1
|
Liu J, Zhao X, Cheng H, Guo Y, Ni X, Wang L, Sun G, Wen X, Chen J, Wang J, An J, Guo X, Shi Z, Li H, Wang R, Zhao M, Liao X, Wang Y, Zheng P, Wang M, Sun J. Comprehensive screening of industrially relevant components at genome scale using a high-quality gene overexpression collection of Corynebacterium glutamicum. Trends Biotechnol 2025; 43:220-247. [PMID: 39455323 DOI: 10.1016/j.tibtech.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Development of efficient microbial strains for biomanufacturing requires deep understanding of the biology and functional components responsible for the synthesis, transport, and tolerance of the target compounds. A high-quality controllable gene overexpression strain collection was constructed for the industrial workhorse Corynebacterium glutamicum covering 99.7% of its genes. The collection was then used for comprehensive screening of components relevant to biomanufacturing features. In total, 15 components endowing cells with improved hyperosmotic tolerance and l-lysine productivity were identified, including novel transcriptional factors and DNA repair proteins. Systematic interrogation of a subset of the collection revealed efficient and specific exporters functioning in both C. glutamicum and Escherichia coli. Application of the new exporters was showcased to construct a strain with the highest l-threonine production level reported for C. glutamicum (75.1 g/l and 1.5 g/l·h) thus far. The genome-scale gene overexpression collection will serve as a valuable resource for fundamental biological studies and for developing industrial microorganisms for producing amino acids and other biochemicals.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaojia Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijiao Cheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yanmei Guo
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaomeng Ni
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Lixian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Guannan Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jin Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jingjing An
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xuan Guo
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhenkun Shi
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Haoran Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Ruoyu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Muqiang Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaoping Liao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ping Zheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Meng Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Lyu F, Yang D, Rao L, Liao X. Alanine and glutamate catabolism collaborate to ensure the success of Bacillus subtilis sporulation. Microbiol Res 2024; 286:127828. [PMID: 38991478 DOI: 10.1016/j.micres.2024.127828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Sporulation as a typical bacterial differentiation process has been studied for decades. However, two crucial aspects of sporulation, (i) the energy sources supporting the process, and (ii) the maintenance of spore dormancy throughout sporulation, are scarcely explored. Here, we reported the crucial role of RocG-mediated glutamate catabolism in regulating mother cell lysis, a critical step for sporulation completion of Bacillus subtilis, likely by providing energy metabolite ATP. Notably, rocG overexpression resulted in an excessive ATP accumulation in sporulating cells, leading to adverse effects on future spore properties, e.g. increased germination efficiency, reduced DPA content, and lowered heat resistance. Additionally, we revealed that Ald-mediated alanine metabolism was highly related to the inhibition of premature germination and the maintenance of spore dormancy during sporulation, which might be achieved by decreasing the typical germinant L-alanine concentration in sporulating environment. Our data inferred that sporulation of B. subtilis was a highly orchestrated biological process requiring a delicate balance in diverse metabolic pathways, hence ensuring both the completion of sporulation and production of high-quality spores.
Collapse
Affiliation(s)
- Fengzhi Lyu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China; Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Dong Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China; Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China; Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China; Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| |
Collapse
|
3
|
Kasu IR, Reyes-Matte O, Bonive-Boscan A, Derman AI, Lopez-Garrido J. Catabolism of germinant amino acids is required to prevent premature spore germination in Bacillus subtilis. mBio 2024; 15:e0056224. [PMID: 38564667 PMCID: PMC11077977 DOI: 10.1128/mbio.00562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Spores of Bacillus subtilis germinate in response to specific germinant molecules that are recognized by receptors in the spore envelope. Germinants signal to the dormant spore that the environment can support vegetative growth, so many germinants, such as alanine and valine, are also essential metabolites. As such, they are also required to build the spore. Here we show that these germinants cause premature germination if they are still present at the latter stages of spore formation and beyond, but that B. subtilis metabolism is configured to prevent this: alanine and valine are catabolized and cleared from wild-type cultures even when alternative carbon and nitrogen sources are present. Alanine and valine accumulate in the spent media of mutants that are unable to catabolize these amino acids, and premature germination is pervasive. Premature germination does not occur if the germinant receptor that responds to alanine and valine is eliminated, or if wild-type strains that are able to catabolize and clear alanine and valine are also present in coculture. Our findings demonstrate that spore-forming bacteria must fine-tune the concentration of any metabolite that can also function as a germinant to a level that is high enough to allow for spore development to proceed, but not so high as to promote premature germination. These results indicate that germinant selection and metabolism are tightly linked, and suggest that germinant receptors evolve in tandem with the catabolic priorities of the spore-forming bacterium. IMPORTANCE Many bacterial species produce dormant cells called endospores, which are not killed by antibiotics or common disinfection practices. Endospores pose critical challenges in the food industry, where endospore contaminations cause food spoilage, and in hospitals, where infections by pathogenic endospore formers threaten the life of millions every year. Endospores lose their resistance properties and can be killed easily when they germinate and exit dormancy. We have discovered that the enzymes that break down the amino acids alanine and valine are critical for the production of stable endospores. If these enzymes are absent, endospores germinate as they are formed or shortly thereafter in response to alanine, which can initiate the germination of many different species' endospores, or to valine. By blocking the activity of alanine dehydrogenase, the enzyme that breaks down alanine and is not present in mammals, it may be possible to inactivate endospores by triggering premature and unproductive germination.
