well as differences in their gene expression at the transcriptional level. Mutants lacking either StpA or Hfp alone did not exhibit a phenotype at 37°C, which is consistent with a low level of expression at that temperature. Expression of the hfp and stpA genes was found to be induced by apparently diametrical conditions, and StpA and Hfp levels could be correlated to modulatory effects on the expression of different H-NS targets, the bgl operon and operons for virulence factors such as fimbriae and capsular polysaccharide. The hns/hfp and hns/stpA double mutants displayed severe growth defects at low and high temperatures respectively. Our findings demonstrated different requirements for the alternative H-NS/Hfp/StpA combinations under these growth conditions. We propose that Hfp and StpA have distinct functions and roles in a dynamic pool of nucleoid-associated proteins that is adapting to requirements in a particular environment.
Collapse
Affiliation(s)
- Claudia M Müller
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Douillard FP, Ryan KA, Caly DL, Hinds J, Witney AA, Husain SE, O'Toole PW. Posttranscriptional regulation of flagellin synthesis in Helicobacter pylori by the RpoN chaperone HP0958. J Bacteriol 2008; 190:7975-84. [PMID: 18931105 PMCID: PMC2593243 DOI: 10.1128/jb.00879-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 10/07/2008] [Indexed: 12/21/2022] Open
Abstract
The Helicobacter pylori protein HP0958 is essential for flagellum biogenesis. It has been shown that HP0958 stabilizes the sigma(54) factor RpoN. The aim of this study was to further investigate the role of HP0958 in flagellum production in H. pylori. Global transcript analysis identified a number of flagellar genes that were differentially expressed in an HP0958 mutant strain. Among these, the transcription of the major flagellin gene flaA was upregulated twofold, suggesting that HP0958 was a negative regulator of the flaA gene. However, the production of the FlaA protein was significantly reduced in the HP0958 mutant, and this was not due to the decreased stability of the FlaA protein. RNA stability analysis and binding assays indicated that HP0958 binds and destabilizes flaA mRNA. The HP0958 mutant was successfully complemented, confirming that the mutant phenotype described was due to the lack of HP0958. We conclude that HP0958 is a posttranscriptional regulator that modulates the amount of the flaA message available for translation in H. pylori.
Collapse
Affiliation(s)
- Francois P Douillard
- Department of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
14
|
Stoebel DM, Free A, Dorman CJ. Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology (Reading) 2008; 154:2533-2545. [PMID: 18757787 DOI: 10.1099/mic.0.2008/020693-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Daniel M. Stoebel
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Andrew Free
- Institute of Evolutionary Biology, University of Edinburgh, Room 714a, Darwin Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Charles J. Dorman
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| |
Collapse
|
15
|
Lang B, Blot N, Bouffartigues E, Buckle M, Geertz M, Gualerzi CO, Mavathur R, Muskhelishvili G, Pon CL, Rimsky S, Stella S, Babu MM, Travers A. High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Res 2007; 35:6330-7. [PMID: 17881364 PMCID: PMC2094087 DOI: 10.1093/nar/gkm712] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The global transcriptional regulator H-NS selectively silences bacterial genes associated with pathogenicity and responses to environmental insults. Although there is ample evidence that H-NS binds preferentially to DNA containing curved regions, we show here that a major basis for this selectivity is the presence of a conserved sequence motif in H-NS target transcriptons. We further show that there is a strong tendency for the H-NS binding sites to be clustered, both within operons and in genes contained in the pathogenicity-associated islands. In accordance with previously published findings, we show that these motifs occur in AT-rich regions of DNA. On the basis of these observations, we propose that H-NS silences extensive regions of the bacterial chromosome by binding first to nucleating high-affinity sites and then spreading along AT-rich DNA. This spreading would be reinforced by the frequent occurrence of the motif in such regions. Our findings suggest that such an organization enables the silencing of extensive regions of the genetic material, thereby providing a coherent framework that unifies studies on the H-NS protein and a concrete molecular basis for the genetic control of H-NS transcriptional silencing.
Collapse
Affiliation(s)
- Benjamin Lang
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Nicolas Blot
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Emeline Bouffartigues
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Malcolm Buckle
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Marcel Geertz
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Claudio O. Gualerzi
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Ramesh Mavathur
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Georgi Muskhelishvili
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Cynthia L. Pon
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Sylvie Rimsky
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Stefano Stella
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - M. Madan Babu
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
- *To whom correspondence should be addressed. +44 1223 402208+44 1223 213556 Correspondence may also be addressed to Andrew Travers. +44 1223 402419+44 1223 412142
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, School of Engineering and Science, Research II-112, Jacobs University, Campus Ring 1, 28759 Bremen, Germany, Enzymologie et cinétique structurale UMR 8113, Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée (LBPA), CNRS, ENS de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France and Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| |
Collapse
|