1
|
Bozidis P, Markou E, Gouni A, Gartzonika K. Does Phage Therapy Need a Pan-Phage? Pathogens 2024; 13:522. [PMID: 38921819 PMCID: PMC11206709 DOI: 10.3390/pathogens13060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The emergence of multidrug-resistant bacteria is undoubtedly one of the most serious global health threats. One response to this threat that has been gaining momentum over the past decade is 'phage therapy'. According to this, lytic bacteriophages are used for the treatment of bacterial infections, either alone or in combination with antimicrobial agents. However, to ensure the efficacy and broad applicability of phage therapy, several challenges must be overcome. These challenges encompass the development of methods and strategies for the host range manipulation and bypass of the resistance mechanisms developed by pathogenic bacteria, as has been the case since the advent of antibiotics. As our knowledge and understanding of the interactions between phages and their hosts evolves, the key issue is to define the host range for each application. In this article, we discuss the factors that affect host range and how this determines the classification of phages into different categories of action. For each host range group, recent representative examples are provided, together with suggestions on how the different groups can be used to combat certain types of bacterial infections. The available methodologies for host range expansion, either through sequential adaptation to a new pathogen or through genetic engineering techniques, are also reviewed.
Collapse
Affiliation(s)
- Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Athanasia Gouni
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| |
Collapse
|
2
|
Forrest S, Ton S, Sholes SL, Harrison S, Plaut RD, Verratti K, Wittekind M, Ettehadieh E, Necciai B, Sozhamannan S, Grady SL. Genetic evidence for the interaction between Bacillus anthracis-encoded phage receptors and their cognate phage-encoded receptor binding proteins. Front Microbiol 2023; 14:1278791. [PMID: 38029077 PMCID: PMC10644760 DOI: 10.3389/fmicb.2023.1278791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Bacteriophages such as γ and AP50c have been shown to infect strains of Bacillus anthracis with high specificity, and this feature has been exploited in the development of bacterial detection assays. To better understand the emergence of phage resistance, and thus the potential failure of such assays, it is important to identify the host and phage receptors necessary for attachment and entry. Using genetic approaches, the bacterial receptors of AP50c and γ have been identified as sap and GamR, respectively. A second AP50c-like phage, Wip1, also appears to use sap as a receptor. In parallel with this work, the cognate phage-encoded receptor binding proteins (RBPs) have also been identified (Gp14 for γ, P28 for AP50c, and P23 for Wip1); however, the strength of evidence supporting these protein-protein interactions varies, necessitating additional investigation. Here, we present genetic evidence further supporting the interaction between sap and the RBPs of AP50c and Wip1 using fluorescently tagged proteins and a panel of B. anthracis mutants. These results showed that the deletion of the sap gene, as well as the deletion of csaB, whose encoded protein anchors sap to the bacterial S-layer, resulted in the loss of RBP binding. Binding could then be rescued by expressing these genes in trans. We also found that the RBP of the γ-like prophage λBa03 relied on csaB activity for binding, possibly by a different mechanism. RBPλBa03 binding to B. anthracis cells was also unique in that it was not ablated by heat inactivation of vegetative cells, suggesting that its receptor is still functional following incubation at 98°C. These results extend our understanding of the diverse attachment and entry strategies used by B. anthracis phages, enabling future assay development.
Collapse
Affiliation(s)
- Samantha Forrest
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Sarah Ton
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Samantha L. Sholes
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Sarah Harrison
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Roger D. Plaut
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Kathleen Verratti
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | | | | | - Bryan Necciai
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Lead for CBRND Enabling Biotechnologies, Frederick, MD, United States
| | - Shanmuga Sozhamannan
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Lead for CBRND Enabling Biotechnologies, Frederick, MD, United States
- Joint Research and Development, Inc., Stafford, VA, United States
| | - Sarah L. Grady
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| |
Collapse
|
3
|
Draft Genome Assemblies of Phage AP50c-Resistant Derivatives of Bacillus anthracis Sterne Strain 7702 Lacking Plasmid pXO2. Microbiol Resour Announc 2023; 12:e0131322. [PMID: 36719207 PMCID: PMC9933711 DOI: 10.1128/mra.01313-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mutants of the attenuated Bacillus anthracis (Sterne) strain 7702 that are resistant to phage AP50c have been previously described. Here, we report the draft genome assemblies of the parent strain, several phage-resistant derivatives, and mutants of genes in the pathways for synthesis and assembly of the S-layer.
