1
|
Hao C, Dewar AE, West SA, Ghoul M. Gene transferability and sociality do not correlate with gene connectivity. Proc Biol Sci 2022; 289:20221819. [PMID: 36448285 PMCID: PMC9709509 DOI: 10.1098/rspb.2022.1819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The connectivity of a gene, defined as the number of interactions a gene's product has with other genes' products, is a key characteristic of a gene. In prokaryotes, the complexity hypothesis predicts that genes which undergo more frequent horizontal transfer will be less connected than genes which are only very rarely transferred. We tested the role of horizontal gene transfer, and other potentially important factors, by examining the connectivity of chromosomal and plasmid genes, across 134 diverse prokaryotic species. We found that (i) genes on plasmids were less connected than genes on chromosomes; (ii) connectivity of plasmid genes was not correlated with plasmid mobility; and (iii) the sociality of genes (cooperative or private) was not correlated with gene connectivity.
Collapse
Affiliation(s)
- Chunhui Hao
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Anna E. Dewar
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Stuart A. West
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Melanie Ghoul
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| |
Collapse
|
2
|
Coluzzi C, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. Evolution of plasmid mobility: origin and fate of conjugative and non-conjugative plasmids. Mol Biol Evol 2022; 39:6593704. [PMID: 35639760 PMCID: PMC9185392 DOI: 10.1093/molbev/msac115] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugation drives the horizontal transfer of adaptive traits across prokaryotes. One-fourth of the plasmids encode the functions necessary to conjugate autonomously, the others being eventually mobilizable by conjugation. To understand the evolution of plasmid mobility, we studied plasmid size, gene repertoires, and conjugation-related genes. Plasmid gene repertoires were found to vary rapidly in relation to the evolutionary rate of relaxases, for example, most pairs of plasmids with 95% identical relaxases have fewer than 50% of homologs. Among 249 recent transitions of mobility type, we observed a clear excess of plasmids losing the capacity to conjugate. These transitions are associated with even greater changes in gene repertoires, possibly mediated by transposable elements, including pseudogenization of the conjugation locus, exchange of replicases reducing the problem of incompatibility, and extensive loss of other genes. At the microevolutionary scale of plasmid taxonomy, transitions of mobility type sometimes result in the creation of novel taxonomic units. Interestingly, most transitions from conjugative to mobilizable plasmids seem to be lost in the long term. This suggests a source-sink dynamic, where conjugative plasmids generate nonconjugative plasmids that tend to be poorly adapted and are frequently lost. Still, in some cases, these relaxases seem to have evolved to become efficient at plasmid mobilization in trans, possibly by hijacking multiple conjugative systems. This resulted in specialized relaxases of mobilizable plasmids. In conclusion, the evolution of plasmid mobility is frequent, shapes the patterns of gene flow in bacteria, the dynamics of gene repertoires, and the ecology of plasmids.
Collapse
Affiliation(s)
- Charles Coluzzi
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| |
Collapse
|
3
|
Heringer P, Kuhn GCS. Pif1 helicases and the evidence for a prokaryotic origin of Helitrons. Mol Biol Evol 2021; 39:6440065. [PMID: 34850089 PMCID: PMC8788227 DOI: 10.1093/molbev/msab334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Helitrons are the only group of rolling-circle transposons that encode a transposase with a helicase domain (Hel), which belongs to the Pif1 family. Because Pif1 helicases are important components of eukaryotic genomes, it has been suggested that Hel domains probably originated after a host eukaryotic Pif1 gene was captured by a Helitron ancestor. However, the few analyses exploring the evolution of Helitron transposases (RepHel) have focused on its Rep domain, which is also present in other mobile genetic elements. Here, we used phylogenetic and nonmetric multidimensional scaling analyses to investigate the relationship between Hel domains and Pif1-like helicases from a variety of organisms. Our results reveal that Hel domains are only distantly related to genomic helicases from eukaryotes and prokaryotes, and thus are unlikely to have originated from a captured Pif1 gene. Based on this evidence, and on recent studies indicating that Rep domains are more closely related to rolling-circle plasmids and phages, we suggest that Helitrons are descendants of a RepHel-encoding prokaryotic plasmid element that invaded eukaryotic genomes before the radiation of its major groups. We discuss how a Pif1-like helicase domain might have favored the transposition of Helitrons in eukaryotes beyond simply unwinding DNA intermediates. Finally, we demonstrate that some examples in the literature describing genomic helicases from eukaryotes actually consist of Hel domains from Helitrons, a finding that underscores how transposons can hamper the analysis of eukaryotic genes. This investigation also revealed that two groups of land plants appear to have lost genomic Pif1 helicases independently.
