1
|
Guo CY, Jin ZK, Feng Q, Feng YM, Sun LJ, Xu CX, Zhang YL. The heterophilicic epitopes in conserved HA regions of human and avian influenza viruses can produce antibodies that bound to kidney tissue. Microb Pathog 2023; 185:106331. [PMID: 37678657 DOI: 10.1016/j.micpath.2023.106331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Influenza virus infection can cause kidney damage. However, the link between influenza infection and disease is still unclear. The purpose of this study was to analyze the relationship between heterophilic epitopes on H5N1 hemagglutinin (HA) and disease. The monoclonal antibody (mAb) against H5N1 was prepared, mAbs binding to human kidney tissue were screened, and the reactivities of mAbs with five different subtypes of influenza virus were detected. Design and synthesize the peptides according to the common amino acid sequence of these antigens, and analyze the distribution of the epitope on the crystal structure of HA. Immunological methods were used to detect whether the heterophilic epitopes could induce the production of antibodies that cross-react with kidney tissue. The results showed that H5-30 mA b binding to human kidney tissue recognized the heterophilic epitope 191-LVLWGIHHP-199 on the head of HA. The key amino acid were V192, L193, W194 and I196, which were highly conserved in human and avian influenza virus HA. The heterophilic epitope could induce mice to produce different mAbs binding to kidney tissue. Such heterophilic antibodies were also detected in the serum of the patients. It can provide materials for the mechanism of renal diseases caused by influenza virus infection.
Collapse
Affiliation(s)
- Chun Yan Guo
- Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Shaanxi Engineering Research Center of Cell Immunology, Xi'an, 710068, China; Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, 710068, China
| | - Zhan Kui Jin
- Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Qing Feng
- Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Shaanxi Engineering Research Center of Cell Immunology, Xi'an, 710068, China; Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, 710068, China
| | - Yang Meng Feng
- Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Shaanxi Engineering Research Center of Cell Immunology, Xi'an, 710068, China
| | - Li Jun Sun
- Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Shaanxi Engineering Research Center of Cell Immunology, Xi'an, 710068, China; Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, 710068, China
| | - Cui Xiang Xu
- Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, 710068, China.
| | - Yu Lian Zhang
- Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
2
|
Prendergast DM, Lynch H, Whyte P, Golden O, Murphy D, Gutierrez M, Cummins J, Johnston D, Bolton D, Coffey A, Lucey B, O'Connor L, Byrne W. Genomic diversity, virulence and source of Campylobacter jejuni contamination in Irish poultry slaughterhouses by whole genome sequencing. J Appl Microbiol 2022; 133:3150-3160. [PMID: 35993276 PMCID: PMC9804324 DOI: 10.1111/jam.15753] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 01/05/2023]
Abstract
AIMS The aim was to exploit whole genome sequencing (WGS) to assess genomic diversity, identify virulence genes and deduce the proportion of Campylobacter colonized broilers that directly contaminate their carcasses. METHODS AND RESULTS Campylobacter jejuni isolates (107) from caeca and carcass neck skin samples (50 pairs from the same batch plus 7 individual caeca) sampled at three poultry slaughterhouses over a one-year period were selected for sequencing (MiSeq; Illumina). FastQ files were submitted to BioNumerics for analysis using the wgMLST scheme for allele calling. Campylobacter cgMLST and hierarchical clustering was performed by applying the single linkage algorithm. Sequence types (STs) were determined in silico from the WGS data and isolates were assigned into clonal complexes (CCs) using the Campylobacter PubMLST.org database. Virulence genes were determined by downloading core sequences from the virulence factor database (VFDB) and the National Center for Biotechnology Information (NCBI). A high degree of diversity was observed with 23 different STs identified. ST257 and CC-21 were the most common STs and CCs, respectively. cgMLST analysis suggested that 56% of carcass contamination was a direct result of contamination from caeca from the same batch. Virulence genes known to play a role in human C. jejuni infection were identified such as the wlaN gene and the genes associated with lipooligosaccharide synthesis, which were identified in 30% of isolates. CONCLUSIONS Caecal colonization was the more plausible occurring source of C. jejuni contamination of broiler carcasses, compared with cross-contamination from another batch or the environment. The high rate of genetic diversity observed amongst caecal isolates is consistent with a wide variety of Campylobacter strains circulating in poultry flocks in Ireland. SIGNIFICANCE AND IMPACT OF STUDY The results will further inform broiler processors and regulators about the influence and importance of on-farm colonization versus slaughterhouse cross-contamination and the relationship between C. jejuni in caeca and carcasses during processing.