Collapse
|
4
|
Leprince A, Mahillon J. Phage Adsorption to Gram-Positive Bacteria. Viruses 2023; 15:196. [PMID: 36680236 PMCID: PMC9863714 DOI: 10.3390/v15010196] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The phage life cycle is a multi-stage process initiated by the recognition and attachment of the virus to its bacterial host. This adsorption step depends on the specific interaction between bacterial structures acting as receptors and viral proteins called Receptor Binding Proteins (RBP). The adsorption process is essential as it is the first determinant of phage host range and a sine qua non condition for the subsequent conduct of the life cycle. In phages belonging to the Caudoviricetes class, the capsid is attached to a tail, which is the central player in the adsorption as it comprises the RBP and accessory proteins facilitating phage binding and cell wall penetration prior to genome injection. The nature of the viral proteins involved in host adhesion not only depends on the phage morphology (i.e., myovirus, siphovirus, or podovirus) but also the targeted host. Here, we give an overview of the adsorption process and compile the available information on the type of receptors that can be recognized and the viral proteins taking part in the process, with the primary focus on phages infecting Gram-positive bacteria.
Collapse
|
5
|
Buchholz HH, Bolaños LM, Bell AG, Michelsen ML, Allen MJ, Temperton B. A Novel and Ubiquitous Marine Methylophage Provides Insights into Viral-Host Coevolution and Possible Host-Range Expansion in Streamlined Marine Heterotrophic Bacteria. Appl Environ Microbiol 2022; 88:e0025522. [PMID: 35311512 PMCID: PMC9004378 DOI: 10.1128/aem.00255-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The methylotrophic OM43 clade are Gammaproteobacteria that comprise some of the smallest free-living cells known and have highly streamlined genomes. OM43 represents an important microbial link between marine primary production and remineralization of carbon back to the atmosphere. Bacteriophages shape microbial communities and are major drivers of mortality and global marine biogeochemistry. Recent cultivation efforts have brought the first viruses infecting members of the OM43 clade into culture. Here, we characterize a novel myophage infecting OM43 called Melnitz. Melnitz was isolated independently from water samples from a subtropical ocean gyre (Sargasso Sea) and temperate coastal (Western English Channel) systems. Metagenomic recruitment from global ocean viromes confirmed that Melnitz is globally ubiquitous, congruent with patterns of host abundance. Bacteria with streamlined genomes such as OM43 and the globally dominant SAR11 clade use riboswitches as an efficient method to regulate metabolism. Melnitz encodes a two-piece tmRNA (ssrA), controlled by a glutamine riboswitch, providing evidence that riboswitch use also occurs for regulation during phage infection of streamlined heterotrophs. Virally encoded tRNAs and ssrA found in Melnitz were phylogenetically more closely related to those found within the alphaproteobacterial SAR11 clade and their associated myophages than those within their gammaproteobacterial hosts. This suggests the possibility of an ancestral host transition event between SAR11 and OM43. Melnitz and a related myophage that infects SAR11 were unable to infect hosts of the SAR11 and OM43, respectively, suggesting host transition rather than a broadening of host range. IMPORTANCE Isolation and cultivation of viruses are the foundations on which the mechanistic understanding of virus-host interactions and parameterization of bioinformatic tools for viral ecology are based. This study isolated and characterized the first myophage known to infect the OM43 clade, expanding our knowledge of this understudied group of microbes. The nearly identical genomes of four strains of Melnitz isolated from different marine provinces and the global abundance estimations from metagenomic data suggest that this viral population is globally ubiquitous. Genome analysis revealed several unusual features in Melnitz and related genomes recovered from viromes, such as a curli operon and virally encoded tmRNA controlled by a glutamine riboswitch, neither of which are found in the host. Further phylogenetic analysis of shared genes indicates that this group of viruses infecting the gammaproteobacterial OM43 shares a recent common ancestor with viruses infecting the abundant alphaproteobacterial SAR11 clade. Host ranges are affected by compatible cell surface receptors, successful circumvention of superinfection exclusion systems, and the presence of required accessory proteins, which typically limits phages to singular narrow groups of closely related bacterial hosts. This study provides intriguing evidence that for streamlined heterotrophic bacteria, virus-host transitioning may not be necessarily restricted to phylogenetically related hosts but is a function of shared physical and biochemical properties of the cell.