Collapse
Affiliation(s)
- Pedro Heringer
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP, 31270-901, Brazil
| | - Gustavo C S Kuhn
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP, 31270-901, Brazil
| |
Collapse
|
4
|
Wathugala ND, Hemananda KM, Yip CB, Hynes MF. Defining the requirements for the conjugative transfer of Rhizobium leguminosarum plasmid pRleVF39b. MICROBIOLOGY-SGM 2020; 166:318-331. [PMID: 31935189 DOI: 10.1099/mic.0.000885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhizobium leguminosarum strain VF39 contains a plasmid, pRleVF39b, which encodes a distinctive type of conjugation system (rhizobial type IVa) that is relatively widespread among rhizobial genomes. The cluster of genes encoding the transfer functions lacks orthologs to genes such as traCD, traF and traB, but contains 15 conserved genes of unknown function. We determined the importance of these genes in conjugation by constructing marked and unmarked mutations in each gene, and established that six genes, now designated trcA-F, played a significant role in plasmid transfer. Like the relaxase gene, traA, and the genes encoding the MPF system (trb genes), five of these genes, located in two divergently transcribed operons, are regulated by the Xre family repressor TrbR. The other gene, trcF encodes a protein with similarity to histidinol phosphatases, and its role in conjugation is unclear, but mutations in trcF are severely impaired for conjugation. TrcF does not play a role in regulation of other conjugation genes.
Collapse
Affiliation(s)
- N Dulmini Wathugala
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Kasuni M Hemananda
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Cynthia B Yip
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael F Hynes
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Garcillán-Barcia MP, Cuartas-Lanza R, Cuevas A, de la Cruz F. Cis-Acting Relaxases Guarantee Independent Mobilization of MOB Q 4 Plasmids. Front Microbiol 2019; 10:2557. [PMID: 31781067 PMCID: PMC6856555 DOI: 10.3389/fmicb.2019.02557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Plasmids are key vehicles of horizontal gene transfer and contribute greatly to bacterial genome plasticity. In this work, we studied a group of plasmids from enterobacteria that encode phylogenetically related mobilization functions that populate the previously non-described MOBQ4 relaxase family. These plasmids encode two transfer genes: mobA coding for the MOBQ4 relaxase; and mobC, which is non-essential but enhances the plasmid mobilization frequency. The origin of transfer is located between these two divergently transcribed mob genes. We found that MPFI conjugative plasmids were the most efficient helpers for MOBQ4 conjugative dissemination among clinically relevant enterobacteria. While highly similar in their mobilization module, two sub-groups with unrelated replicons (Rep_3 and ColE2) can be distinguished in this plasmid family. These subgroups can stably coexist (are compatible) and transfer independently, despite origin-of-transfer cross-recognition by their relaxases. Specific discrimination among their highly similar oriT sequences is guaranteed by the preferential cis activity of the MOBQ4 relaxases. Such a strategy would be biologically relevant in a scenario of co-residence of non-divergent elements to favor self-dissemination.