Collapse
Affiliation(s)
- Iqra R. Kasu
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | | - Alan I. Derman
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
4
|
Maeno M, Ohmori T, Nukada D, Sakuraba H, Satomura T, Ohshima T. Two different alanine dehydrogenases from Geobacillus kaustophilus: Their biochemical characteristics and differential expression in vegetative cells and spores. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140904. [PMID: 36918121 DOI: 10.1016/j.bbapap.2023.140904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
Two putative alanine dehydrogenase (AlaDH) genes (GK2752 and GK3448) were found in the genome of a thermophilic spore-forming bacterium, Geobacillus kaustophilus. The amino acid sequences deduced from the two genes showed mutually high homology (71%), and the phylogenetic tree based on the amino acid sequences of the two putative AlaDHs and the homologous proteins showed that the two putative AlaDH genes (GK2752 and GK3448) belong to different groups. Both of the recombinant gene products exhibited high NAD+-dependent AlaDH activity and were purified to homogeneity and characterized in detail. Both enzymes showed high stability against low and high pHs and high temperatures (70 °C). Kinetic analyses showed that the activities of both enzymes proceeded according to the same sequentially ordered Bi-Ter mechanism. X-ray crystallographic analysis showed the two AlaDHs to have similar homohexameric structures. Notably, GK3448-AlaDH was detected in vegetative cells of G. kaustophilus but not spores, while GK2752-AlaDH was present only in the spores. This is the first report showing the presence of two AlaDHs separately expressed in vegetative cells and spores.
Collapse
Affiliation(s)
- Miku Maeno
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Taketo Ohmori
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Daiki Nukada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Takenori Satomura
- Division of Engineering, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan.
| |
Collapse
|
5
|
Li Q, Zhang H, Song Y, Wang M, Hua C, Li Y, Chen S, Dixon R, Li J. Alanine synthesized by alanine dehydrogenase enables ammonium-tolerant nitrogen fixation in Paenibacillus sabinae T27. Proc Natl Acad Sci U S A 2022; 119:e2215855119. [PMID: 36459643 PMCID: PMC9894248 DOI: 10.1073/pnas.2215855119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022] Open
Abstract
Most diazotrophs fix nitrogen only under nitrogen-limiting conditions, for example, in the presence of relatively low concentrations of NH4+ (0 to 2 mM). However, Paenibacillus sabinae T27 exhibits an unusual pattern of nitrogen regulation of nitrogen fixation, since although nitrogenase activities are high under nitrogen-limiting conditions (0 to 3 mM NH4+) and are repressed under conditions of nitrogen sufficiency (4 to 30 mM NH4+), nitrogenase activity is reestablished when very high levels of NH4+ (30 to 300 mM) are present in the medium. To further understand this pattern of nitrogen fixation regulation, we carried out transcriptome analyses of P. sabinae T27 in response to increasing ammonium concentrations. As anticipated, the nif genes were highly expressed, either in the absence of fixed nitrogen or in the presence of a high concentration of NH4+ (100 mM), but were subject to negative feedback regulation at an intermediate concentration of NH4+ (10 mM). Among the differentially expressed genes, ald1, encoding alanine dehydrogenase (ADH1), was highly expressed in the presence of a high level of NH4+ (100 mM). Mutation and complementation experiments revealed that ald1 is required for nitrogen fixation at high ammonium concentrations. We demonstrate that alanine, synthesized by ADH1 from pyruvate and NH4+, inhibits GS activity, leading to a low intracellular glutamine concentration that prevents feedback inhibition of GS and mimics nitrogen limitation, enabling activation of nif transcription by the nitrogen-responsive regulator GlnR in the presence of high levels of extracellular ammonium.