Collapse
Affiliation(s)
| | | | | | | | - Michael J. Allen
- University of Exeter, School of Biosciences, Exeter, UK
- Plymouth Marine Laboratory, Plymouth, UK
| | - Ben Temperton
- University of Exeter, School of Biosciences, Exeter, UK
| |
Collapse
|
6
|
Zhang H, Yang P, Wang Z, Li M, Zhang J, Liu D, Chen Y, Ying H. Clostridium acetobutylicum Biofilm: Advances in Understanding the Basis. Front Bioeng Biotechnol 2021; 9:658568. [PMID: 34150727 PMCID: PMC8209462 DOI: 10.3389/fbioe.2021.658568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridium acetobutylicum is an important industrial platform capable of producing a variety of biofuels and bulk chemicals. Biofilm of C. acetobutylicum renders many production advantages and has been long and extensively applied in fermentation. However, molecular and genetic mechanisms underlying the biofilm have been much less studied and remain largely unknown. Here, we review studies to date focusing on C. acetobutylicum biofilms, especially on its physiological and molecular aspects, summarizing the production advantages, cell physiological changes, extracellular matrix components and regulatory genes of the biofilm. This represents the first review dedicated to the biofilm of C. acetobutylicum. Hopefully, it will deepen our understanding toward C. acetobutylicum biofilm and inspire more research to learn and develop more efficient biofilm processes in this industrially important bacterium.
Collapse
Affiliation(s)
- Huifang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pengpeng Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Zhenyu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Mengting Li
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Cuajungco MP, Ramirez MS, Tolmasky ME. Zinc: Multidimensional Effects on Living Organisms. Biomedicines 2021; 9:biomedicines9020208. [PMID: 33671781 PMCID: PMC7926802 DOI: 10.3390/biomedicines9020208] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Zinc is a redox-inert trace element that is second only to iron in abundance in biological systems. In cells, zinc is typically buffered and bound to metalloproteins, but it may also exist in a labile or chelatable (free ion) form. Zinc plays a critical role in prokaryotes and eukaryotes, ranging from structural to catalytic to replication to demise. This review discusses the influential properties of zinc on various mechanisms of bacterial proliferation and synergistic action as an antimicrobial element. We also touch upon the significance of zinc among eukaryotic cells and how it may modulate their survival and death through its inhibitory or modulatory effect on certain receptors, enzymes, and signaling proteins. A brief discussion on zinc chelators is also presented, and chelating agents may be used with or against zinc to affect therapeutics against human diseases. Overall, the multidimensional effects of zinc in cells attest to the growing number of scientific research that reveal the consequential prominence of this remarkable transition metal in human health and disease.