Collapse
Affiliation(s)
- M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria - Consejo Superior de Investigaciones Científicas), Santander, Spain
| | - Raquel Cuartas-Lanza
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria - Consejo Superior de Investigaciones Científicas), Santander, Spain
| | - Ana Cuevas
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria - Consejo Superior de Investigaciones Científicas), Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria - Consejo Superior de Investigaciones Científicas), Santander, Spain
| |
Collapse
|
6
|
Guzmán-Herrador DL, Llosa M. The secret life of conjugative relaxases. Plasmid 2019; 104:102415. [PMID: 31103521 DOI: 10.1016/j.plasmid.2019.102415] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/17/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
Conjugative relaxases are well-characterized proteins responsible for the site- and strand-specific endonucleolytic cleavage and strand transfer reactions taking place at the start and end of the conjugative DNA transfer process. Most of the relaxases characterized biochemically and structurally belong to the HUH family of endonucleases. However, an increasing number of new families of relaxases are revealing a variety of protein folds and catalytic alternatives to accomplish conjugative DNA processing. Relaxases show high specificity for their cognate target DNA sequences, but several recent reports underscore the importance of their activity on secondary targets, leading to widespread mobilization of plasmids containing an oriT-like sequence. Some relaxases perform other functions associated with their nicking and strand transfer ability, such as catalyzing site-specific recombination or initiation of plasmid replication. They perform these roles in the absence of conjugation, and the validation of these functions in several systems strongly suggest that they are not mere artifactual laboratory observations. Other unexpected roles recently assigned to relaxases include controlling plasmid copy number and promoting retrotransposition. Their capacity to mediate promiscuous mobilization and genetic reorganizations can be exploited for a number of imaginative biotechnological applications. Overall, there is increasing evidence that conjugative relaxases are not only key enzymes for horizontal gene transfer, but may have been adapted to perform other roles which contribute to prokaryotic genetic plasticity. Relaxed target specificity may be key to this versatility.
Collapse
Affiliation(s)
- Dolores Lucía Guzmán-Herrador
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain
| | - Matxalen Llosa
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain.
| |
Collapse
|
7
|
Harms A, Liesch M, Körner J, Québatte M, Engel P, Dehio C. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella. PLoS Genet 2017; 13:e1007077. [PMID: 29073136 PMCID: PMC5675462 DOI: 10.1371/journal.pgen.1007077] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/07/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022] Open
Abstract
Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal–the BID (Bep intracellular delivery) domain—similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the evolution of host-targeted effector proteins. Many bacterial pathogens use secretion systems to translocate effector proteins into host cells where they manipulate cell functions in favor of the pathogen. It is well-known that these secretion systems evolved from ancestors with functions in genuine bacterial contexts, but the origins of their secreted effectors have largely remained elusive. In this article we studied the evolutionary history of a host-targeting effector secretion system of the mammalian pathogen Bartonella that belongs to a group of machineries descended from secretion systems originally mediating DNA transfer between bacterial cells. Intriguingly, we found that such a DNA transfer machinery closely related to the host-targeting secretion system of Bartonella has recruited a bacterial protein involved in modulating DNA topology as an interbacterial effector protein that is translocated together with the DNA into recipient cells. The overall setup of this interbacterial effector is remarkably similar to the host-targeted effectors of Bartonella, and we propose that it represents an evolutionary missing link on the path from a genuine bacterial protein to effectors that manipulates host cell functioning. Further analyses showed that interbacterial effectors in DNA transfer may be a more common phenomenon and represent an important reservoir for the evolution of new host-targeted effectors.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Marius Liesch
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Jonas Körner
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Maxime Québatte
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Fernández-González E, Bakioui S, Gomes MC, O'Callaghan D, Vergunst AC, Sangari FJ, Llosa M. A Functional oriT in the Ptw Plasmid of Burkholderia cenocepacia Can Be Recognized by the R388 Relaxase TrwC. Front Mol Biosci 2016; 3:16. [PMID: 27200362 PMCID: PMC4853378 DOI: 10.3389/fmolb.2016.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/14/2016] [Indexed: 12/14/2022] Open
Abstract
Burkholderia cenocepacia is both a plant pathogen and the cause of serious opportunistic infections, particularly in cystic fibrosis patients. B. cenocepacia K56-2 harbors a native plasmid named Ptw for its involvement in the Plant Tissue Watersoaking phenotype. Ptw has also been reported to be important for survival in human cells. Interestingly, the presence of PtwC, a homolog of the conjugative relaxase TrwC of plasmid R388, suggests a possible function for Ptw in conjugative DNA transfer. The ptw region includes Type IV Secretion System genes related to those of the F plasmid. However, genes in the adjacent region shared stronger homology with the R388 genes involved in conjugative DNA metabolism. This region included the putative relaxase ptwC, a putative coupling protein and accessory nicking protein, and a DNA segment with high number of inverted repeats and elevated AT content, suggesting a possible oriT. Although we were unable to detect conjugative transfer of the Ptw resident plasmid, we detected conjugal mobilization of a co-resident plasmid containing the ptw region homologous to R388, demonstrating the cloned ptw region contains an oriT. A similar plasmid lacking ptwC could not be mobilized, suggesting that the putative relaxase PtwC must act in cis on its oriT. Remarkably, we also detected mobilization of a plasmid containing the Ptw oriT by the R388 relaxase TrwC, yet we could not detect PtwC-mediated mobilization of an R388 oriT-containing plasmid. Our data unambiguously show that the Ptw plasmid harbors DNA transfer functions, and suggests the Ptw plasmid may play a dual role in horizontal DNA transfer and eukaryotic infection.