Collapse
Affiliation(s)
| | - Helen Lynch
- Department of Agriculture, Food and the MarineCelbridgeIreland,School of Veterinary Medicine, Veterinary Science CentreUniversity College DublinDublin 4Ireland
| | - Paul Whyte
- School of Veterinary Medicine, Veterinary Science CentreUniversity College DublinDublin 4Ireland
| | - Olwen Golden
- Department of Agriculture, Food and the MarineCelbridgeIreland
| | - Declan Murphy
- Department of Agriculture, Food and the MarineCelbridgeIreland
| | | | - Juliana Cummins
- Department of Agriculture, Food and the MarineCelbridgeIreland
| | - Dayle Johnston
- Department of Agriculture, Food and the MarineCelbridgeIreland
| | | | - Aidan Coffey
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Brigid Lucey
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Lisa O'Connor
- Food Safety Authority of Ireland, IFSCDublin 1Ireland
| | - William Byrne
- Department of Agriculture, Food and the MarineCelbridgeIreland
| |
Collapse
|
3
|
Hameed A, Ketley JM, Woodacre A, Machado LR, Marsden GL. Molecular and in silico typing of the lipooligosaccharide biosynthesis gene cluster in Campylobacter jejuni and Campylobacter coli. PLoS One 2022; 17:e0265585. [PMID: 35358234 PMCID: PMC8970381 DOI: 10.1371/journal.pone.0265585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/05/2022] [Indexed: 11/25/2022] Open
Abstract
The extensive genetic variation in the lipooligosaccharide (LOS) core biosynthesis gene cluster has led to the development of a classification system; with 8 classes (I-VIII) for Campylobacter coli (C. coli) LOS region and with 23 classes (A-W) or four groups (1–4) for Campylobacter jejuni (C. jejuni) LOS region. PCR based LOS locus type identification for C. jejuni clinical isolates from a UK hospital as well as in silico LOS locus analysis for C. jejuni and C. coli genome sequences from GenBank was carried out to determine the frequencies of various LOS genotypes in C. jejuni and C. coli. Analysis of LOS gene content in 60 clinical C. jejuni isolates and 703 C. jejuni genome sequences revealed that class B (Group 1) was the most abundant LOS class in C. jejuni. The hierarchy of C. jejuni LOS group prevalence (group 1 > group 2 > group 3 > group 4) as well as the hierarchy of the frequency of C. jejuni LOS classes present within the group 1 (B > C > A > R > M > V), group 2 (H/P > O > E > W), group 3 (F > K > S) and group 4 (G > L) was identified. In silico analysis of LOS gene content in 564 C. coli genome sequences showed class III as the most abundant LOS locus type in C. coli. In silico analysis of LOS gene content also identified three novel LOS types of C. jejuni and previously unknown LOS biosynthesis genes in C. coli LOS locus types I, II, III, V and VIII. This study provides C. jejuni and C. coli LOS loci class frequencies in a smaller collection of C. jejuni clinical isolates as well as within the larger, worldwide database of C. jejuni and C. coli.
Collapse
Affiliation(s)
- Amber Hameed
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
| | - Julian M. Ketley
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Alexandra Woodacre
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Lee R. Machado
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- * E-mail:
| | | |
Collapse
|
4
|
Fujita M, Ueno T, Horiuchi M, Mitsuhashi T, Yamamoto S, Arai A, Tomiyama M. Campylobacter coli infection causes spinal epidural abscess with Guillain-Barré syndrome: a case report. BMC Neurol 2022; 22:9. [PMID: 34979984 PMCID: PMC8722166 DOI: 10.1186/s12883-021-02537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background Guillain–Barré syndrome (GBS) and spinal epidural abscess (SEA) are known as mimics of each other because they present with flaccid paralysis following an infection; however, they differ in the main causative bacteria. Nevertheless, the two diseases can occur simultaneously if there is a preceding Campylobacter infection. Here, we report the first case of SEA with GBS following Campylobacter coli infection. Case presentation A 71-year-old Japanese man presented with progressive back pain and paralysis of the lower limbs following enteritis. Magnetic resonance imaging showed a lumbar epidural abscess that required surgical decompression; therefore, surgical drainage was performed. Blood cultures revealed the presence of C. coli. Despite surgery, the paralysis progressed to the extremities. Nerve conduction studies led to the diagnosis of GBS. Anti-ganglioside antibodies in the patient suggested that GBS was preceded by Campylobacter infection. Intravascular immunoglobulin therapy attenuated the progression of the paralysis. Conclusions We report a case of SEA and GBS following Campylobacter infection. A combination of the two diseases is rare; however, it could occur if the preceding infection is caused by Campylobacter spp. If a cause is known but the patient does not respond to the corresponding treatment, it is important to reconsider the diagnosis based on the medical history. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02537-6.