Collapse
|
8
|
Tittes C, Schwarzer S, Pfeiffer F, Dyall-Smith M, Rodriguez-Franco M, Oksanen HM, Quax TEF. Cellular and Genomic Properties of Haloferax gibbonsii LR2-5, the Host of Euryarchaeal Virus HFTV1. Front Microbiol 2021; 12:625599. [PMID: 33664716 PMCID: PMC7921747 DOI: 10.3389/fmicb.2021.625599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/28/2021] [Indexed: 01/14/2023] Open
Abstract
Hypersaline environments are the source of many viruses infecting different species of halophilic euryarchaea. Information on infection mechanisms of archaeal viruses is scarce, due to the lack of genetically accessible virus–host models. Recently, a new archaeal siphovirus, Haloferax tailed virus 1 (HFTV1), was isolated together with its host belonging to the genus Haloferax, but it is not infectious on the widely used model euryarcheon Haloferax volcanii. To gain more insight into the biology of HFTV1 host strain LR2-5, we studied characteristics that might play a role in its virus susceptibility: growth-dependent motility, surface layer, filamentous surface structures, and cell shape. Its genome sequence showed that LR2-5 is a new strain of Haloferax gibbonsii. LR2-5 lacks obvious viral defense systems, such as CRISPR-Cas, and the composition of its cell surface is different from Hfx. volcanii, which might explain the different viral host range. This work provides first deep insights into the relationship between the host of halovirus HFTV1 and other members of the genus Haloferax. Given the close relationship to the genetically accessible Hfx. volcanii, LR2-5 has high potential as a new model for virus–host studies in euryarchaea.
Collapse
Affiliation(s)
- Colin Tittes
- Archaeal Virus-Host Interactions, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sabine Schwarzer
- Archaeal Virus-Host Interactions, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mike Dyall-Smith
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Chateau A, Van der Verren SE, Remaut H, Fioravanti A. The Bacillus anthracis Cell Envelope: Composition, Physiological Role, and Clinical Relevance. Microorganisms 2020; 8:E1864. [PMID: 33255913 PMCID: PMC7759979 DOI: 10.3390/microorganisms8121864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022] Open
Abstract
Anthrax is a highly resilient and deadly disease caused by the spore-forming bacterial pathogen Bacillus anthracis. The bacterium presents a complex and dynamic composition of its cell envelope, which changes in response to developmental and environmental conditions and host-dependent signals. Because of their easy to access extracellular locations, B. anthracis cell envelope components represent interesting targets for the identification and development of novel therapeutic and vaccine strategies. This review will focus on the novel insights regarding the composition, physiological role, and clinical relevance of B. anthracis cell envelope components.
Collapse
Affiliation(s)
- Alice Chateau
- Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France;
| | - Sander E. Van der Verren
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
10
|
Rousset L, Alpha-Bazin B, Château A, Armengaud J, Clavel T, Berge O, Duport C. Groundwater promotes emergence of asporogenic mutants of emetic Bacillus cereus. Environ Microbiol 2020; 22:5248-5264. [PMID: 32815215 DOI: 10.1111/1462-2920.15203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/15/2023]
Abstract
Bacillus cereus is a ubiquitous endospore-forming bacterium, which mainly affects humans as a food-borne pathogen. Bacillus cereus can contaminate groundwater used to irrigate food crops. Here, we examined the ability of the emetic strain B. cereus F4810/72 to survive abiotic conditions encountered in groundwater. Our results showed that vegetative B. cereus cells rapidly evolved in a mixed population composed of endospores and asporogenic variants bearing spo0A mutations. One asporogenic variant, VAR-F48, was isolated and characterized. VAR-F48 can survive in sterilized groundwater over a long period in a vegetative form and has a competitive advantage compared to its parental strain. Proteomics analysis allowed us to quantify changes to cellular and exoproteins after 24 and 72 h incubation in groundwater, for VAR-F48 compared to its parental strain. The results revealed a significant re-routing of the metabolism in the absence of Spo0A. We concluded that VAR-F48 maximizes its energy use to deal with oligotrophy, and the emergence of spo0A-mutated variants may contribute to the persistence of emetic B. cereus in natural oligotrophic environments.