Collapse
Affiliation(s)
- Esther Fernández-González
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, UC-SODERCAN-Consejo Superior de Investigaciones Científicas Santander, Spain
| | - Sawsane Bakioui
- Institut National de la Santé et de la Recherche Médicale, U1047Nimes, France; UFR de Médecine Site de Nimes, U1047, Université de MontpellierFrance
| | - Margarida C Gomes
- Institut National de la Santé et de la Recherche Médicale, U1047Nimes, France; UFR de Médecine Site de Nimes, U1047, Université de MontpellierFrance
| | - David O'Callaghan
- Institut National de la Santé et de la Recherche Médicale, U1047Nimes, France; UFR de Médecine Site de Nimes, U1047, Université de MontpellierFrance
| | - Annette C Vergunst
- Institut National de la Santé et de la Recherche Médicale, U1047Nimes, France; UFR de Médecine Site de Nimes, U1047, Université de MontpellierFrance
| | - Félix J Sangari
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, UC-SODERCAN-Consejo Superior de Investigaciones Científicas Santander, Spain
| | - Matxalen Llosa
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, UC-SODERCAN-Consejo Superior de Investigaciones Científicas Santander, Spain
| |
Collapse
|
9
|
O'Brien FG, Yui Eto K, Murphy RJT, Fairhurst HM, Coombs GW, Grubb WB, Ramsay JP. Origin-of-transfer sequences facilitate mobilisation of non-conjugative antimicrobial-resistance plasmids in Staphylococcus aureus. Nucleic Acids Res 2015; 43:7971-83. [PMID: 26243776 PMCID: PMC4652767 DOI: 10.1093/nar/gkv755] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/14/2015] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus is a common cause of hospital, community and livestock-associated infections and is increasingly resistant to multiple antimicrobials. A significant proportion of antimicrobial-resistance genes are plasmid-borne, but only a minority of S. aureus plasmids encode proteins required for conjugative transfer or Mob relaxase proteins required for mobilisation. The pWBG749 family of S. aureus conjugative plasmids can facilitate the horizontal transfer of diverse antimicrobial-resistance plasmids that lack Mob genes. Here we reveal that these mobilisable plasmids carry copies of the pWBG749 origin-of-transfer (oriT) sequence and that these oriT sequences facilitate mobilisation by pWBG749. Sequences resembling the pWBG749 oriT were identified on half of all sequenced S. aureus plasmids, including the most prevalent large antimicrobial-resistance/virulence-gene plasmids, pIB485, pMW2 and pUSA300HOUMR. oriT sequences formed five subfamilies with distinct inverted-repeat-2 (IR2) sequences. pWBG749-family plasmids encoding each IR2 were identified and pWBG749 mobilisation was found to be specific for plasmids carrying matching IR2 sequences. Specificity of mobilisation was conferred by a putative ribbon-helix-helix-protein gene smpO. Several plasmids carried 2–3 oriT variants and pWBG749-mediated recombination occurred between distinct oriT sites during mobilisation. These observations suggest this relaxase-in trans mechanism of mobilisation by pWBG749-family plasmids is a common mechanism of plasmid dissemination in S. aureus.