Collapse
Affiliation(s)
- Qin Li
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing100193, People’s Republic of China
| | - Haowei Zhang
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing100193, People’s Republic of China
| | - Yi Song
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing100193, People’s Republic of China
| | - Minyang Wang
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing100193, People’s Republic of China
| | - Chongchong Hua
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing100193, People’s Republic of China
| | - Yashi Li
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing100193, People’s Republic of China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing100193, People’s Republic of China
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing100193, People’s Republic of China
| |
Collapse
|
6
|
Antibacterial Activity of Squaric Amide Derivative SA2 against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11111497. [DOI: 10.3390/antibiotics11111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA)-caused infection is difficult to treat because of its resistance to commonly used antibiotic, and poses a significant threat to public health. To develop new anti-bacterial agents to combat MRSA-induced infections, we synthesized novel squaric amide derivatives and evaluated their anti-bacterial activity by determining the minimum inhibitory concentration (MIC). Additionally, inhibitory activity of squaric amide 2 (SA2) was measured using the growth curve assay, time-kill assay, and an MRSA-induced skin infection animal model. A scanning electron microscope and transmission electron microscope were utilized to observe the effect of SA2 on the morphologies of MRSA. Transcriptome analysis and real-time PCR were used to test the possible anti-bacterial mechanism of SA2. The results showed that SA2 exerted bactericidal activity against a number of MRSA strains with an MIC at 4–8 µg/mL. It also inhibited the bacterial growth curve of MRSA strains in a dose-dependent manner, and reduced the colony formation unit in 4× MIC within 4–8 h. The infective lesion size and the bacterial number in the MRSA-induced infection tissue of mice were reduced significantly within 7 days after SA2 treatment. Moreover, SA2 disrupted the bacterial membrane and alanine dehydrogenase-dependent NAD+/NADH homeostasis. Our data indicates that SA2 is a possible lead compound for the development of new anti-bacterial agents against MRSA infection.
Collapse
|
7
|
Dong J, He B, Wang R, Zuo X, Zhan R, Hu L, Li Y, He J. Characterization of the diastaphenazine/izumiphenazine C biosynthetic gene cluster from plant endophyte Streptomyces diastaticus W2. Microb Biotechnol 2022; 15:1168-1177. [PMID: 34487423 PMCID: PMC8966011 DOI: 10.1111/1751-7915.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
Two phenazine compounds, diastaphenazine and izumiphenazine C, with complex structures and promising antitumour activity have been isolated from the plant endophytic actinomycete Streptomyces diastaticus W2. Their putative biosynthetic gene cluster (dap) was identified by heterologous expression and gene knockout. There are twenty genes in the dap cluster. dap14-19 related to shikimic pathway were potentially involved in the precursor chorismic acid biosynthesis, and dapBCDEFG were confirmed to be responsible for the biosynthesis of the dibenzopyrazine ring, the nuclear structure of phenazines. Two transcriptional regulatory genes dapR and dap4 played the positive regulatory roles on the phenazine biosynthetic pathway. Most notably, the dimerization of the dibenzopyrazine ring in diastaphenazine and the loading of the complex side chain in izumiphenazine C could be catalysed by the cyclase homologous gene dap5, suggesting an unusual modification strategy tailoring complex phenazine biosynthesis. Moreover, metabolite analysis of the gene deletion mutant strain S. albus::23C5Δdap2 and substrate assay of the methyltransferase Dap2 clearly revealed the biosynthetic route of the complex side chain in izumiphenazine C.
