1
|
Zhang Q, Liu Z, Xia H, Huang Z, Zhu Y, Xu L, Liu Y, Li J, Du G, Lv X, Liu L. Engineered Bacillus subtilis for the de novo production of 2'-fucosyllactose. Microb Cell Fact 2022; 21:110. [PMID: 35655274 PMCID: PMC9164505 DOI: 10.1186/s12934-022-01838-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The most abundant human milk oligosaccharide in breast milk, 2'-fucosyllactose (2'-FL), has been approved as an additive to infant formula due to its multifarious nutraceutical and pharmaceutical functions in promoting neonate health. However, the low efficiency of de novo synthesis limits the cost-efficient bioproduction of 2'-FL. RESULTS This study achieved 2'-FL de novo synthesis in a generally recognized as safe (GRAS) strain Bacillus subtilis. First, a de novo biosynthetic pathway for 2'-FL was introduced by expressing the manB, manC, gmd, wcaG, and futC genes from Escherichia coli and Helicobacter pylori in B. subtilis, resulting in 2'-FL production of 1.12 g/L. Subsequently, a 2'-FL titer of 2.57 g/L was obtained by reducing the competitive lactose consumption, increasing the regeneration of the cofactor guanosine-5'-triphosphate (GTP), and enhancing the supply of the precursor mannose-6-phosphate (M6P). By replacing the native promoter of endogenous manA gene (encoding M6P isomerase) with a constitutive promoter P7, the 2'-FL titer in shake flask reached 18.27 g/L. The finally engineered strain BS21 could produce 88.3 g/L 2'-FL with a yield of 0.61 g/g lactose in a 3-L bioreactor, without the addition of antibiotics and chemical inducers. CONCLUSIONS The efficient de novo synthesis of 2'-FL can be achieved by the engineered B. subtilis, paving the way for the large-scale bioproduction of 2'-FL titer in the future.
Collapse
Affiliation(s)
- Quanwei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Hongzhi Xia
- Nantong Licheng Biological Engineering Co., Ltd, Shanghai, 200000, China
| | - Ziyang Huang
- Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China
| | - Yonglian Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Linfeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Abstract
Accumulation of phosphorylated intermediates during cellular metabolism can have wide-ranging toxic effects on many organisms, including humans and the pathogens that infect them. These toxicities can be induced by feeding an upstream metabolite (a sugar, for instance) while simultaneously blocking the appropriate metabolic pathway with either a mutation or an enzyme inhibitor. Here, we survey the toxicities that can arise in the metabolism of glucose, galactose, fructose, fructose-asparagine, glycerol, trehalose, maltose, mannose, mannitol, arabinose, and rhamnose. Select enzymes in these metabolic pathways may serve as novel therapeutic targets. Some are conserved broadly among prokaryotes and eukaryotes (e.g., glucose and galactose) and are therefore unlikely to be viable drug targets. However, others are found only in bacteria (e.g., fructose-asparagine, rhamnose, and arabinose), and one is found in fungi but not in humans (trehalose). We discuss what is known about the mechanisms of toxicity and how resistance is achieved in order to identify the prospects and challenges associated with targeted exploitation of these pervasive metabolic vulnerabilities.