Collapse
Affiliation(s)
- Frances G O'Brien
- CHIRI Biosciences Precinct, School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley WA 6102, Australia Australian Collaborating Centre for Enterococcus and Staphylococcus Species (ACCESS) Typing and Research, School of Veterinary Sciences and Life Sciences, Murdoch University and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Karina Yui Eto
- CHIRI Biosciences Precinct, School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley WA 6102, Australia
| | - Riley J T Murphy
- CHIRI Biosciences Precinct, School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley WA 6102, Australia
| | - Heather M Fairhurst
- CHIRI Biosciences Precinct, School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley WA 6102, Australia
| | - Geoffrey W Coombs
- CHIRI Biosciences Precinct, School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley WA 6102, Australia Australian Collaborating Centre for Enterococcus and Staphylococcus Species (ACCESS) Typing and Research, School of Veterinary Sciences and Life Sciences, Murdoch University and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia PathWest Laboratory Medicine, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Warren B Grubb
- CHIRI Biosciences Precinct, School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley WA 6102, Australia Australian Collaborating Centre for Enterococcus and Staphylococcus Species (ACCESS) Typing and Research, School of Veterinary Sciences and Life Sciences, Murdoch University and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Joshua P Ramsay
- CHIRI Biosciences Precinct, School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley WA 6102, Australia Australian Collaborating Centre for Enterococcus and Staphylococcus Species (ACCESS) Typing and Research, School of Veterinary Sciences and Life Sciences, Murdoch University and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Catalytic domain of plasmid pAD1 relaxase TraX defines a group of relaxases related to restriction endonucleases. Proc Natl Acad Sci U S A 2013; 110:13606-11. [PMID: 23904483 DOI: 10.1073/pnas.1310037110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmid pAD1 is a 60-kb conjugative element commonly found in clinical isolates of Enterococcus faecalis. The relaxase TraX and the primary origin of transfer oriT2 are located close to each other and have been shown to be essential for conjugation. The oriT2 site contains a large inverted repeat (where the nic site is located) adjacent to a series of short direct repeats. TraX does not show any of the typical relaxase sequence motifs but is the prototype of a unique family of relaxases (MOBC). The present study focuses on the genetic, biochemical, and structural analysis of TraX, whose 3D structure could be predicted by protein threading. The structure consists of two domains: (i) an N-terminal domain sharing the topology of the DNA binding domain of the MarR family of transcriptional regulators and (ii) a C-terminal catalytic domain related to the PD-(D/E)XK family of restriction endonucleases. Alignment of MOBC relaxase amino acid sequences pointed to several conserved polar amino acid residues (E28, D152, E170, E172, K176, R180, Y181, and Y203) that were mutated to alanine. Functional analysis of these mutants (in vivo DNA transfer and cleavage assays) revealed the importance of these residues for relaxase activity and suggests Y181 as a potential catalytic residue similarly to His-hydrophobe-His relaxases. We also show that TraX binds specifically to dsDNA containing the oriT2 direct repeat sequences, confirming their role in transfer specificity. The results provide insights into the catalytic mechanism of MOBC relaxases, which differs radically from that of His-hydrophobe-His relaxases.
Collapse
|
11
|
Pistorio M, Torres Tejerizo GA, Del Papa MF, Giusti MDLA, Lozano M, Lagares A. rptA, a novel gene from Ensifer (Sinorhizobium) meliloti involved in conjugal transfer. FEMS Microbiol Lett 2013; 345:22-30. [PMID: 23672494 DOI: 10.1111/1574-6968.12177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 11/27/2022] Open
Abstract
We approached the identification of Ensifer (Sinorhizobium) meliloti conjugal functions by random Tn5-B13 mutagenesis of the pSmeLPU88a plasmid of E. meliloti strain LPU88 and the subsequent selection of those mutants that had lost the ability to mobilize the small plasmid pSmeLPU88b. The Tn5-B13-insertion site of one of the mutants was cloned as an EcoRI-restricted DNA fragment that after subsequent isolation and sequencing demonstrated that a small open reading frame of 522 bp (designated rptA, for rhizobium plasmid transfer A) had been disrupted. The predicted gene product encoded by the rptA sequence shows a significant similarity to two hypothetical proteins of the plasmid pSmed03 of Ensifer medicae WSM419 and other rhizobia plasmids. No significant similarity was found to any protein sequence of known function registered in the databases. Although the rptA gene was required for pSmeLPU88b-plasmid mobilization in the strain 2011 background, it was not required in the original strain LPU88 background.