Collapse
Affiliation(s)
- Junli Dong
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Beibei He
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Ruinan Wang
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Xiuli Zuo
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Rui Zhan
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Linfang Hu
- Key Laboratory of Microbial Diversity in Southwest ChinaMinistry of EducationCollege of Life ScienceYunnan UniversityKunming650091China
| | - Yiqing Li
- Key Laboratory of Microbial Diversity in Southwest ChinaMinistry of EducationCollege of Life ScienceYunnan UniversityKunming650091China
| | - Jing He
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
8
|
Benda M, Woelfel S, Faßhauer P, Gunka K, Klumpp S, Poehlein A, Kálalová D, Šanderová H, Daniel R, Krásný L, Stülke J. Quasi-essentiality of RNase Y in Bacillus subtilis is caused by its critical role in the control of mRNA homeostasis. Nucleic Acids Res 2021; 49:7088-7102. [PMID: 34157109 PMCID: PMC8266666 DOI: 10.1093/nar/gkab528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
RNA turnover is essential in all domains of life. The endonuclease RNase Y (rny) is one of the key components involved in RNA metabolism of the model organism Bacillus subtilis. Essentiality of RNase Y has been a matter of discussion, since deletion of the rny gene is possible, but leads to severe phenotypic effects. In this work, we demonstrate that the rny mutant strain rapidly evolves suppressor mutations to at least partially alleviate these defects. All suppressor mutants had acquired a duplication of an about 60 kb long genomic region encompassing genes for all three core subunits of the RNA polymerase—α, β, β′. When the duplication of the RNA polymerase genes was prevented by relocation of the rpoA gene in the B. subtilis genome, all suppressor mutants carried distinct single point mutations in evolutionary conserved regions of genes coding either for the β or β’ subunits of the RNA polymerase that were not tolerated by wild type bacteria. In vitro transcription assays with the mutated polymerase variants showed a severe decrease in transcription efficiency. Altogether, our results suggest a tight cooperation between RNase Y and the RNA polymerase to establish an optimal RNA homeostasis in B. subtilis cells.
Collapse
Affiliation(s)
- Martin Benda
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Simon Woelfel
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Patrick Faßhauer
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Katrin Gunka
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Debora Kálalová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Sidiq KR, Chow MW, Zhao Z, Daniel RA. Alanine metabolism in Bacillus subtilis. Mol Microbiol 2020; 115:739-757. [PMID: 33155333 DOI: 10.1111/mmi.14640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022]
Abstract
Both isomeric forms of alanine play a crucial role in bacterial growth and viability; the L-isomer of this amino acid is one of the building blocks for protein synthesis, and the D-isomer is incorporated into the bacterial cell wall. Despite a long history of genetic manipulation of Bacillus subtilis using auxotrophic markers, the genes involved in alanine metabolism have not been characterized fully. In this work, we genetically characterized the major enzymes involved in B. subtilis alanine biosynthesis and identified an alanine permease, AlaP (YtnA), which we show has a major role in the assimilation of D-alanine from the environment. Our results provide explanations for the puzzling fact that growth of B. subtilis does not result in the significant accumulation of extracellular D-alanine. Interestingly, we find that in B. subtilis, unlike E. coli where multiple enzymes have a biochemical activity that can generate alanine, the primary synthetic enzyme for alanine is encoded by alaT, although a second gene, dat, can support slow growth of an L-alanine auxotroph. However, our results also show that Dat mediates the synthesis of D-alanine and its activity is influenced by the abundance of L-alanine. This work provides valuable insights into alanine metabolism that suggests that the relative abundance of D- and L-alanine might be linked with cytosolic pool of D and L-glutamate, thereby coupling protein and cell envelope synthesis with the metabolic status of the cell. The results also suggest that, although some of the purified enzymes involved in alanine biosynthesis have been shown to catalyze reversible reactions in vitro, most of them function unidirectionally in vivo.