Collapse
|
3
|
Marsh AJ, Yaya AMA, Ng S, Chandrashekhar K, Roach J, Magness ST, Azcarate-Peril MA. Lumen and mucosa-associated Lactobacillus rhamnosus from the intestinal tract of organ donors. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2020; 1:e4. [PMID: 39296723 PMCID: PMC11406413 DOI: 10.1017/gmb.2020.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/12/2020] [Accepted: 10/04/2020] [Indexed: 09/21/2024]
Abstract
Knowledge of the intra-individual spatial and regional distribution of intestinal microbial populations is essential to understand gut host-microbial interactions. In this study, we performed a compositional analysis of luminal and mucosal samples from the small and large intestine of four organ donors by 16S rRNA amplicon sequencing and high-throughput quantitative polymerase chain reaction. Since the human microbiota is subject to selection pressure at lower taxonomic levels, we isolated over 400 bacterial strains and investigated strain-level variation of 11 Lactobacillus rhamnosus from different intestinal regions. Results substantiate reported inter-individual variability as well as intra-individual differences along the gastrointestinal tract. Although the luminal and mucosal-associated communities were similar within individuals, relative abundance reflected the donors' demographic and potential pathologies. The total bacterial load of all donors increased from small intestine to colon, while Bifidobacterium was in greater abundance in the small intestine. Comparative genomic analysis of L. rhamnosus showed the strains segregated into two distinct clusters and identified no features specific to location. Analysis revealed genetic differences for exopolysaccharide production, carbohydrate utilization, pilus formation and vitamin K biosynthesis between clusters. This study contributes to the understanding of niche-specific microbial communities, encouraging subsequent studies to better understand microbial signatures at lower taxonomic levels.
Collapse
Affiliation(s)
- Alan J Marsh
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Al-Mounawara A Yaya
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Sandy Ng
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Kshipra Chandrashekhar
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jeff Roach
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Information Technology Services and Research Computing, University of North Carolina, Chapel Hill, NC, USA
| | - Scott T Magness
- UNC/NC State University Joint Departments of Biomedical Engineering and UNC Departments of Medicine, Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Niu T, Lv X, Liu Y, Li J, Du G, Ledesma-Amaro R, Liu L. The elucidation of phosphosugar stress response in Bacillus subtilis guides strain engineering for high N-acetylglucosamine production. Biotechnol Bioeng 2020; 118:383-396. [PMID: 32965679 DOI: 10.1002/bit.27577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022]
Abstract
Bacillus subtilis is a preferred microbial host for the industrial production of nutraceuticals and a promising candidate for the synthesis of functional sugars, such as N-acetylglucosamine (GlcNAc). Previously, a GlcNAc-overproducer B. subtilis SFMI was constructed using glmS ribozyme dual-regulatory tool. Herein, we further engineered to enhance carbon flux from glucose towards GlcNAc synthesis. As a result, the increased flux towards GlcNAc synthesis triggered phosphosugar stress response, which caused abnormal cell growth. Unfortunately, the mechanism of phosphosugar stress response had not been elucidated in B. subtilis. To reveal the stress mechanism and overcome its negative effect in bioproduction, we performed comparative transcriptome analysis. The results indicate that cells slow glucose utilization by repression of glucose import and accelerate catabolic reactions of phosphosugar. To verify these results, we overexpressed the phosphatase YwpJ, which relieved phosphosugar stress and allowed us to identify the enzyme responsible for GlcNAc synthesis from GlcNAc 6-phosphate. In addition, the deletion of nagBB and murQ, responsible for GlcNAc precursor degradation, further improved GlcNAc synthesis. The best engineered strain, B. subtilis FMIP34, increased GlcNAc titer from 11.5 to 26.1 g/L in shake flasks and produced 87.5 g/L GlcNAc in 30-L fed-batch bioreactor. Our results not only elucidate, for the first time, the phosphosugar stress response mechanism in B. subtilis, but also demonstrate how the combination of rational metabolic engineering with novel insights into physiology and metabolism allows the construction of highly efficient microbial cell factories for the production of high-value chemicals.