Collapse
Affiliation(s)
- Mariano Pistorio
- IBBM - Instituto de Biotecnología y Biología Molecular, CCT-CONICET-La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | | | | | | | | | | |
Collapse
|
12
|
Giusti MDLÁ, Pistorio M, Lozano MJ, Tejerizo GAT, Salas ME, Martini MC, López JL, Draghi WO, Del Papa MF, Pérez-Mendoza D, Sanjuán J, Lagares A. Genetic and functional characterization of a yet-unclassified rhizobial Dtr (DNA-transfer-and-replication) region from a ubiquitous plasmid conjugal system present in Sinorhizobium meliloti, in Sinorhizobium medicae, and in other nonrhizobial Gram-negative bacteria. Plasmid 2012; 67:199-210. [PMID: 22233546 DOI: 10.1016/j.plasmid.2011.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/24/2011] [Accepted: 12/01/2011] [Indexed: 11/15/2022]
Abstract
Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own helper functions. The results present an as-yet-unclassified and seemingly ubiquitous conjugal system that provides a mechanistic support for the HGT between sympatric rhizobia of Medicago roots, and between other soil and rhizospheric bacteria.
Collapse
Affiliation(s)
- María de los Ángeles Giusti
- Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Green fluorescent protein-labeled monitoring tool to quantify conjugative plasmid transfer between Gram-positive and Gram-negative bacteria. Appl Environ Microbiol 2011; 78:895-9. [PMID: 22138997 DOI: 10.1128/aem.05578-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
On the basis of pIP501, a green fluorescent protein (GFP)-tagged monitoring tool was constructed for quantifying plasmid mobilization among Gram-positive bacteria and between Gram-positive Enterococcus faecalis and Gram-negative Escherichia coli. Furthermore, retromobilization of the GFP-tagged monitoring tool was shown from E. faecalis OG1X into the clinical isolate E. faecalis T9.
Collapse
|
14
|
pSymA-dependent mobilization of the Sinorhizobium meliloti pSymB megaplasmid. J Bacteriol 2010; 192:6309-12. [PMID: 20889746 DOI: 10.1128/jb.00549-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti 1021 carries two megaplasmids, pSymA of 1,354 kb and pSymB of 1,683 kb, which are essential in establishing symbiosis with its legume hosts and important for bacterial fitness in the rhizosphere. We have previously shown that pSymA is self-transmissible and that its conjugal functions are regulated by the transcriptional repressor RctA. Here, we show conjugal transfer of pSymB as an in trans mobilization event that requires the type IV secretion system encoded by pSymA. pSymB carries a functional oriT and an adjacent relaxase gene, traA2, that is also transcriptionally repressed by rctA. Both symbiotic megaplasmids would require the relaxase genes in cis with their respective oriTs to achieve the highest transfer efficiencies.