Collapse
Affiliation(s)
- Ludivine Rousset
- Avignon Université, INRAE, UMR SQPOV, Avignon, F-84914, France.,INRAE, Pathologie Végétale, Montfavet, F-84140, France
| | - Béatrice Alpha-Bazin
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, 30200, France
| | - Alice Château
- Avignon Université, INRAE, UMR SQPOV, Avignon, F-84914, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, 30200, France
| | - Thierry Clavel
- Avignon Université, INRAE, UMR SQPOV, Avignon, F-84914, France
| | - Odile Berge
- INRAE, Pathologie Végétale, Montfavet, F-84140, France
| | | |
Collapse
|
11
|
Rapid Microscopic Detection of Bacillus anthracis by Fluorescent Receptor Binding Proteins of Bacteriophages. Microorganisms 2020; 8:microorganisms8060934. [PMID: 32575866 PMCID: PMC7356292 DOI: 10.3390/microorganisms8060934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Bacillus anthracis, the etiological agent of anthrax disease, is typically diagnosed by immunological and molecular methods such as polymerase chain reaction (PCR). Alternatively, mass spectrometry techniques may aid in confirming the presence of the pathogen or its toxins. However, because of the close genetic relationship between B. anthracis and other members of the Bacillus cereus sensu lato group (such as Bacillus cereus or Bacillus thuringiensis) mis- or questionable identification occurs frequently. Also, bacteriophages such as phage gamma (which is highly specific for B. anthracis) have been in use for anthrax diagnostics for many decades. Here we employed host cell-specific receptor binding proteins (RBP) of (pro)-phages, also known as tail or head fibers, to develop a microscopy-based approach for the facile, rapid and unambiguous detection of B. anthracis cells. For this, the genes of (putative) RBP from Bacillus phages gamma, Wip1, AP50c and from lambdoid prophage 03 located on the chromosome of B. anthracis were selected. Respective phage genes were heterologously expressed in Escherichia coli and purified as fusions with fluorescent proteins. B. anthracis cells incubated with either of the reporter fusion proteins were successfully surface-labeled. Binding specificity was confirmed as RBP fusion proteins did not bind to most isolates of a panel of other B. cereus s.l. species or to more distantly related bacteria. Remarkably, RBP fusions detected encapsulated B. anthracis cells, thus RBP were able to penetrate the poly-γ-d-glutamate capsule of B. anthracis. From these results we anticipate this RBP-reporter assay may be useful for rapid confirmative identification of B. anthracis.
Collapse
|
12
|
Increased Excess Intracellular Cyclic di-AMP Levels Impair Growth and Virulence of Bacillus anthracis. J Bacteriol 2020; 202:JB.00653-19. [PMID: 32071095 DOI: 10.1128/jb.00653-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/09/2020] [Indexed: 12/23/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) is a recently identified bacterial second messenger that regulates biological processes. In this study, we found that inactivation of two c-di-AMP phosphodiesterases (PDEs), GdpP and PgpH, resulted in accumulation of 3.8-fold higher c-di-AMP levels than in the parental strain Sterne in Bacillus anthracis and inhibited bacterial growth. Moreover, excess c-di-AMP accumulation decreased bacterial toxin expression, increased sensitivity to osmotic stress and detergent, and attenuated virulence in both C57BL/6J and A/J mice. Complementation of the PDE mutant with a plasmid carrying gdpP or pgpH in trans from a Pspac promoter restored bacterial growth, virulence factor expression, and resistance to detergent. Our results indicate that c-di-AMP is a pleiotropic signaling molecule in B. anthracis that is important for host-pathogen interaction.IMPORTANCE Anthrax is an ancient and deadly disease caused by the spore-forming bacterial pathogen Bacillus anthracis Vegetative cells of this species produce anthrax toxin proteins and S-layer components during infection of mammalian hosts. So far, how the expression of these virulence factors is regulated remains largely unknown. Our results suggest that excess elevated c-di-AMP levels inhibit bacterial growth and reduce expression of S-layer components and anthracis toxins as well as reduce virulence in a mouse model of disease. These results indicate that c-di-AMP signaling plays crucial roles in B. anthracis biology and disease.