Collapse
Affiliation(s)
- Tengfei Niu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Expression and purification of the 5'-nucleotidase YitU from Bacillus species: its enzymatic properties and possible applications in biotechnology. Appl Microbiol Biotechnol 2020; 104:2957-2972. [PMID: 32040605 PMCID: PMC7062661 DOI: 10.1007/s00253-020-10428-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 11/05/2022]
Abstract
5’-Nucleotidases (EC 3.1.3.5) are enzymes that catalyze the hydrolytic dephosphorylation of 5′-ribonucleotides and 5′-deoxyribonucleotides to their corresponding nucleosides plus phosphate. In the present study, to search for new genes encoding 5′-nucleotidases specific for purine nucleotides in industrially important Bacillus species, “shotgun” cloning and the direct selection of recombinant clones grown in purine nucleosides at inhibitory concentrations were performed in the Escherichia coli GS72 strain, which is sensitive to these compounds. As a result, orthologous yitU genes from Bacillus subtilis and Bacillus amyloliquefaciens, whose products belong to the ubiquitous haloacid dehalogenase superfamily (HADSF), were selected and found to have a high sequence similarity of 87%. B. subtilis YitU was produced in E. coli as an N-terminal hexahistidine-tagged protein, purified and biochemically characterized as a soluble 5′-nucleotidase with broad substrate specificity with respect to various deoxyribo- and ribonucleoside monophosphates: dAMP, GMP, dGMP, CMP, AMP, XMP, IMP and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5′-monophosphate (AICAR-P). However, the preferred substrate for recombinant YitU was shown to be flavin mononucleotide (FMN). B. subtilis and B. amyloliquefaciens yitU overexpression increased riboflavin (RF) and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) accumulation and can be applied to breed highly performing RF- and AICAR-producing strains.
Collapse
|
6
|
Sugar-Phosphate Metabolism Regulates Stationary-Phase Entry and Stalk Elongation in Caulobacter crescentus. J Bacteriol 2020; 202:JB.00468-19. [PMID: 31767777 DOI: 10.1128/jb.00468-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/17/2019] [Indexed: 12/28/2022] Open
Abstract
Bacteria have a variety of mechanisms for adapting to environmental perturbations. Changes in oxygen availability result in a switch between aerobic and anaerobic respiration, whereas iron limitation may lead to siderophore secretion. In addition to metabolic adaptations, many organisms respond by altering their cell shape. Caulobacter crescentus, when grown under phosphate-limiting conditions, dramatically elongates its polar stalk appendage. The stalk is hypothesized to facilitate phosphate uptake; however, the mechanistic details of stalk synthesis are not well characterized. We used a chemical mutagenesis approach to isolate and characterize stalk-deficient mutants, one of which had two mutations in the phosphomannose isomerase gene (manA) that were necessary and sufficient to inhibit stalk elongation. Transcription of the pho regulon was unaffected in the manA mutant; therefore, ManA plays a unique regulatory role in stalk synthesis. The mutant ManA had reduced enzymatic activity, resulting in a 5-fold increase in the intracellular fructose 6-phosphate/mannose 6-phosphate ratio. This metabolic imbalance impaired the synthesis of cellular envelope components derived from mannose 6-phosphate, namely, lipopolysaccharide O-antigen and exopolysaccharide. Furthermore, the manA mutations prevented C. crescentus cells from efficiently entering stationary phase. Deletion of the stationary-phase response regulator gene spdR inhibited stalk elongation in wild-type cells, while overproduction of the alarmone ppGpp, which triggers growth arrest and stationary-phase entry, increased stalk length in the manA mutant strain. These results demonstrate that sugar-phosphate metabolism regulates stalk elongation independently of phosphate starvation.IMPORTANCE Metabolic control of bacterial cell shape is an important mechanism for adapting to environmental perturbations. Caulobacter crescentus dramatically elongates its polar stalk appendage in response to phosphate starvation. To investigate the mechanism of this morphological adaptation, we isolated stalk-deficient mutants, one of which had mutations in the phosphomannose isomerase gene (manA) that blocked stalk elongation, despite normal activation of the phosphate starvation response. The mutant ManA resulted in an imbalance in sugar-phosphate concentrations, which had effects on the synthesis of cellular envelope components and entry into stationary phase. Due to the interconnectivity of metabolic pathways, our findings may suggest more generally that the modulation of bacterial cell shape involves the regulation of growth phase and the synthesis of cellular building blocks.
Collapse
|