Collapse
|
15
|
Analysis of the mobilization functions of the vancomycin resistance transposon Tn1549, a member of a new family of conjugative elements. J Bacteriol 2009; 192:702-13. [PMID: 19966009 DOI: 10.1128/jb.00680-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugative transfer from Clostridium symbiosum to enterococci of Tn1549, which confers VanB-type vancomycin resistance, has been reported. This indicates the presence of a transfer origin (oriT) in the element. Transcription analysis of Tn1549 indicated that orf29, orf28, orfz, and orf27 were cotranscribed. A pACYC184 derivative containing 250 bp intergenic to orf29-orf30 of Tn1549 was mobilized in Escherichia coli recA::RP4::Delta nic provided that orf28 and orf29 were delivered simultaneously. These open reading frame (ORF) genes were able to promote mobilization in trans, but a cis-acting preference was observed. On the basis of a mobilization assay, a minimal 28-bp oriT was delimited, although the frequency of transfer was significantly reduced compared to that of a 130-bp oriT fragment. The minimal oriT contained an inverted repeat and a core, which was homologous to the cleavage sequence found in certain Gram-positive rolling-circle replicating (RCR) plasmids. While Orf29 was a mobilization accessory component similar to MobC proteins, Orf28 was identified as a relaxase belonging to a new phyletic cluster of the MOB(p) superfamily. The nick site was identified within oriT by an oligonucleotide cleavage assay. Closely related oriTs linked to mobilization genes were detected in data banks; they were found in various integrative and conjugative elements (ICEs) originating mainly from anaerobes. These results support the notion that Tn1549 is a member of a MOB(p) clade. Interestingly, the Tn1549-derived constructs were mobilized by RP4 in E. coli, suggesting that a relaxosome resulting from DNA cleavage by Orf28 interacted with the coupling protein TraG. This demonstrates the capacity of Tn1549 to be mobilized by a heterologous transfer system.
Collapse
|
16
|
Garcillán-Barcia MP, Francia MV, de la Cruz F. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 2009; 33:657-87. [PMID: 19396961 DOI: 10.1111/j.1574-6976.2009.00168.x] [Citation(s) in RCA: 388] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bacterial conjugation is an efficient and sophisticated mechanism of DNA transfer among bacteria. While mobilizable plasmids only encode a minimal MOB machinery that allows them to be transported by other plasmids, conjugative plasmids encode a complete set of transfer genes (MOB1T4SS). The only essential ingredient of the MOB machinery is the relaxase, the protein that initiates and terminates conjugative DNA processing. In this review we compared the sequences and properties of the relaxase proteins contained in gene sequence databases. Proteins were arranged in families and phylogenetic trees constructed from the family alignments. This allowed the classification of conjugative transfer systems in six MOB families:MOB(F), MOB(H), MOB(Q), MOB(C), MOB(P) and MOB(V). The main characteristics of each family were reviewed. The phylogenetic relationships of the coupling proteins were also analysed and resulted in phylogenies congruent to those of the cognate relaxases. We propose that the sequences of plasmid relaxases can be used for plasmid classification. We hope our effort will provide researchers with a useful tool for further mining and analysing the plasmid universe both experimentally and in silico.
Collapse
Affiliation(s)
- María Pilar Garcillán-Barcia
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-IDICAN, Santander, Spain
| | | | | |
Collapse
|
17
|
Pistorio M, Giusti MA, Del Papa MF, Draghi WO, Lozano MJ, Torres Tejerizo G, Lagares A. Conjugal properties of the Sinorhizobium meliloti plasmid mobilome. FEMS Microbiol Ecol 2008; 65:372-82. [DOI: 10.1111/j.1574-6941.2008.00509.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Transcriptional interference and repression modulate the conjugative ability of the symbiotic plasmid of Rhizobium etli. J Bacteriol 2008; 190:4189-97. [PMID: 18424522 DOI: 10.1128/jb.00041-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the order Rhizobiales are able to establish nitrogen-fixing symbioses with legumes. Commonly, genes for symbiosis are harbored on large symbiotic plasmids. Although the transfer of symbiotic plasmids is commonly detected in nature, there are few experimentally characterized examples. In Rhizobium etli, the product of rctA inhibits the conjugation of the symbiotic plasmid by reducing the transcription of the virB operon. rctA is transcribed divergently from this operon, and its product is predicted to have a DNA binding domain. In the present study, using DNase I footprinting and binding assays, we demonstrated the specific binding of RctA to the virB operon promoter. A 9-bp motif in the spacer region of this promoter (the rctA binding motif box) and the presence of a functional -10 region were critical elements for RctA binding. Transcriptional fusion analyses revealed that the elimination of either element provoked a relief of RctA-mediated repression. These data support a model in which RctA inhibits the access of the RNA polymerase to the virB promoter. Interestingly, rctA expression levels were modulated by transcriptional interference from transcripts emanating from the virB promoter. This phenomenon adds another level of regulation for this system, thus revealing a novel mechanism of plasmid transfer regulation in the Rhizobiales.
Collapse
|