Collapse
|
13
|
Architecture and modular assembly of Sulfolobus S-layers revealed by electron cryotomography. Proc Natl Acad Sci U S A 2019; 116:25278-25286. [PMID: 31767763 PMCID: PMC6911244 DOI: 10.1073/pnas.1911262116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many bacteria and most archaea are enveloped in S-layers, protective lattices of proteins that are among the most abundant on earth. S-layers define both the cell’s shape and periplasmic space, and play essential roles in cell division, adhesion, biofilm formation, protection against harsh environments and phages, and comprise important virulence factors in pathogenic bacteria. Despite their importance, structural information about archaeal S-layers is sparse. Here, we describe in situ structural data on archaeal S-layers by cutting-edge electron cryotomography. Our results shed light on the function and evolution of archaeal cell walls and thus our understanding of microbial life. They will also inform approaches in nanobiotechnology aiming to engineer S-layers for a vast array of applications. Surface protein layers (S-layers) often form the only structural component of the archaeal cell wall and are therefore important for cell survival. S-layers have a plethora of cellular functions including maintenance of cell shape, osmotic, and mechanical stability, the formation of a semipermeable protective barrier around the cell, and cell–cell interaction, as well as surface adhesion. Despite the central importance of S-layers for archaeal life, their 3-dimensional (3D) architecture is still poorly understood. Here we present detailed 3D electron cryomicroscopy maps of archaeal S-layers from 3 different Sulfolobus strains. We were able to pinpoint the positions and determine the structure of the 2 subunits SlaA and SlaB. We also present a model describing the assembly of the mature S-layer.
Collapse
|
14
|
The PlyB Endolysin of Bacteriophage vB_BanS_Bcp1 Exhibits Broad-Spectrum Bactericidal Activity against Bacillus cereus Sensu Lato Isolates. Appl Environ Microbiol 2019; 85:AEM.00003-19. [PMID: 30850428 DOI: 10.1128/aem.00003-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Lytic bacteriophages (or phages) drive bacterial mortality by elaborating exquisite abilities to bind, breach, and destroy bacterial cell membranes and subjugate critical bacterial cell functions. These antimicrobial activities make phages ideal candidates to serve as, or provide sources of, biological control measures for bacterial pathogens. In this study, we isolated the Myoviridae phage vB_BanS_Bcp1 (here referred to as Bcp1) from landfill soil, using a Bacillus anthracis host. The antimicrobial activities of both Bcp1 and its encoded endolysin, PlyB, were examined across different B. cereus sensu lato group species, including B. cereus sensu stricto, Bacillus thuringiensis, and Bacillus anthracis, with pathogenic potential in humans and multiple different uses in biotechnological applications. The Bcp1 phage infected only a subset (11 to 66%) of each B. cereus sensu lato species group tested. In contrast, functional analysis of purified PlyB revealed a potent bacteriolytic activity against all B. cereus sensu lato isolates tested (n = 79). PlyB was, furthermore, active across broad temperature, pH, and salt ranges, refractory to the development of resistance, bactericidal as a single agent, and synergistic with a second endolysin, PlyG. To confirm the potential for PlyB as an antimicrobial agent, we demonstrated the efficacy of a single intravenous treatment with PlyB alone or combination with PlyG in a murine model of lethal B. anthracis infection. Overall, our findings show exciting potential for the Bcp1 bacteriophage and the PlyB endolysin as potential new additions to the antimicrobial armamentarium.IMPORTANCE Organisms of the Bacillus cereus sensu lato lineage are ubiquitous in the environment and are responsible for toxin-mediated infections ranging from severe food poisoning (B. cereus sensu stricto) to anthrax (Bacillus anthracis). The increasing incidence of many of these infections, combined with the specter of antibiotic resistance, has created a need for novel antimicrobials with potent activity, including bacteriophages (or phages) and phage-encoded products (i.e., endolysins). In this study, we describe a broadly infective phage, Bcp1, and its encoded endolysin, PlyB, which exhibited a rapidly bacteriolytic effect against all B. cereus sensu lato isolates tested with no evidence of evolving resistance. Importantly, PlyB was highly efficacious in a mouse model of lethal bacteremia with B. anthracis Both the Bcp1 phage and the PlyB endolysin represent novel mechanisms of action compared to antibiotics, with potential applications to address the evolving problem of antimicrobial resistance.