Collapse
Affiliation(s)
- Masako Fujita
- Department of Neurology, Aomori Prefectural Central Hospital, 2-1-1 Higashi-Tsukurimichi, Aomori, 030-8551, Japan.
| | - Tatsuya Ueno
- Department of Neurology, Aomori Prefectural Central Hospital, 2-1-1 Higashi-Tsukurimichi, Aomori, 030-8551, Japan
| | - Michiru Horiuchi
- Department of Neurology, Aomori Prefectural Central Hospital, 2-1-1 Higashi-Tsukurimichi, Aomori, 030-8551, Japan
| | - Tatsuro Mitsuhashi
- Department of Infection Control Office, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Shouji Yamamoto
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akira Arai
- Department of Neurology, Aomori Prefectural Central Hospital, 2-1-1 Higashi-Tsukurimichi, Aomori, 030-8551, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
5
|
Guo CY, Feng Q, Yan LT, Xie X, Liang DY, Li Y, Feng YM, Sun LJ, Hu J. Monoclonal Antibody Targeting the HA191/199 Region of H1N1 Influenza Virus Mediates the Damage of Neural Cells. BIOCHEMISTRY (MOSCOW) 2021; 86:1469-1476. [PMID: 34906050 PMCID: PMC8588936 DOI: 10.1134/s0006297921110109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vaccination is the most effective mean of preventing influenza virus infections. However, vaccination-induced adverse reactions of the nervous system, the causes of which are unknown, lead to concerns on the safety of influenza A vaccine. In this study, we used flow cytometry, cell ELISA, and immunofluorescence to find that H1-84 monoclonal antibody (mAb) against the191/199 region of the H1N1 influenza virus hemagglutinin (HA) protein binds to neural cells and mediates cell damage. Using molecular simulation software, such as PyMOL and PDB viewer, we demonstrated that the HA191/199 region maintains the overall structure of the HA head. Since the HA191/199 region cannot be removed from the HA structure, it has to be altered via introducing point mutations by site-directed mutagenesis. This will provide an innovative theoretical support for the subsequent modification the influenza A vaccine for increasing its safety.
Collapse
MESH Headings
- Antibodies, Monoclonal, Murine-Derived/chemistry
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Cell Line, Tumor
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/chemistry
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Molecular Dynamics Simulation
- Mutagenesis, Site-Directed
- Neurons/metabolism
- Neurons/pathology
- Protein Domains
Collapse
Affiliation(s)
- Chun-Yan Guo
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China.
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, Shaanxi, 710068, China
| | - Qing Feng
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, Shaanxi, 710068, China
| | - Li-Ting Yan
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, Shaanxi, 710068, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Dao-Yan Liang
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, Shaanxi, 710068, China
| | - Yan Li
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, Shaanxi, 710068, China
| | - Yang-Meng Feng
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, Shaanxi, 710068, China
| | - Li-Jun Sun
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China.
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, Shaanxi, 710068, China
| | - Jun Hu
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China.
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, Shaanxi, 710068, China
| |
Collapse
|
6
|
Truccollo B, Whyte P, Burgess C, Bolton D. Genetic characterisation of a subset of Campylobacter jejuni isolates from clinical and poultry sources in Ireland. PLoS One 2021; 16:e0246843. [PMID: 33690659 PMCID: PMC7943001 DOI: 10.1371/journal.pone.0246843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Campylobacter spp. is a significant and prevalent public health hazard globally. Campylobacter jejuni is the most frequently recovered species from human cases and poultry are considered the most important reservoir for its transmission to humans. In this study, 30 Campylobacter jejuni isolates were selected from clinical (n = 15) and broiler (n = 15) sources from a larger cohort, based on source, virulence, and antimicrobial resistance profiles. The objective of this study was to further characterise the genomes of these isolates including MLST types, population structure, pan-genome, as well as virulence and antimicrobial resistance determinants. A total of 18 sequence types and 12 clonal complexes were identified. The most common clonal complex was ST-45, which was found in both clinical and broiler samples. We characterised the biological functions that were associated with the core and accessory genomes of the isolates in this study. No significant difference in the prevalence of virulence or antimicrobial resistance determinants was observed between clinical and broiler isolates, although genes associated with severe illness such as neuABC, wlaN and cstIII were only detected in clinical isolates. The ubiquity of virulence factors associated with motility, invasion and cytolethal distending toxin (CDT) synthesis in both clinical and broiler C. jejuni genomes and genetic similarities between groups of broiler and clinical C. jejuni reaffirm that C. jejuni from poultry remains a significant threat to public health.