Collapse
Affiliation(s)
- Karzan R Sidiq
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical Faculty, Newcastle University, Newcastle Upon Tyne, UK
| | - Man W Chow
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical Faculty, Newcastle University, Newcastle Upon Tyne, UK
| | - Zhao Zhao
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical Faculty, Newcastle University, Newcastle Upon Tyne, UK
| | - Richard A Daniel
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical Faculty, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
10
|
Zhu L, Mack C, Wirtz A, Kranz A, Polen T, Baumgart M, Bott M. Regulation of γ-Aminobutyrate (GABA) Utilization in Corynebacterium glutamicum by the PucR-Type Transcriptional Regulator GabR and by Alternative Nitrogen and Carbon Sources. Front Microbiol 2020; 11:544045. [PMID: 33193127 PMCID: PMC7652997 DOI: 10.3389/fmicb.2020.544045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023] Open
Abstract
γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid mainly formed by decarboxylation of L-glutamate and is widespread in nature from microorganisms to plants and animals. In this study, we analyzed the regulation of GABA utilization by the Gram-positive soil bacterium Corynebacterium glutamicum, which serves as model organism of the phylum Actinobacteria. We show that GABA usage is subject to both specific and global regulatory mechanisms. Transcriptomics revealed that the gabTDP genes encoding GABA transaminase, succinate semialdehyde dehydrogenase, and GABA permease, respectively, were highly induced in GABA-grown cells compared to glucose-grown cells. Expression of the gabTDP genes was dependent on GABA and the PucR-type transcriptional regulator GabR, which is encoded divergently to gabT. A ΔgabR mutant failed to grow with GABA, but not with glucose. Growth of the mutant on GABA was restored by plasmid-based expression of gabR or of gabTDP, indicating that no further genes are specifically required for GABA utilization. Purified GabR (calculated mass 55.75 kDa) formed an octamer with an apparent mass of 420 kDa and bound to two inverted repeats in the gabR-gabT intergenic region. Glucose, gluconate, and myo-inositol caused reduced expression of gabTDP, presumably via the cAMP-dependent global regulator GlxR, for which a binding site is present downstream of the gabT transcriptional start site. C. glutamicum was able to grow with GABA as sole carbon and nitrogen source. Ammonium and, to a lesser extent, urea inhibited growth on GABA, whereas L-glutamine stimulated it. Possible mechanisms for these effects are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
11
|
Van Wieren A, Cook R, Majumdar S. Characterization of Alanine Dehydrogenase and Its Effect on Streptomyces coelicolorA3(2) Development in Liquid Culture. J Mol Microbiol Biotechnol 2019; 29:57-65. [PMID: 31851994 DOI: 10.1159/000504709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/10/2019] [Indexed: 11/19/2022] Open
Abstract
Streptomyces, the most important group of industrial microorganisms, is harvested in liquid cultures for the production of two-thirds of all clinically relevant secondary metabolites. It is demonstrated here that the growth of Streptomyces coelicolor A3(2) is impacted by the deletion of the alanine dehydrogenase (ALD), an essential enzyme that plays a central role in the carbon and nitrogen metabolism. A long lag-phase growth followed by a slow exponential growth of S. coelicolor due to ALD gene deletion was observed in liquid yeast extract mineral salt culture. The slow lag-phase growth was replaced by the normal wild-type like growth by ALD complementation engineering. The ALD enzyme from S. coelicolor was also heterologously cloned and expressed in Escherichia coli for characterization. The optimum enzyme activity for the oxidative deamination reaction was found at 30°C, pH 9.5 with a catalytic efficiency, kcat/KM, of 2.0 ± 0.1 mM-1 s-1. The optimum enzyme activity for the reductive amination reaction was found at 30°C, pH 9.0 with a catalytic efficiency, kcat/KM, of 1.9 ± 0.1 mM-1 s-1.
Collapse
Affiliation(s)
- Arie Van Wieren
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA
| | - Ryan Cook
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA.,West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Sudipta Majumdar
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA,
| |
Collapse
|
12
|
Abstract
Alanine dehydrogenase (AlaDH) (E.C.1.4.1.1) is a microbial enzyme that catalyzes a reversible conversion of L-alanine to pyruvate. Inter-conversion of alanine and pyruvate by AlaDH is central to metabolism in microorganisms. Its oxidative deamination reaction produces pyruvate which plays a pivotal role in the generation of energy through the tricarboxylic acid cycle for sporulation in the microorganisms. Its reductive amination reaction provides a route for the incorporation of ammonia and produces L-alanine which is required for synthesis of the peptidoglycan layer, proteins, and other amino acids. Also, AlaDH helps in redox balancing as its deamination/amination reaction is linked to the reduction/oxidation of NAD+/NADH in microorganisms. AlaDH from a few microorganisms can also reduce glyoxylate into glycine (aminoacetate) in a nonreversible reaction. Both its oxidative and reductive reactions exhibit remarkable applications in the pharmaceutical, environmental, and food industries. The literature addressing the characteristics and applications of AlaDH from a wide range of microorganisms is summarized in the current review.