Collapse
|
15
|
Kirk JA, Gebhart D, Buckley AM, Lok S, Scholl D, Douce GR, Govoni GR, Fagan RP. New class of precision antimicrobials redefines role of Clostridium difficile S-layer in virulence and viability. Sci Transl Med 2018; 9:9/406/eaah6813. [PMID: 28878013 DOI: 10.1126/scitranslmed.aah6813] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 02/06/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022]
Abstract
There is a medical need for antibacterial agents that do not damage the resident gut microbiota or promote the spread of antibiotic resistance. We recently described a prototypic precision bactericidal agent, Av-CD291.2, which selectively kills specific Clostridium difficile strains and prevents them from colonizing mice. We have since selected two Av-CD291.2-resistant mutants that have a surface (S)-layer-null phenotype due to distinct point mutations in the slpA gene. Using newly identified bacteriophage receptor binding proteins for targeting, we constructed a panel of Avidocin-CDs that kills diverse C. difficile isolates in an S-layer sequence-dependent manner. In addition to bacteriophage receptor recognition, characterization of the mutants also uncovered important roles for S-layer protein A (SlpA) in sporulation, resistance to innate immunity effectors, and toxin production. Surprisingly, S-layer-null mutants were found to persist in the hamster gut despite a complete attenuation of virulence. These findings suggest antimicrobials targeting virulence factors dispensable for fitness in the host force pathogens to trade virulence for viability and would have clear clinical advantages should resistance emerge. Given their exquisite specificity for the pathogen, Avidocin-CDs have substantial therapeutic potential for the treatment and prevention of C. difficile infections.
Collapse
Affiliation(s)
- Joseph A Kirk
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Dana Gebhart
- AvidBiotics Corp., South San Francisco, CA 94080, USA
| | - Anthony M Buckley
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Stephen Lok
- AvidBiotics Corp., South San Francisco, CA 94080, USA
| | - Dean Scholl
- AvidBiotics Corp., South San Francisco, CA 94080, USA
| | - Gillian R Douce
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | | | - Robert P Fagan
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
16
|
Abstract
Bacillus anthracis, the anthrax agent, is a member of the Bacillus cereus sensu lato group, which includes invasive pathogens of mammals or insects as well as nonpathogenic environmental strains. The genes for anthrax pathogenesis are located on two large virulence plasmids. Similar virulence plasmids have been acquired by other B. cereus strains and enable the pathogenesis of anthrax-like diseases. Among the virulence factors of B. anthracis is the S-layer-associated protein BslA, which endows bacilli with invasive attributes for mammalian hosts. BslA surface display and function are dependent on the bacterial S-layer, whose constituents assemble by binding to the secondary cell wall polysaccharide (SCWP) via S-layer homology (SLH) domains. B. anthracis and other pathogenic B. cereus isolates harbor genes for the secretion of S-layer proteins, for S-layer assembly, and for synthesis of the SCWP. We review here recent insights into the assembly and function of the S-layer and the SCWP.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois 60649.,Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois 60649.,Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
17
|
Plaut RD, Staab AB, Munson MA, Gebhardt JS, Klimko CP, Quirk AV, Cote CK, Buhr TL, Rossmaier RD, Bernhards RC, Love CE, Berk KL, Abshire TG, Rozak DA, Beck LC, Stibitz S, Goodwin BG, Smith MA, Sozhamannan S. Avirulent Bacillus anthracis Strain with Molecular Assay Targets as Surrogate for Irradiation-Inactivated Virulent Spores. Emerg Infect Dis 2018; 24. [PMID: 29553922 PMCID: PMC5875273 DOI: 10.3201/eid2404.171646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The revelation in May 2015 of the shipment of γ irradiation–inactivated wild-type Bacillus anthracis spore preparations containing a small number of live spores raised concern about the safety and security of these materials. The finding also raised doubts about the validity of the protocols and procedures used to prepare them. Such inactivated reference materials were used as positive controls in assays to detect suspected B. anthracis in samples because live agent cannot be shipped for use in field settings, in improvement of currently deployed detection methods or development of new methods, or for quality assurance and training activities. Hence, risk-mitigated B. anthracis strains are needed to fulfill these requirements. We constructed a genetically inactivated or attenuated strain containing relevant molecular assay targets and tested to compare assay performance using this strain to the historical data obtained using irradiation-inactivated virulent spores.