Collapse
Affiliation(s)
- Brendha Truccollo
- Food Safety Department, Teagasc Food Research Centre, Dublin, Republic of Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Republic of Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Dublin, Republic of Ireland
| | - Catherine Burgess
- Food Safety Department, Teagasc Food Research Centre, Dublin, Republic of Ireland
| | - Declan Bolton
- Food Safety Department, Teagasc Food Research Centre, Dublin, Republic of Ireland
| |
Collapse
|
7
|
Hull DM, Harrell E, van Vliet AHM, Correa M, Thakur S. Antimicrobial resistance and interspecies gene transfer in Campylobacter coli and Campylobacter jejuni isolated from food animals, poultry processing, and retail meat in North Carolina, 2018-2019. PLoS One 2021; 16:e0246571. [PMID: 33571292 PMCID: PMC7877606 DOI: 10.1371/journal.pone.0246571] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
The Center for Disease Control and Prevention identifies antimicrobial resistant (AMR) Campylobacter as a serious threat to U.S. public health due to high community burden, increased transmissibility, and limited treatability. The National Antimicrobial Resistance Monitoring System (NARMS) plays an important role in surveillance of AMR bacterial pathogens in humans, food animals and retail meats. This study investigated C. coli and C. jejuni from live food animals, poultry carcasses at production, and retail meat in North Carolina between January 2018-December 2019. Whole genome sequencing and bioinformatics were used for phenotypic and genotypic characterization to compare AMR profiles, virulence factors associated with Guillain-Barré Syndrome (GBS) (neuABC and cst-II or cst-III), and phylogenic linkage between 541 Campylobacter isolates (C. coli n = 343, C. jejuni n = 198). Overall, 90.4% (489/541) Campylobacter isolates tested positive for AMR genes, while 43% (233/541) carried resistance genes for three or more antibiotic classes and were classified molecularly multidrug resistant. AMR gene frequencies were highest against tetracyclines (64.3%), beta-lactams (63.6%), aminoglycosides (38.6%), macrolides (34.8%), quinolones (24.4%), lincosamides (13.5%), and streptothricins (5%). A total of 57.6% (114/198) C. jejuni carried GBS virulence factors, while three C. coli carried the C. jejuni-like lipooligosaccharide locus, neuABC and cst-II. Further evidence of C. coli and C. jejuni interspecies genomic exchange was observed in identical multilocus sequence typing, shared sequence type (ST) 7818 clonal complex 828, and identical species-indicator genes mapA, ceuE, and hipO. There was a significant increase in novel STs from 2018 to 2019 (2 in 2018 and 21 in 2019, p<0.002), illustrating variable Campylobacter genomes within food animal production. Introgression between C. coli and C. jejuni may aid pathogen adaption, lead to higher AMR and increase Campylobacter persistence in food processing. Future studies should further characterize interspecies gene transfer and evolutionary trends in food animal production to track evolving risks to public health.
Collapse
Affiliation(s)
- Dawn M Hull
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Erin Harrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Arnoud H M van Vliet
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Maria Correa
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
8
|
Genetics behind the Biosynthesis of Nonulosonic Acid-Containing Lipooligosaccharides in Campylobacter coli. J Bacteriol 2019; 201:JB.00759-18. [PMID: 30692173 DOI: 10.1128/jb.00759-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni and Campylobacter coli are the most common causes of bacterial gastroenteritis in the world. Ganglioside mimicry by C. jejuni lipooligosaccharide (LOS) is the triggering factor of Guillain-Barré syndrome (GBS), an acute polyneuropathy. Sialyltransferases from glycosyltransferase family 42 (GT-42) are essential for the expression of ganglioside mimics in C. jejuni Recently, two novel GT-42 genes, cstIV and cstV, have been identified in C. coli Despite being present in ∼11% of currently available C. coli genomes, the biological role of cstIV and cstV is unknown. In the present investigation, mutation studies with two strains expressing either cstIV or cstV were performed and mass spectrometry was used to investigate differences in the chemical composition of LOS. Attempts were made to identify donor and acceptor molecules using in vitro activity tests with recombinant GT-42 enzymes. Here we show that CstIV and CstV are involved in C. coli LOS biosynthesis. In particular, cstV is associated with LOS sialylation, while cstIV is linked to the addition of a diacetylated nonulosonic acid residue.IMPORTANCE Despite the fact that Campylobacter coli a major foodborne pathogen, its glycobiology has been largely neglected. The genetic makeup of the C. coli lipooligosaccharide biosynthesis locus was largely unknown until recently. C. coli harbors a large set of genes associated with lipooligosaccharide biosynthesis, including genes for several putative glycosyltransferases involved in the synthesis of sialylated lipooligosaccharide in Campylobacter jejuni In the present study, C. coli was found to express lipooligosaccharide structures containing sialic acid and other nonulosonate acids. These findings have a strong impact on our understanding of C. coli ecology, host-pathogen interaction, and pathogenesis.
Collapse
|