Collapse
Affiliation(s)
| | - Ravi-Kumar Kadeppagari
- b Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology Campus , Bengaluru , India
| |
Collapse
|
13
|
Liu TY, Chu SH, Shaw GC. Deletion of the cell wall peptidoglycan hydrolase gene cwlO or lytE severely impairs transformation efficiency in Bacillus subtilis. J GEN APPL MICROBIOL 2018; 64:139-144. [PMID: 29553055 DOI: 10.2323/jgam.2017.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tai-Yen Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University
| | - Shu-Hung Chu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University
| | - Gwo-Chyuan Shaw
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University
| |
Collapse
|
14
|
He G, Xu S, Wang S, Zhang Q, Liu D, Chen Y, Ju J, Zhao B. A conserved residue of l -alanine dehydrogenase from Bacillus pseudofirmus , Lys-73, participates in the catalytic reaction through hydrogen bonding. Enzyme Microb Technol 2018; 110:61-68. [DOI: 10.1016/j.enzmictec.2017.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 11/30/2022]
|
15
|
Mutlu A, Trauth S, Ziesack M, Nagler K, Bergeest JP, Rohr K, Becker N, Höfer T, Bischofs IB. Phenotypic memory in Bacillus subtilis links dormancy entry and exit by a spore quantity-quality tradeoff. Nat Commun 2018; 9:69. [PMID: 29302032 PMCID: PMC5754360 DOI: 10.1038/s41467-017-02477-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Some bacteria, such as Bacillus subtilis, withstand starvation by forming dormant spores that revive when nutrients become available. Although sporulation and spore revival jointly determine survival in fluctuating environments, the relationship between them has been unclear. Here we show that these two processes are linked by a phenotypic “memory” that arises from a carry-over of molecules from the vegetative cell into the spore. By imaging life histories of individual B. subtilis cells using fluorescent reporters, we demonstrate that sporulation timing controls nutrient-induced spore revival. Alanine dehydrogenase contributes to spore memory and controls alanine-induced outgrowth, thereby coupling a spore’s revival capacity to the gene expression and growth history of its progenitors. A theoretical analysis, and experiments with signaling mutants exhibiting altered sporulation timing, support the hypothesis that such an intrinsically generated memory leads to a tradeoff between spore quantity and spore quality, which could drive the emergence of complex microbial traits. Bacillus subtilis withstands starvation by forming dormant spores that revive when nutrients become available. Here, Mutlu et al. show that sporulation timing controls spore revival through a phenotypic ‘memory’ that arises from the carry-over of a metabolic enzyme from the vegetative cell into the spore.
Collapse
Affiliation(s)
- Alper Mutlu
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Stephanie Trauth
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Marika Ziesack
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany
| | - Katja Nagler
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Jan-Philip Bergeest
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB), 69120, Heidelberg, Germany.,Department of Bioinformatics and Functional Genomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Karl Rohr
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB), 69120, Heidelberg, Germany.,Department of Bioinformatics and Functional Genomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Nils Becker
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Thomas Höfer
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ilka B Bischofs
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany. .,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany. .,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
| |
Collapse
|
16
|
Kazakov AE, Rajeev L, Chen A, Luning EG, Dubchak I, Mukhopadhyay A, Novichkov PS. σ54-dependent regulome in Desulfovibrio vulgaris Hildenborough. BMC Genomics 2015; 16:919. [PMID: 26555820 PMCID: PMC4641369 DOI: 10.1186/s12864-015-2176-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/31/2015] [Indexed: 11/16/2022] Open
Abstract
Background The σ54 subunit controls a unique class of promoters in bacteria. Such promoters, without exception, require enhancer binding proteins (EBPs) for transcription initiation. Desulfovibrio vulgaris Hildenborough, a model bacterium for sulfate reduction studies, has a high number of EBPs, more than most sequenced bacteria. The cellular processes regulated by many of these EBPs remain unknown. Results To characterize the σ54-dependent regulome of D. vulgaris Hildenborough, we identified EBP binding motifs and regulated genes by a combination of computational and experimental techniques. These predictions were supported by our reconstruction of σ54-dependent promoters by comparative genomics. We reassessed and refined the results of earlier studies on regulation in D. vulgaris Hildenborough and consolidated them with our new findings. It allowed us to reconstruct the σ54 regulome in D. vulgaris Hildenborough. This regulome includes 36 regulons that consist of 201 coding genes and 4 non-coding RNAs, and is involved in nitrogen, carbon and energy metabolism, regulation, transmembrane transport and various extracellular functions. To the best of our knowledge, this is the first report of direct regulation of alanine dehydrogenase, pyruvate metabolism genes and type III secretion system by σ54-dependent regulators. Conclusions The σ54-dependent regulome is an important component of transcriptional regulatory network in D. vulgaris Hildenborough and related free-living Deltaproteobacteria. Our study provides a representative collection of σ54-dependent regulons that can be used for regulation prediction in Deltaproteobacteria and other taxa. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2176-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexey E Kazakov
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94710, USA.