Collapse
|
18
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
19
|
Letarov AV, Kulikov EE. Adsorption of bacteriophages on bacterial cells. BIOCHEMISTRY (MOSCOW) 2018. [DOI: 10.1134/s0006297917130053] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Nguyen C, Makkar R, Sharp NJ, Page MA, Molineux IJ, Schofield DA. Detection of Bacillus anthracis spores from environmental water using bioluminescent reporter phage. J Appl Microbiol 2017; 123:1184-1193. [PMID: 28833845 DOI: 10.1111/jam.13569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/09/2017] [Accepted: 08/12/2017] [Indexed: 11/28/2022]
Abstract
AIMS We investigated the ability of a temperate Bacillus anthracis reporter phage (Wβ::luxAB-2), which transduces bioluminescence to infected cells, to detect viable spores from deliberately contaminated environmental water samples. METHODS AND RESULTS Environmental water was inoculated with spores and assayed with Wβ::luxAB-2. Bioluminescent signals directly correlated with input phage and spore concentrations. A limit of detection of 101 and 102 CFU per ml within 8 h was achieved from pond and lake water, respectively. Detection was greatly simplified by minimizing sample processing steps without spore extraction. The complex endogenous microbial flora and salt content of brackish water challenged the assay, extending the detection time to 12 h for a sensitivity of 102 CFU per ml. Phage-mediated bioluminescence was strictly dependent on bacterial physiology, being significantly reduced in mid/late log phase cells. This was shown to be due to an inability of the phage to adsorb. CONCLUSIONS The reporter phage Wβ::luxAB-2 displays potential for simplified detection of viable spores from contaminated water samples within 12 h. SIGNIFICANCE AND IMPACT OF THE STUDY A deliberate aerosol release of spores could lead to widespread contamination, leaving large areas uninhabitable until remediation. An essential requirement of this restoration process is the development of simplified detection assays in different environmental matrices.
Collapse
Affiliation(s)
- C Nguyen
- Guild BioSciences, Charleston, SC, USA
| | - R Makkar
- Guild BioSciences, Charleston, SC, USA
| | - N J Sharp
- Guild BioSciences, Charleston, SC, USA
| | - M A Page
- Construction Engineering and Research Laboratory, U.S. Army Corps of Engineers, Engineer Research and Development Center, Champaign, IL, USA
| | - I J Molineux
- Department of Molecular BioSciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
21
|
Storms ZJ, Sauvageau D. Modeling tailed bacteriophage adsorption: Insight into mechanisms. Virology 2015; 485:355-62. [DOI: 10.1016/j.virol.2015.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
|
22
|
The odd one out: Bacillus ACT bacteriophage CP-51 exhibits unusual properties compared to related Spounavirinae W.Ph. and Bastille. Virology 2014; 462-463:299-308. [DOI: 10.1016/j.virol.2014.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/23/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022]
|