| | - Lara Rajeev
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94710, USA.
| | - Amy Chen
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94710, USA.
| | - Eric G Luning
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94710, USA.
| | - Inna Dubchak
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94710, USA. .,Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA.
| | | | | |
Collapse
|
17
|
Chiu KC, Lin CJ, Shaw GC. Transcriptional regulation of the l-lactate permease gene lutP by the LutR repressor of Bacillus subtilis RO-NN-1. Microbiology (Reading) 2014; 160:2178-2189. [DOI: 10.1099/mic.0.079806-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Bacillus subtilis lutABC operon encodes three iron–sulfur-containing proteins required for l-lactate utilization and involved in biofilm formation. The transcriptional regulator LutR of the GntR family negatively controls lutABC expression. The lutP gene, which is situated immediately upstream of lutR, encodes an l-lactate permease. Here, we show that lutP expression can be strongly induced by l-lactate and is subject to partial catabolite repression by glucose. Disruption of the lutR gene led to a strong derepression of lutP and no further induction by l-lactate, suggesting that the LutR repressor can also negatively control lutP expression. Electrophoretic mobility shift assay revealed a LutR-binding site located downstream of the promoter of lutA or lutP and containing a consensus inverted repeat sequence 5′-TCATC-N1-GATGA-3′. Reporter gene analysis showed that deletion of each LutR-binding site caused a strong derepression of lutA or lutP. These results indicated that these two LutR-binding sites can function as operators in vivo. Moreover, deletion analysis identified a DNA segment upstream of the lutP promoter to be important for lutP expression. In contrast to the truncated LutR of laboratory strains 168 and PY79, the full-length LutR of the undomesticated strain RO-NN-1, and probably many other B. subtilis strains, can directly and negatively regulate lutP transcription. The absence or presence of the N-terminal 21 aa of the full-length LutR, which encompass a small part of the predicted winged helix–turn–helix DNA-binding motif, may probably alter the DNA-binding specificity or affinity of LutR.
Collapse
Affiliation(s)
- Kuo-Chin Chiu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chen-Jyun Lin
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Gwo-Chyuan Shaw
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| |
Collapse
|
18
|
Lee CH, Wu TY, Shaw GC. Involvement of OpcR, a GbsR-type transcriptional regulator, in negative regulation of two evolutionarily closely related choline uptake genes in Bacillus subtilis. MICROBIOLOGY-SGM 2013; 159:2087-2096. [PMID: 23960087 DOI: 10.1099/mic.0.067074-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The osmoprotectant glycine betaine can be generated intracellularly from conversion of the exogenous precursor choline by enzymes encoded by the gbsAB operon in Bacillus subtilis. Uptake of choline from outside B. subtilis cells is mediated through two evolutionarily closely related ATP-binding cassette transporters, OpuB and OpuC. Expression of the opuB operon and of the opuC operon is known to be osmoinducible. Here, we show that choline exerts a suppressive effect on opuC expression during normal growth and under osmotic stress. In the absence of the choline-responsive repressor GbsR, opuB expression is also suppressed by choline. We also report that a gene (formerly yvbF, now designated opcR) located immediately upstream of the opuC operon negatively regulates transcription of the opuC operon and, in the absence of GbsR, also that of the opuB operon. An inverted repeat (TTGTAAA-N8-TTTACAA) that overlaps with the -35 hexamer of the promoters of both operons has been identified as the OpcR operator. OpcR belongs to the GbsR-type transcriptional regulators. Its orthologues with unknown function are present in some other Bacillus species. Moreover, deletion analyses revealed that a region located further upstream of the promoters of the opuB operon and the opuC operon is critical for expression of both operons during normal growth and under osmotic stress. Osmotic induction of these two operons appears not to be OpcR mediated. OpcR is not a choline-responsive repressor. The possible biological role of OpcR is discussed.
Collapse
Affiliation(s)
- Chun-Hao Lee
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Tien-Yu Wu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Gwo-Chyuan Shaw
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| |
Collapse
|